苏干湖湿地芦苇丛枝菌根真菌生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)是一类与植物互惠共生的微生物。在湿地生态系统中,AMF具有提高宿主对营养物质吸收,改变宿主生长发育水平,增强宿主抗盐分胁迫、抗污染能力等生态学功能。因而,对AMF的生态学研究已经成为一个热点。目前,已有很多这方面的研究成果出现,但是,对湿地环境中,AMF和宿主主要受到哪些因素的影响,以及这些因素的影响力,并没令人信服的结论。本实验研究位于柴达木盆地边缘的大苏干湖湿地植物芦苇(Phragmites australis)AMF不同季节(7月份、10月份)、不同生态型(水生、盐生、沙生)间侵染率、孢子种群密度、多样性的差异,探讨AMF与宿主、土壤理化性质之间的关系,揭示湿地植物根际AMF生态学特征,主要结论如下:
     1、单子叶植物芦苇根部AMF菌丝侵染率水平较低,仅为5.76%;不同月份之间的大小关系是:7月份(6.67%)>10月份(2.73%),即在芦苇生长发育旺盛的季节,AMF侵染率水平较高;不同生态型之间的大小关系是:水生型(10.28%)>沙生型(3.84%)>盐生型(3.21%),表明水分不是影响AMF侵染率水平的主要因素。菌丝侵染率水平和芦苇湿重(R~2=0.480,P<0.01)、芦苇平均株高(R~2=0.614,P<0.01)均显著正相关;多元线形回归分析(R~2=0.204,P<0.01)的结果表明,AMF菌丝和泡囊侵染率水平主要受宿主影响,其他因素对之影响不显著。
     2、7月份和10月份,孢子平均种群密度分别是1159和1611(单位:个/100g,下同),最高的是盐生型(2473),沙生型次之(518),水生型最低(390):盐碱化土壤中,AMF具有很高的孢子种群密度,甚至在1.0m深的土壤中也有较高的孢子种群密度。用PCA分析提取样地植物和土壤理化性质的主因子中,代表宿主物种多样性的因子和代表含盐量、有机碳含量的因子均与AMF孢子种群密度显著相关:用多元线性回归分析,得到AMF孢子种群密度的回归方程:Sd=-1943.618+1723.587Pbi+4.146Tpd(R~2=0.490,P<0.001),式中,Sd:孢子总种群密度,Pbi:样地植物物种多样性,Tpd:植物总种群密度。样地植物物种多样性、植物总种群密度的偏相关系数分别是0.574,0.757,即植物总种群密度是影响孢子种群密度的最主要因素;样地植物物种多样性也是影响AMF孢子种群密度的主要因素,这可能与不同植物分泌的信号分子有关。
     3、通过外形性状对AMF孢子归类,总共得到28种孢子。用辛普森指数代表物种多样性发现,7月份的物种多样性(1.7673)小于10月(1.9882)。孢子物种多样性最高的是盐生型样地(1.9343),其次是水生型(1.8760),沙生型最低(1.6521)。AMF孢子物种多样性与芦苇种群密度(R~2=0.598,P<0.01)、植物总种群密度(R~2=0.393,P<0.05)、土壤含盐量(R~2=0.385,P<0.05)显著正相关。通过多元线性回归分析得到孢子物种多样性的回归方程:Ssi=1.067+0.291Hf~2+0.290Si(R~2=0.567,P<0.001),其中,Ssi:孢子物种多样性;Hf:宿主因素(PCA分析构建的影响宿主生物量的因子);Si:土壤含盐量。以上各个自变量的偏相关系数分别是0.728,0.510,表明宿主是影响孢子物种多样性的主要因素,其次是土壤含盐量。AMF孢子物种多样性随着土壤含盐量的增加而增加,这可能是由于AMF和宿主长期生长在盐碱化小生境中对环境适应的结果。
     4、从影响AMF主因子的得分因子散点图可以发现,不同季节同一生态型的点比较集中,而相同季节不同生态型之间的点相差较远,表明季节对AMF的影响不如生态型对AMF的影响显著。
Arbuscular mycorrhizal fungi(AMF)is a kind symbiotic fungi of plants,plays an important role in wetland ecosystem in the aspects of nutrition absorption,growth, anti-salt stress and anti-pollutant,thus,it becomes hotspot of research.Util now,there is no convictional result of the factors influence wetland AMF in complex circumstance has gained.We experiment on spatial distribution(hydrophyte, halophyte,psammophyte),seasonal dynamic(July and October)of reed(Phragmites australis)AMF in Sugan Lake wetland,which lies on the edge of Chaidamu basin, and probe into relationship between AMF and its host,the main results showed:
     1.Reed,a kind of monocotyledon,has a low AMF hyphal and vesicular colonization rate.In July,AMF colonization rate(6.67%)is higher than that in October (2.73%).The colonization rate between ecotype was:hydrophyte(10.28%)>psammophyte(3.84%)>halophyte(3.21%),indicates AMF colonization was not affected by soil moisture.AMF hyphal colonization rate was positive correlate with reed wet weight(R~2=0.480,P<0.01),reed mean height(R~2=0.614,P<0.01). Multiple linear regression analysis results shows,AMF is mainly affected by its host.
