粘结Nd-Fe-B永磁体制备工艺及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用模压成型方法制备了粘结Nd-Fe-B磁体,分析了Nd-Fe-B合金体系的热力学性质,利用差热分析仪(DSC)、扫描电镜(SEM)、抗弯/抗压强度测试仪、MATS-2010H永磁材料测量仪等分析设备,系统地研究了硅烷耦联表面改性处理、粘结剂含量、强磁场、成型工艺及固化工艺等参数对粘结Nd-Fe-B磁体组织结构和性能的影响,进而优化了粘结Nd-Fe-B磁体的制各工艺。
     Nd-Fe-B合金体系的热力学分析表明,在Nd-Fe-B合金体系熔炼及冷却过程中,Nd_2Fe_(14)B相变反应的吉布斯自由能变化小于零,因此,生成Nd_2Fe_(14)B相的相变反应是可以自发进行的,这是制备Nd-Fe-B永磁体的先决条件;元素Nd、Fe和B都是容易被氧化的元素,它们氧化物的生成反应比Nd_2Fe_(14)B相的相变反应更容易,因此,在Nd-Fe-B磁体制备过程中,要尽量降低合金中的氧含量。
     用硅烷对Nd-Fe-B磁粉进行表面包覆改性处理,改善了磁粉的抗氧化性,提高了粘结磁体的相对密度、力学性能和磁性能,当耦联剂含量为1wt%时,表面处理效果最好。粘结剂含量对磁体性能的影响结果显示:粘结磁体的力学性能随着粘结剂含量的增加而增大;而磁性能随着粘结剂含量的增加而减小。
     本文研究了环氧树脂粘结Nd-Fe-B磁体制备工艺,工艺C是单向压制成型,且无保压时间,制备工艺简单,生产效率高,工艺C适合大批量工业化生产;工艺C制备磁体时,使磁体获得最佳力学性能的工艺条件为:①环氧树脂与固化剂含量比为7:3,②160℃左右的固化温度,③620Mpa的成型压力;磁体的剩磁和最大磁能积随着成型压力的增加而增加,而内禀矫顽力随着成型压力的增加反而降低。本文用强磁场对环氧树脂粘结Nd-Fe-B磁体进行饱和磁化,当磁场强度从1.5T增到5T时,磁体的剩磁B_r和最大磁能积(BH)_(max)增加很快;当磁场强度从5T增到10T时,磁体的B_r和(BH)_(max)增加很慢;当磁场强度大于10T以后,磁体的B_r和(BH)_(max)几乎不再增加;磁场强度从低到高变化时,磁体的内禀矫顽力H_(ci)变化不大,没有明显的变化规律。
     本文利用温压成型工艺制备了酚醛树脂粘结Nd-Fe-B磁体,温压成型磁体的性能比室温压制磁体的性能有较大的提高,在酚醛树脂含量为3wt%,压制压力为620MPa时,室温压制磁体的相对密度仅为89.4%,剩磁为0.6176T,内禀矫顽力为704.2kA/m,最大磁能积为72.1kJ/m~3;而温压磁体的相对密度提高到97.3%,剩磁达到了0.6786T,内禀矫顽力达到了714.2kA/m,最大磁能积达到了79.7kJ/m~3。酚醛树脂粘结Nd-Fe-B磁体可以不进行二次固化,未二次固化磁体的最佳温压温度为180℃。当其它工艺参数相同时,二次固化后磁体的磁性能与未二次固化磁体的磁性能相比降低了,这是因为二次固化后,磁体的热损失、热应力增大,磁体被氧化的几率增大,导致磁体的磁性能下降,可见二次固化对磁体磁性能是不利的。
     本文用温压成型工艺制备了尼龙(尼龙12)粘结Nd-Fe-B磁体,160℃温压磁体的力学性能比室温压制磁体的力学性能提高很多,当温压温度从160℃增加到190℃时,磁体力学性能有少量的增加;当温压温度从190℃增加到200℃时,磁体力学性能变化不大;磁体的力学性能随着成型压力的增加而增加,没有出现拐点;磁体的剩磁和最大磁能积随着成型压力的增加而增加,而磁体的内禀矫顽力降低;磁体的磁性能随着固化温度的升高而降低;对环氧树脂粘结Nd-Fe-B磁体及尼龙粘结Nd-Fe-B磁体的断口扫描电镜分析可知,粘结Nd-Fe-B磁体是一种脆性材料,粘结剂的含量及粘结强度是磁体力学性能的决定因素,大颗粒磁粉自身的强度对磁体的力学性能有一定的贡献。
     本文研究了复合(环氧树脂和尼龙66)粘结Nd-Fe-B磁体,并与环氧树脂和尼龙粘结Nd-Fe-B磁体的性能进行比较,尼龙12粘结剂体系制备Nd-Fe-B磁体由于磁体密度相对较低,磁体内部空隙较多,粘结剂的粘结强度较低,因此,磁体的力学性能也较低;复合粘结剂体系制备Nd-Fe-B磁体,当EP:PA=1.0:3.5时,磁体密度与环氧树脂粘结剂体系的磁体密度相当,但由于尼龙66含量比环氧树脂多2.5wt%,因此,尼龙66是影响磁体粘结强度的主导因素,加上尼龙66的力学性能优于环氧树脂,所以复合粘结磁体的力学性能比其它两种磁体的高。尼龙粘结Nd-Fe-B磁体密度比环氧树脂粘结及复合粘结Nd-Fe-B磁体密度低,磁体内部单位体积中的磁性颗粒少,因此,尼龙粘结Nd-Fe-B磁体的剩磁和磁能积比其它两种磁体的低,但磁体的内禀矫顽力比其它两种磁体的高。
Bonded Nd-Fe-B magnets were prepared by the method of compression molding. The thermodynamic properties of Nd-Fe-B alloy system were discussed. The influences of silane coupling treatment, binder content, high magnetic field, compaction process and thermosetting technology on the microstructure and properties of bonded Nd-Fe-B magnets were studied by the analysis of DSC, SEM, bending strength, compressive strength and MATS-2010 Permanent Magnet Test. The preparation process of bonded Nd-Fe-B magnets was optimized.
     The analysis of thermodynamic properties of Nd-Fe-B alloy system showed that the Gibbs free energy change (AG) in the phase transformation of Nd_2Fe_(14)B phase was less than zero (AGO) during the melting and cooling of Nd-Fe-B alloy. The formation of Nd_2Fe_(14)B phase was feasible in the Nd-Fe-B alloy system, which was the premise condition of preparation of Nd-Fe-B permanent magnet. The elements of Nd, Fe and B were oxidated easily and the formation of their oxides was easier than that of Nd_2Fe_(14)B phase. So reducing the oxygen content of Nd-Fe-B alloy system was significant during the preparation of Nd-Fe-B permanent magnet.
     The antioxidation, relative density, mechanical properties and magnetic properties of Nd-Fe-B magnets were improved after the silane coupling treatment of Nd-Fe-B magnetic powders. The coupling effect was the best when the content of silane coupling agent was 1wt%. The effects of binder content on the properties of magnets indicated that the mechanical properties of bonded magnets increased with the increase of binder content, but the magnetic properties decreased.
     The preparation process of epoxy resin bonded Nd-Fe-B magnets had been studied. The technology C was an uniaxial compaction molding, without dwell time, with simple preparation process and high production efficiency, which was suitable for mass production. The mechanical properties of bonded magnets with technology C obtained the best values when the preparation process was in the following:①the proportion between epoxy resin and curing agent was 7:3;②the thermosetting temperature was about 160℃;③the compaction pressure was 620MPa. The B_r and (BH)_(max) of bonded magnets increased with the increase of compaction pressure, but the H_(ci) decreased. The epoxy resin bonded Nd-Fe-B magnets were magnetized in high magnetic field. The B_r and (BH)_(max) increased almost linearly when the magnetic field strength rose from 1.5T to 5T. But the B_r and (BH)max increased slowly when the magnetic field strength exceeded 5T. Moreover, the B_r and (BH)_(max) increased no longer with increasing magnetic field up to 10T. However, the H_(ci) kept almost invariably with the magnetic field increasing.
     The phenolic resin bonded Nd-Fe-B magnets were prepared by the method of warm compaction molding. The magnetic properties of warm compaction magnets were better than that of room compaction magnets. When the phenolic resin content was 3wt% and compaction pressure was 620MPa, the properties of magnets at room temperature were in the following: relative density =89.4%, B_r =0.6176T, H_(ci) =704.2 kA/m, (BH)_(max)=72.1kJ/m~3; but the properties of magnets at warm compaction were in the following: relative density =97.3%, B_r=0.6786T, H_(ci) =714.2 kA/m, (BH)_(max)=79.7kJ/m~3. The phenolic resin bonded Nd-Fe-B magnets might have no need for second thermosetting treatment and the best warm compaction temperature was 180℃. The magnetic properties of magnets with second thermosetting treatment decreased because the hot loss, thermal stress and oxidation degree of magnets increased. So the second thermosetting treatment had adverse effects on the magnetic properties of magnets.
     The nylon (nylon 12) bonded Nd-Fe-B magnets were prepared by the method of warm compaction molding. The mechanical properties of 160℃warm compaction magnets were better than that of room compaction magnets. The mechanical properties of magnets increased a little when the warm compaction temperature rose from 160℃to 190℃. The mechanical properties kept almost invariably when the warm compaction temperature rose from 190℃to 200℃. The mechanical properties increased and had no turning point with the increase of compaction pressure. The B_r and (BH)_(max) of bonded magnets increased with the increase of compaction pressure, but the H_(ci) decreased. The magnetic properties decreased with the increase of thermosetting temperature. Scanning Electron Microscopy (SEM) was used to examine the fracture surfaces of epoxy resin and nylon bonded Nd-Fe-B magnets. The bonded Nd-Fe-B magnet was a kind of brittle materials. The binder content and bonding strength were the decisive factors on the mechanical properties of bonded Nd-Fe-B magnets. The strength of the magnetic powder also helped to increase the mechanical properties of magnets a little.
     The composite bonded (epoxy resin and nylon66) Nd-Fe-B magnets had been studied, whose properties compared with the epoxy resin and nylon 12 bonded Nd-Fe-B magnets. The mechanical properties of nylon 12 bonded Nd-Fe-B magnet were relatively low because of their low densities, many interspaces and low bonding strength. The densities of composite bonded Nd-Fe-B magnets (EP:PA=1.0:3.5) were equivalent to that of epoxy resin bonded Nd-Fe-B magnets. Because the nylon66 content was more 2.5wt% than the epoxy resin content and the mechanical properties of nylon66 were higher than that of epoxy resin, the mechanical properties of composite bonded Nd-Fe-B magnets were higher than that of two other magnets. Because the densities of nylon bonded Nd-Fe-B magnets were lower than that of two other magnets and the magnetic powders in unit volume were less, the B_r and (BH)_(max) of nylon bonded Nd-Fe-B magnets were lower than that of two other magnets, but the H_(ci) was higher than that of two other magnets.
引文
[1] 周寿增,董清飞.超强永磁体—稀土铁系永磁材料.北京:冶金工业出版社,1999
    