     2.In July,mean AMF spore density is 1159 per 100g soil.Among ecotypes,the highest is halophyte(1688),psammophyte followed(635),halophyte is the lowest (532).There has a great amount of spore density in alkaline-saline soil,even in the depth of 1.0m.It suggests AMF may form a special structure with its host's aerenchymatous to get enough oxygen to survive.Via PCA analysis,the component deputy of soluble ion(R~2=0.727,P<0.05)and species richness (R~2=-0.422,P<0.05)was positive correlate with AMF spore density.Using multiple linear regression analysis,we get the equation: Sd=-1943.618+1723.587Pbi+4.146Tpd(R~2=0.490,P<0.001,Sd:spore density; Pbi:plant species richness;Tpd:total plant density).The partial correlation coefficient of Pbi and Tpd is 0.574 and 0.757;it means plant density was the most important factor to AMF spore density.Plant species richness affects AMF spore density too.May be secretion of different plants could increase sporulation of AMF,thus increase AMF spore density.
     3.We got 28 kinds of spores by phenotype.We use Simpson index as species richness,and find out the value in October(1.9882)is higher than July(1.7673). Values among 3 ecotypes is:hydrophyte(2.1562)>halophyte (1.7829)>psammophyte(1.6247).AMF spore richness is correlation with reed density(R~2=0.598,P<0.01),total plant density(R~2=0.393,P<0.05),soluble ion (R~2=0.383,P<0.001).Using multiple linear regression analysis,we get the equation:Ssi=1.067+0.291Hf~2+0.290Si(R~2=0.567,P<0.001,Ssi:spore spices richness;Hf:host factor,which was constructed by PCA analysis;Si:soluble ion). Partial correlation coefficient of Hf and Si is 0.728 and 0.510,indicates host is main factor affect AMF species richness,and then soluble ion.With the increasing of soluble ion,AMF species richness increasing too,it was the result of AMF long live in the alkaline-saline soil.
     4.Graph of AMF primary component shows,plots of same ecotype stand nearby, whereas plots of same season stand far from each other,indicates ecotype factor affect more to AMF than seasonal factor.
引文
Aliasgharzadeh, N., N.S. Rastin, H. Towfighi,A. Alizadeh. 2001. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11: 119-123.
    Allen, M.F.E.B., C.F. Frise. 1989. Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytologist 111: 45-49.
    Anderson, R.C., A.E. Liberta,L.A. Diekman. 1984. Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient. Oecologia 64: 111-117.
    Arriagada, C.A., M.A. Herrera, F. Borie,J.A. Ocampo. 2007. Contribution of arbuscular mycorrhizal and saprobe fungi to the aluminum resistance of Eucalyptus globulus. Water Air Soil Pollut 182: 383-394.