    [2] J. M. D. Coey. Magnetic materials. Journal of Alloy and Compounds, 2001, 326: 2-6
    
    [3] R. Valenzuela, H. Montiel, M. P. Gutierrez, et al. Characterization of softferromagnetic materials by inductance spectroscopy and magnetoimpedance. Journalof Magnetism and Magnetic Materials, 2005, 294: 239 -244
    
    [4] 宛德福,马兴隆.磁性物理学.北京:电子工业出版社,1999
    
    [5] 戴道生,钱昆明.铁磁学(上册).北京:科学工业出版社,2000
    
    [6] 戴道生,钱昆明.铁磁学(中册).北京:科学工业出版社,2000
    
    [7] 田民波.磁性材料.北京:清华大学出版社,2001
    
    [8] O. Gutfleich, A. Bollero, A. Handstein, et al. Nanocrystalline high performancepermanent magnets. Journal of Magnetism and Magnetic Materials, 2002, 242-245:1277-1283
    
    [9] F. Viala, F. Jolya, E. Nevalainen, et al. Improvement of coercivity of sintered NdFeBpermanent magnets by heat treatment. Journal of Magnetism and Magnetic Materials,2002, 242-245: 1329-1334
    
    [10] D. C. Crew, P. G McCormick, R. Street. An investigation of reversiblemagnetization in NdFeB. Journal of Applied Physics, 1999, 86(9): 3278-3284
    
    [11]王新林,王琦安.金属功能材料的研究进展.金属功能材料,1994,1(1):5-9
    
    [12]周寿增.超强永磁体--稀土铁系永磁材料.北京:冶金工业出版社,2004
    
    [13] M. Sagawa, S. Hirosawa, Y. Otani, et al. Temperature dependence of the coercivityof sintered R17Fe83-xBx magnets (R = Pr and Nd). Journal of Magnetism andMagnetic Materials, 1987, 70(12): 316-318
    
    [14] H. Miyajima, Y. Otani, S. Chikazumi, et al. Giant magnetic anisotropy and spinorientation in a single phase Nd-Fe-B magnet. Journal of Magnetism and MagneticMaterials, 1986, 54-57(2): 587-588
    
    [15] R. M. Stephan, De Andrade, R. Jr, et al. Levitation force and stability ofsuperconducting linear bearings using Nd-Fe-B and ferrite magnets. Physica C:superconductivity and Applications, 2003, 385(15): 490-494
    
    [16] K. Arai, Y. Honkura. Development of magnetic attachments for dental implants.??Digests of the Intermag Conference, 2003, pGQ08
    
    [17] Guo Hang, Dong Zengren, Zhao Dexi. Development of permanent magnet systemsfor magnetic resonance imaging. Digests of the Intermag Conference, 2003, pGQ13
    
    [18] C. C. Hwang, S. B. John, S. B. Bor. Analysis and design of a Nd-Fe-B permanentmagnet spindle motor for CD-ROM drive. IEEE Transaction on Energy Conversion,1999, 14(4): 1259-1264
    
    [19] Leo K.E.B. Serrona, A. Sugimura, R. Fujisaki, et al. Magnetic and structuralproperties of NdFeB thin film prepared by step annealing. Materials Science andEngineering B, 2003, 97: 59-63
    
    [20] D. C. Jiles. Recent advances and future direction in magnetic materials. Actamaterialia, 2003, 51: 5907-5939
    
    [21]黄钢祥.粉末烧结磁体材料概述.上海钢研,1996,3:44-55
    
    [22] Vaclav Zezulka, Pavel Straka, Pavel Mucha. A magnetic filter with permanent magnets on the basis of rare earths. Journal of Magnetism and Magnetic Materials, 2004, 268: 219 -226
    
    [23] A. J. Williams, R. Walls, B. E. Davie, et al. A study of the thermal demagnetisation behaviour of Nd-Fe-B sintered magnets by a magnetic field mapping system. Journal of Magnetism and Magnetic Materials, 2002, 242-245: 1378-1380
    
    [24]严密.磁学基础与磁性材料.杭州:浙江大学出版社,2006
    
    [25] Yutaka Matsuura. Recent development of Nd-Fe-B sintered magnets and their applications. Journal of Magnetism and Magnetic Materials, 2006, 303: 344-347
    
    [26] David Brown, Bao-Min Ma, Zhongmin Chen. Developments in the processing and properties of NdFeB-type permanent magnets. Journal of Magnetism and Magnetic Materials, 2002, 248: 432 -440
    
    [27]马昌贵.永磁材料的应用及其新发展.金属功能材料,2003,1(10):32-36
    
    [28]张雷,赵春.钕铁硼稀土永磁材料产业报告.招商证券,2006,9:11-16
    
    [29]罗阳.全球NdFeB磁体产业的变化与发展.电气技术,2008,6:5-11
    
    [30] Boris Bochenkov, Sergey Lutz. A review of modern materials of permanent magnets.Electrical Engineering, 2004,4: 201-203
    
    [31] Yutaka Matsuura. Current status of Neodmium-Iron-Boron magnets. IEEETransactions on Applied superconductivity, 2000, 10: 883-886
    