    Azcon, R., E. EI-Atrash. 1997. Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N_2 fixation (~(15)N)in Medicago sativa at four salinity levels. Biol Fertil Soils 24: 81-86.
    Bais, H.P., T.L. Weir,G. Perryl. 2006. The role of root exudates in rhizosphere interactions wit h plant s and other organisms. Annual Review of Plant Biology 57: 233-266.
    Bauer, C.R., C.H. Kellogg, S.D. Bridghama,G.A. Lamberti. 2003. Mycorrhizal colonization across hydrologic gradients in restored and reference freshwater wetlands. Wetlands 23: 961-968.
    Bever, J.D. 2003. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist 157: 465-473.
    Bever, J.D., J. Morton, A. J,P.A. Schultz. 1996. Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology 84.
    Bohrer, K.E., C.F. Friese,J.P. Amon. 2004. Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14: 329-337.
    Bois, G., Y. Piche, M.Y.P. Fung,D.P. Khasa. 2005. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand Mycorrhiza 15: 149-158.
    Brundrett, M., L. Abbott. 1994a. Myeorrhizal fungus propagules in the jarrah forestl. seasonal study of inoeulum levels. New Phytologist 127: 535-546.
    Brundrett, M.C., L.K. Abbott. 1994b. Mycorrhizal fungus propagules in the Jarrah Forest. I. seasonal study of inoculum levels. New Phytologist 127: 539-546.
    Burke, D.J., E.P. Hamerlynck,D. Hahn. 2002. Effect of arbuscular mycorrhizae on soil microbial populations and associated plant performance of the salt marsh grass Spartina patens. Plant and Soil 239: 141-154.
    Carvalho, L.M., I. Cacador,M.A. Martins-Loucao. 2001. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 11: 303-309.
    Carvalho, L.M., I. Cacador,M.A. Martins-Loucao. 2006. Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 285: 161-169.
    Carvalho, L.M., P.M. Correia, I. Cacador,M.A. Martins-Loucao. 2003. Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 38: 137-143.
    Carvalho, L.M., P.M. Correia,M.A. Martins-Loucao. 2004. Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14: 165-169.
    Cornwell, W.K., B.L. Bedford,C.T. Chapin. 2001. Occurrence of arbuscular mycorrhiza] fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. American Journal of Botany 88: 1824-1829.
    Cousins, J.R., D. Hope, C. Gries,J.C. Stutz. 2003. Preliminary assessment of arbuscular mycorrhizal fungal diversity and community structure in an urban ecosystem. Mycorrhiza 13: 319-326.
    Daleo, P., E. Fanjul, A.M. Casariego, B.R. Silliman, M.D. Bertness,O. Iribarne. 2007. Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecology Letters 10: 902-908.
    Dugan, P. 1993. Wetlands in Danger.
    Dunham, R.M., A.M. Ray,R.S. Inouye. 2001. Growth, physiology, and chemistry of mycorrhizal and nonmycorrhizal Typha latifolia. seedlings. Wetlands 23: 890-896.
    Escudero, V., R. Mendoza. 2005. Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza 15: 291-255.
    Fitter, A. 2005. Darkness visible:reflections on underground ecology. Journal of Ecology 93: 231-243.
    Fuchs, B., K. Haselwandter. 2004. Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14: 227-231.
    Graham, J., N. Hedge,J. Morton. 1995. Fatty acid methyl ester porfiles for eharaeterization of Glomalean fungi and their endomyeorrhizae. Applied and environmental microbiology 61: 58-64.
    Helgason, T., T.J. Daniell, R. Husband, A.H. Fitter,J.P. Young. 1998. Ploughing up the wood-wide web? Nature 394: 431.
    Helgason, T., M. JW, D. J, W. P, Y. JPW,F. AH. 2002. Selectivity and functional diversity in arbuscular mycorrhizal of co-occurring funfi and plants from a temperate deciduous wooland. Journal of Ecology 90: 371-384.
    Hildebrandt, U., K. Janetta, F. Ouziad, B. Renne, K. Nawrath,H. Bothe. 2001. Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10: 175-184.