    [32] B.M. Ma, J.M. Herchenroeder, B. Smith, et al. Recent development in bondedNdFeB magnets. Journal of Magnetism and Magnetic Materials, 2002, 239: 418 -423
    [33] A. Z. Liu, L. Z. Rahman, E. R. Petty. Fabrication and measurements on polymer bonded NdFeB Magnets, Journal of Materials Processing Technology, 1996, 56: 571-580
    [34] Lillywhite, Williams, Davies, et al. A preliminary electron backscattered diffraction study of sintered NdFeB-type magnets. Journal of Microscopy, 2002, 205(3): 270-277
    [35] Herbst. Nd_2Fe_(14)B materials: Intrinsic properties and technological aspects. Rev Mod Phys, 1991,63:819-898
    [36] R. Friedberg, H. C. Ren. Field theory on a computationally constructed random lattice. Nuclear Physics B, 1984,235: 310-320
    [37] D. I. Paul, L. M. Pecora. A method for the calculation of the magnetization of random high anisotropy amorphous materials. Journal of Non-Crystalline Solids, 1980,40:447-452
    [38] Brandon Edwards, D. I. Paul. Ferromagnetic coercivity and applied field orientation. Journal of Magnetism and Magnetic Materials, 1995,147: 331-340
    [39] A. Sakuma. The theory of inhomogeneous nucleation in uniaxial ferromagnets. Journal of Magnetism and Magnetic Materials, 1990, 88: 369-375
    [40] H. Kronmuller, N. Lenge, H. U. Habermeier. Investigation of the approach to ferromagnetic saturation in sputtered amorphous Fe_(80-x)Ni_xB_(20) films. Physics Letters A, 1984,101:439-442
    [41] W. Fernengel, H. Kronmuller. Magnetization processes in the narrow domain structures of amorphous ferromagnetic alloys. Journal of Magnetism and Magnetic Materials, 1983, 37: 167-172
    [42] K. J. Strnat. Rare earth-cobalt permanent magnets. Handbook of Ferromagnetic Materials, 1988,4: 131-209
    [43] H. Kronmuller. Micromagnetism in hard magnetic materials. Journal of Magnetism and Magnetic Materials, 1978, 7: 341-350
    [44] H. Kronmuller, J. Ulner. Micromagnetic theory of amorphous ferromagnets. Journal of Magnetism and Magnetic Materials, 1977, 6: 52-56
    [45] Jiang Shouting, Li Hua, Xu Jun, et al. Research on the origin of magneto-crystalline anisotropy in R_2Fe_(14)B compounds. Journal of Magnetism and Magnetic Materials, 1994,136:294-300
    [46] Gao Ruwei, Li Hua, Jiang Shouting, et al. Investigations on magnetization reversal processes in oriented sintered Nd-Fe-B alloys. Journal of Magnetism and Magnetic??Materials, 1991, 95: 205-212
    
    [47] D. Givord, Q. Lu, M. F. Rossignol, et al. Experimental approach to coercivityanalysis in hard magnetic materials. Journal of Magnetism and Magnetic Materials,1990,83:183-188
    
    [48] J. Allemand, D. Givord, J. Le Roy, et al. Structural properties of R1+εFeBcompounds. Journal of the Less Common Metal, 1986,126: 138-143
    
    [49]朱明刚.Nd-Fe-B系永磁材料制备工艺、微结构和磁性机理的研究.钢铁研究总 院博士论文,2004
    
    [50] Yu. M. Rabinovich, V. V. Sergeev, A. D. Maystrenko, et al. Physical and mechanicalproperties of sintered Nd-Fe-B type permanent magnets. Intermetallics, 1996, 4:641-645
    
    [51] J. J. Croat. Neodymium-Iron-Boron permanent magnets prepared by rapidsolidification. Journal of material engineer, 1988, 10:1-6
    
    [52] Monika GGarrell, Bao-Min Ma, Albert J.Shih, et al. Mechanical properties ofpolyphenylene-sulfide(PPS) bonded Nd-Fe-B permanent magnets. Materials andEngineering A, 2003, 359: 375-383
    
    [53] S. Hirosawa, M. Uehara. New aspects of Nd-Fe-B based hydrogenation-disproportionation-desorption-recombination powders and anisotropic bondedmagnets made from them: microstructure and magnetic properties. Journal ofApplied Physics, 1997, 81(8): 4821-4826
    
    [54] T. Tomida, P. Choi. Origin of magnetic anisotropy formation in the HDDR-processof Nd_2Fe_(14)B-based alloys. Journal of Alloys and Compounds, 1996,242: 129-135
    
    [55] D. J. Branagan. Eliminating degradation during bonding of gas atomized NdFeB.IEEE Transaction on Magnetics, 1997, 33(5): 3838-3840
    
    [56] J. A. Horton. Consolidation, magnetic and mechanical properties of gas atomizedand HDDR Nd_2Fe_(14)B powders. IEEE Transactions on Magnetics, 1997, 33(5):3835-3837
    
    [57] L. Schultz, J. Wecker, E. Hellstem. Formation and properties of NdFeB prepared bymechanical alloying and solid-state reaction. Applied Physics, 1987, 61: 35-38
    
    [58] A. Handstein. Mechanically alloys anisotropy Nd-Fe-B magnetic powder. Journal ofmagnetism and magnetic materials, 1996,157:15-16
    
    [59]尹有祥.粘结永磁及其应用.产业透视,2004,9:24-30
    
    [60]林万明,解小玲,赵浩峰.永磁材料粘结剂的研究现状与应用.粘结,2003,24??(4): 28-30
    
    [61] J. M. D. Coey. Permanent magnet application. Journal of magnetism and magnetic materials, 2002, 248:441-456
    
    [62]郑强.聚合物基永磁复合材料研究与进展.功能此材,1998,29(6):561-565
    
    [63]李彦奎,杨达起,李丽容.注射成型粘结NdFeB磁体的工艺分析.磁性材料及 器件,2001,3:114-117
    
    [64] O. Gutfleisch, A. Bollero, A. Handstein, et al. Nanocrystalline high performance permanent magnets. Journal of magnetism and magnetic materials, 2002, 242-245: 1277-1283
    
    [65]祝捷.注射成型粘结NdFeB永磁体.稀土,2001,6(22):60-63
    
    [66]黄培云.粉末冶金原理.北京:冶金工业出版社,1997
    
    [67] Joe Capus. Hoeganaes offers higher density at lower cost. Metal Powder Report, 1994,49(7): 22-25
    
    [68]韩凤麟.模壁润滑与温压技术——高密度与高强度粉末冶金零件制造新工艺. 新材料产业,2007,2:59-68
    
    [69] A. D. Abbott, J. O. Allen. Producing injection molding magnets. Metal PowderReport, 1996, 51(6): 18-19
    
    [70] K. Ikuma, K. Akioka, T. Shimoda. High-energy extrusion-molded Nd-Fe-B magnets.IEEE Translation Jounal on Magnetics in Japan, 1994, 9(5): 94-99
    
    [71] Fumitoshi Yamashita, Akihiko Watanabe, Hirotoshi Fukunaga. New preparationmethod of anisotropic and isotropic Nd-Fe-B bonded magnet for small DC motors.IEEE Transactions on Magnetics, 2003, 39(5): 2896-2898
    
    [72] M. Sagawa, S. Fujimura, N. Togawa, et al. New material for permanents on a base ofNd and Fe(invited). Journal of Applied Physics, 1984, 55(6): 2083-2087
    
    [73] J. J. Croat, J. F. Herbst, R. W. Lee, et al. Neodymium-Iron-Boron permanent magnetsprepared by rapid solidification. Journal of Applied Physics, 1984, 55(6): 2078-2082
    
    [74] Takeshita T, Nakayama R. Magnetic Properties and Microstructures of the NdFeBMagnet Powder produced by Hydrogen Treatment. Workshop on RE Magnets andTheir Applications, Kyoto Japan: 1989, 551-552
    
    [75] P. J. McGuiness, X. J. Zhong, H. Forsyth etal. Disproportionation in Nd_(16)Fe_(76)B_8-type.Less-Comm. Metals, 1989, 158: 354-359
    
    [76] Hirosawa S, Uehara M. New aspects of NdFeB based hydrogenation-disproport-ion-desporption-reconbination powders and anisotropic bonded magnets made from??them: microstructure and magnetic properties. Journal of Applied Physics, 1997, 81(8): 4821-4826
    
    [77]唐与堪.稀土粘结磁体的新进展.粉末冶金工业,2000,21(4):7-17
    
    [78]王学正.快淬钕铁硼装置及钕铁硼粘结磁体通过鉴定.功能材料,1989,2(17): 115-117
    
    [79]柴立民,林毅等.NdFeB合金中的富Nd相在HDDR过程中的行为.稀土,1993, 3(3):245-248
    
    [80] J. Li, Y. Liu, S. J. Gao, et al. Effect of process on the magnetic properties of bonded NdFeB magnet. Journal of Magnetism and Magnetic Materials, 2006, 299(1): 195-204
    
    [81]姜娟,李瑛,朱明原等.制备粘结钕铁硼磁体的温压工艺研究.上海金属,2006, 28(4):9-13
    
    [82] C. Mishima, N. Hamada, H. Mitatai, et al. Development of a Co-free NdFeB anisotropic bonded magnet produced from the d-HDDR processed powder. IEEE Transactions on Magnetics, 2001, 37(4): 2467-2470
    