    Ipsilantisa, I., D.M. Sylvia. 2007. Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Applied Soil Ecology 35: 261-271.
    Jansa, J., F.A. Smith,S.E. Smith. 2007. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist: 1-11.
    Jayachandran, K., K.G. Sherry. 2003. Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquatic botany 76: 281-290.
    Juniper, S., L. Abbott. 1993. Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4: 45-57.
    Kelly, C.N., J.B. Morton,J.R. Cumming. 2005. Variation in aluminum resistance among arbuscular mycorrhizal fungi. Mycorrhiza 15: 193-201.
    Koide, R.T., B. Mosse. 2004a. A history of research on arbuscular mycorrhiza. pp. 145-163. Springer.
    Koide, R.T., B. Mosse. 2004b. A history of research on arbuscular mycorrhiza. Mycorrhiza 14: 145-163.
    Kothamasi, D., S. Kothamasi, A. Bhattacharyya, R.C. Kuhad,C.R. Babu. 2006. Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar island, India Biology and Fertility of Soils 42: 358-361.
    L6pez-Sanchez, M., M. Honrubia. 1992. Seasonal variation of vesicular-arbuscular mycorrhizae in eroded soils from southern Spain. Mycorrhiza 2: 33-39.
    Landwehr, M., U. Hildebrandt, P. Wilde, K. Nawrath, T. Toth, B. Biro,H. Bothe. 2002. The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12: 199-211.
    Lugo, M., M.N. Cabello. 2002. Native arbuscular mycorrhizal fungi(AMF) form moutain grassland(Cordoba,Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 94: 579-586.
    McGonigle, T.P, M.H. Miller, D.G. Evans, G.L. Fairchild,J.A. Swan. 1990. Anew method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115: 495-501.
    Mentzer, J.L., R.M. Goodman,T.C. Balser. 2006. Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie. Plant and Soil 284: 85-100.
    Miller, S.P. 2000. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytologist 145: 145-155.
    Miller, S.P, J.D. Bever. 1999. Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia 119: 586-592.
    Morton, J., B. GL. 1990. Rebised classification if arbuscular mycorrhizal fungi(Zygomycetes):a new order, Glomus, two new suborders, Glominae and Gigasporinae and two families Acaulosporaceaae and Gigasporaceae, with an emendation of Glomaceae. Mycologia 80: 520-524.
    Oehl, F., E. Sieverding, K. Ineichen, E.A. Ris, T. Boiler, A. Wiemken. 2005. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist 165: 273-283.
    Oliveira, R.S., J.C. Dodd,P.M.L. Castro. 2001. The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialised region of Northern Portugal. Mycorrhiza 10: 241-247.
    Olsen, S.R., C.V. Cole,F.S. Watanabe. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular.
    Opik, M., M. Moora, J. Liira,M. Zobel. 2006. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology 94: 778-790.
    Pirozynski, K., D. Malloch. 1975. The origin of land plants: a matter of mycotrophism. Biosystem 6: 153-164.
    Prosser, J. 2002. Moleeular and functional diversity in soil miero-organisms. Plant and Soil 244: 9-17.
    Reddy, S., P. Pinsi,S. Reddy. 2005. Moleeular methods for research on arbuseular myeorrhizal fungi in India: Problems and prosPeets. Current Scienee 89: 1699-1709.
    Redeecker, D., R. Kodner,L. Craham. 2000. Glomalean fungi from the Ordovician. Science 289: 1920-1921.
    Remy, W., T. Taylor. 1994. Four hundred-million-yeas-old vesicular arbuscular mycorrhizae. PANAS 91: 11841-11843.
    Ruiz-Lozano, J.M., R. Azcon,M. Gomez. 1996. Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum 98: 767-772.
    Sanders, I.R., A.H. Fitte. 1992. The ecology function of vesicular-arbuscular mycorrhizas in co-existing grassland species I. Seasonal patterns occurence and morphology. New Phytologist 120: 517-524.
    Scheloske, S., M. Maetz, T. Schneider, U. Hildebrandt, H. Bothe,B. Povh. 2004. Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma 223: 183-189.
    Schubler, A. 2002. Molecular phylogeny, taxonomy,and evolution of Geosiphon phyrifomis and srbuscular mycorrhizal fungi.Plant and Soil 244:75-83.
    Schubler,A.,D.Schwarzott,C.Walker.2001.A new fungal phylum,the Glomeromycota:phyplgeny and evolution.Mycological Research 105:1413-1421.
    Sengupta,A.,S.Chaudhuri.2002.Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India.Mycorrhiza 12:169-174.
    Simon,L.,M.Lanlonde,T.Bruns.1992.Spceific amplifieation of 18S fungal ribosomal genes from vesieular-arbuseular endomyeorrhizal fungi eolonizing roots.Applied and environmental microbiology 58:291-295.
    Simpson,E.H.1949.Measurement of diversity.Nature 163:688.
    Solaiman,M.Z.,H.Hirata.1997.Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse.Plant and Soil 191:1-12.
    Solaiman,M.Z.,H.Hirata.1998.Glomus-wetland rice mycorrhizas influenced by nursery inoculation techniques under high fertility soil conditions.Biol Fertil Soils 27:92-96.
    Treseder,K.K.,M.C.Mack,A.Cross.Relationships among fires,fungi,and soil dynamics in Alaskan boreal forests,pp.1826-1838.
    Tsang,A.,M.A.Maun.1999.Mycorrhizal fungi increase salt tolerance of Strophostyles helvola in coastal foredunes Plant Ecology 144:159-166.
    Turner,S.D.,C.F.Friese.1998.Plant-mycorrhizal community dynamics associated with a moisture gradient within a rehabilitated prairie fen.Restor Ecology 6:44-51.
    Vierheilig,H.,B.Iseli,M.Alt.1996.Resistance of Urtica dioica to mycorrhizal colonization:a possible involvement of Urtica dioica agglutinin.Plant Soil 183:131-136.
    Wang,F.Y.,R.J.Liu,X.G.Lin,J.M.Zhou.2004.Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta.Mycorrhiza 14:133-137.
    Weishampel,P.A.,B.L.Bedford.2006.Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes.Mycorrhiza 16:495-502.
    Zhu,H.H.,Q.Yao.2002.Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum.Journai Phytopathology 152:537-542.
    王发园,刘润进.2001.黄河三角洲盐碱土壤中AM真菌的初步调查.生物多样性 9:389-392.
    李晓林,冯固.2001.丛枝菌根生态生理.华文出版社,北京.
    周爱锋,陈发虎,强明瑞,杨美临,张家武.2007.内陆干旱区柴达木盆地苏干湖年纹层的发现及其意义.地球科学7:941.948.
    南京农业大学.1996.土壤农化分析.中国农业出版社,北京.
    高克祥,郗荣庭.1996.苹果树VA菌根形态结构观察.河北林果研究 11:147-151.
    曹建,廷.,民.王苏.2001,西北内陆湖泊主要环境问题.科技导报 12:21-23.
    傅娇艳,丁振华.2007.湿地生态系统服务、功能和价值评价研究进展.应用生态学报 18:681-686.
    刘光明,杨劲松.2001.土壤含盐量与土壤电导率及水分含量关系的试验研究.土壤通报 32:85-87.
    刘润进,李晓林.2000.丛枝菌根及其应用.科学出版社,北京.
    卢纹岱.2006.Spss For Windows统计分析.电子工业出版社,北京.
    国家林业局.1999.森林土壤pH值的测定(LY/T1239-1999),北京.
    强明瑞,陈发虎,张家武.2005.2 ka来苏干湖沉积碳酸盐稳定同位素记录的气候变化.科学通报50:1385-1394.
    杨朝,飞.1995.中国湿地现状及其保持对策.中国环境科学 15:407-412.
    贺学礼,赵丽莉,杨宏宇.2006.毛乌素沙地豆科植物丛枝菌根真菌分布研究.自然科学进展16:684-688.
    陆健健.2006.湿地生态学.高等教育出版社,北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700