    [83]陈刚,杨小玲,徐晖.温压钕铁硼粘结磁体制备技术的研究.稀有金属材料与工 程,2008,37(2):308-311
    
    [84]吕通建,关宏宇,李莹等.钕铁硼磁性塑料及其注射成型的研究.中国塑料, 2003,17(9):49-54
    
    [85] A. J. William, R. Wallsa. A study of the thermal demagnetization behavior of NdFeB sintered magnets by a magnetic field mapping system. Journal of Magnetism and Magnetic Materials, 2002,147(3): 242-245
    
    [86] Shi Gang, Hu Lianxi, Wang Erde. Preparation, microstructure, and magnetic properties of a nanocrystalline Nd_(12)Fe_(82)B_6 alloy by HDDR combined with mechanical milling. Journal of Magnetism and Magnetic Materials, 2006, 301(2): 319-324
    
    [87]黄丽,闫海生,李效玉.环氧酚醛树脂基磁性复合材料的性能研究.化工新型材 料,2007,35(10):39-40
    
    [88] L. Q. Yu, J. Zhang, S. Q. Hu, et al. Production for high thermal stability NdFeB magnets. Journal of Magnetism and Magnetic Materials, 2008, 320(8): 1427-1430
    
    [89] H. Shokrollahi, K. Janghorban. The effect of compaction parameters and particle size on magnetic properties of iron-based alloys used in soft magnetic composites.??Materials Science and Engineering, 2006,134(1): 41-43
    
    [90] A. Walton, J. D. Speight, A. J. Williams. A zinc coating method for NdFeB magnets.Journal of Alloys and Compounds, 2000, 306(1-2): 253-261
    
    [91] S. M. Takeuchi, D. S. Azambuja, A. M. Saliba-silva, et al. Corrosion protection ofNdFeB magnets by phosphating with tungstate incorporation. Surface and CoatingsTechnology, 2006, 200(24): 6826-6831
    
    [92] Speliotis T, Niarchos D, Skumryev V. Effect of Post deposition annealing on thehysteresis loops of sputtered NdFeB films. Jounal of Magnetism and MagneticMaterials, 2004, 877: 272-276
    
    [93]姜力强,夏庆萍,郑精武等.烧结钕铁硼腐蚀及防护研究现状.材料保护,2007, 40(12):48-53
    
    [94] Chunjiang Wang, Qiang wang, Zhongying Wang, et al. Phase alignment and crystalorientation of Al3Ni in Al-Ni alloy by imposition of a uniform high magnetic field.Journal of Crystal Growth, 2008, 310: 1256-1263
    
    [95] A. K. Ariffin, Md. Mujibur Rahman, N. Muhamad, et al. Thermal-mechanical modelof warm powder compaction process. Journal of Materials Processing Technology,2001,116:67-71
    
    [96] Ying Li, Y. B. Kim, M. S. Song, et al. The temperature dependence of the anisotropicNd-Fe-B fabricated by single-stage hot deformation, Jounal of Magnetism andMagnetic Materials, 2003,263877: 11-14
    
    [97]李增峰,谈萍,张晗亮等.粘结稀土永磁体发展概况.稀有金属快报,2005,24 (6): 14-18
    
    [98] F. Vial, F. Joly, E. Nevalainen, et al. Improvement of coercivity of sintered NdFeB permanent magnets by heat treatment. Journal of magnetism and magnetic materials. 2002,242-245: 1329-1334
    
    [99]徐瑞,荆天辅.材料热力学与动力学.哈尔滨:哈尔滨工业大学出版社,2003
    
    [100]叶大伦.实用无机物热力学数据手册.北京:冶金工业出版社,2002
    
    [101]杨连科,杨怀,李宪文等.冶金热力学与动力学.沈阳:东北工学院出版社,1990
    
    [102]陈家祥.炼钢常用图标数据手册.北京:冶金工业出版社,1984
    
    [103]Jun xiao, Joshua U. Otaigbe, David C. Jiles. Modeling of magnetic properties of bonded Nd-Fe-B magnets with surface modifications. Journal of magnetism and magnetic materials. 2000, 218: 60-66
    
    [104]S. C. Wang, Y. Li. In situ TEM study of Nd-rich phase in NdFeB magnet. Journal of??Magnetism and Magnetic Materials, 2005,285(1-2): 177-182
    
    [105]Manwar Hussain, Atsushi Nakahira. Effects of coupling agents on the mechanicalproperties improvement of the TiO_2 reinforced epoxy system. Materials Letters,1996, 26(6): 299-303
    
    [106]M. Zalotnik, I. R. Harris, A. J. Williams. Multiple recycling of NdFeB-type sinteredmagnets. Journal of Alloys and Compounds, 2008, 5:1-8
    
    [107]J. M. Le Breton, J. Teillet. Mossbauer and X-ray of NdFeB type permanent magnetsoxidation: Effect of A1 and Nd addition. Journal of Magnetism and MagneticMaterials, 1991,101(1-3): 347-348
    
    [108] A. Fukuno, K. Hirose, T. Yoneyama. Coercivity mechanism of sintered NdFeBmagnets having high coercivity. Journal of Applied Physics, 1990, 87(9): 4750-4753
    
    [109]Yong-Chua Teo, Jun-Jie Lau, Man-Chao Wu. Direct asymmetric three componentmannich reactions catalyzed by a siloxy serine organocatalyst in water. Tetrahedron:Asymmetry, 2008,19(2): 186-190
    
    [110]贺曼罗.环氧树脂胶粘剂.北京:中国石化出版社,2004
    
    [111] Jun xiao, Joshua Otaigbe. Polymer-bonded magnetsIII.Effect of surface modification and particle size on the improved oxidation and corrosion resistance of magnetic rare earth fillers. Journal of Alloy and Compounds, 2000, 309: 100-106
    
    [112]李军,刘颍,高升吉等.密度对粘结钕铁硼永磁元件性能的影响.电子元件与材 料,2004,2(2):38-40
    
    [113]沈文娟,王宝奇,谷南驹等.NdFeB粘结磁体性能影响因素的研究.河北工业大 学学报,2003,4(32):82-86
    
    [114]K. Khlopkov, O. Gutfleisch, R. Schafer, et al. Interaction domains in die-upset NdFeB magnets in dependence on the degree of deformation. Journal of Magnetism and Magnetic Materials, 2004, 19(37): 272-276
    
    [115]刘锦云,王克强,陈良辉.固化温度和时间对快淬粘结磁体性能的影响.稀有金 属,2006,30(2):138-140
    
    [116]J. Singleton, C. H. Mielke, A. Migliori, et al. The national high magnetic fieldlaboratory pulsed-field facility at Los Alamos National Laboratory. Physica B, 2004,346-347:614-617
    
    [117]H. Kato, T. Akiya, M. Sagawa, et al. Effect of high magnetic field on the coercivityin sintered Nd-Fe-B magnets. Journal of Magnetism and Magnetic Materials, 2007,3(310): 2596-2598
    
    [118]齐民,王岩,王轶农等.强磁场对Nd_8Fe_(65)B_(17)Co_(10)非晶合金薄带晶化行为的影响. 功能材料,2005,1(36):35-39
    
    [119]谢宏祖,闫建明,洪光伟.强脉冲磁场中NdFeB生产中的应用.稀土,2006, 27(2):60-65
    
    [120]D. Plusa, B. Slusarek, M. Dospial, et al. Magnetic properties of anisotropic Nd-Fe-B resin bonded magnets. Journal of Alloy and Compound, 2006, 423: 81-83
    
    [121]黄发荣,焦杨声.酚醛树脂及其应用.北京:化学工业出版社,2003
    
    [122]吕晓静,王迪珍,杨军等.六次甲基四胺对NBR/木质素性能的影响.特种橡胶 制品,2001,22(5):10-13
    
    [123]Monika GGarrell, Albert J.Shih, Bao-Min Ma, et al. Mechanical properties of Nylonbonded Nd-Fe-B permanent magnets. Journal of magnetism and magnetic materials,2003, 257:32-43
    
    [124]Rean Der Chien, Shia-Chung Chen, Ming Chang Jeng, et al. Mechanical propertiesof gas assisted injection molded PS, PP and Nylon parts. Polymer, 1999, 40:2949-2959
    
    [125]李菁华.尼龙12性能简介及其子汽车上的应用.汽车技术,2091,3:21-25
    
    [126]叶金文,刘颖,连利仙等.添加剂对注射成型钕铁硼粘结磁体性能的影响.电子 元件与材料,2005,24:14-16
    
    [127]段柏华,叶斌,曲选辉等.Nd-Fe-B永磁材料的粉末注射成型技术.新材料产业, 2002,109(12):33-38
    
    [128]凌绳,王秀芬,吴友平.聚合物材料.北京:中国轻工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700