间充质祖细胞源性神经元样细胞体内移植延缓骨骼肌萎缩的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外周神经损伤后骨骼肌发生严重萎缩抑或损伤神经修复后肌肉功能难以恢复的患者在临床上较为常见,并且治疗相当困难。深入阐明失神经性骨骼肌萎缩的机理,有效地延缓或防治其萎缩,最大程度地维持骨骼肌原有功能,是近年来研究的重点和亟待解决的难题。显微外科技术的广泛应用尽管能提高外周神经损伤的修复水平,但术后骨骼肌功能恢复并不十分理想,其根源在于周围神经损伤后,运动神经再生非常缓慢,当受损神经通过再植或重新长入所支配的靶肌肉时,长时间失神经支配所致的肌肉不可逆变化(如肌肉萎缩、纤维化等)使骨骼肌无法恢复正常功能。为防治失神经性骨骼肌萎缩,国内外学者采取了许多方法,包括功能性电刺激、被动运动、药物疗法、神经元植入、生长因子治疗、基因治疗等,尽管实验研究均取得了一定成功,但临床应用的疗效却有限。
     干细胞(stem cell,SC)是一类具有自我增殖能力与多向分化潜能的细胞,既能产生基因型与自己完全相同的子代细胞,也能分化为祖细胞,具有再生为各种组织、器官的潜能,故医学界称其为“万用细胞”。研究表明,成体干细胞(adult stem cells,ASCs)在自然条件下通常倾向于分化为所属组织的各种细胞类型,主要用于替换衰老死亡的细胞和维持机体新陈代谢的相对稳定,但在特定的外界诱导条件下,一种组织的成体干细胞可以“横向分化”为其他组织的功能细胞,参与组织的损伤修复。此外,成体干细胞还可取自于患者的自身组织,通过定向诱导分化后重新植入患者体内避免了免疫排斥的问题。正是由于成体干细胞具有可塑性、旺盛的自我增殖能力及多向分化潜能,且疾病或损伤均能刺激成体干细胞的增殖和分化,因此一些学者认为成体干细胞对于各种神经系统损伤将是一种重要的治疗措施,并具有广阔的应用前景。
     近年来,一些学者将神经干细胞(neural stem cells,NSCs)及间充质干细胞(Mesenchymal stem cells,MSCs)移植于离断的外周神经或直接注入靶肌肉内并有效延缓了失神经性骨骼肌萎缩,动物实验确实获得了成功,但由于足量的神经干细胞获得途径相对有限且扩增困难,体外培养的小鼠间充质干细胞又极易遭受到造血干细胞的污染而使其增殖效果不理想,寻找新的移植细胞尤为迫切。新近研究发现,间充质祖细胞(mesenchymal progenitor cell,MPCs)可体外定向诱导分化为神经元样细胞,同时间充质祖细胞具有易获取、易生长、增殖能力强等特点,且来源于密质骨,体外培养时可避免造血干细胞的污染,故有望成为神经干细胞及间充质干细胞的替代种子细胞。
     因此,本课题拟培养GFP转基因C57小鼠密质骨碎片来源MPCS,体外定向诱导分化为神经元样细胞后进行神经断离处移植或直接注入靶肌肉内,初步探讨移植细胞体内原位定植存活情况以及延缓骨骼肌萎缩的作用与机制,为进一步探明其分子机制、后期临床应用提供理论指导和实验依据,同时也为法医物证学的个体识别方法、神经损伤后鉴定时限及其损伤程度的把握提供了新的思路。
     本研究内容主要包括两部分:
     第一部分:间充质祖细胞源性神经元样细胞肌内移植后自身特性的维持。
     目的:
     体外培养绿色荧光蛋白转基因C57小鼠密质骨碎片来源的间充质祖细胞,通过体外定向诱导分化为神经元及神经胶质样细胞后移植于神经断离处及直接注入靶肌肉中,探讨肌内移植后能否定植存活并维持其移植前的特性。
     方法:
     取3周龄健康GFP转基因C57小鼠后肢长骨进行MPCs培养,利用流式细胞术及成骨、成脂定向诱导分化检测其纯度及多向分化潜能。选取生长良好的第三代MPCs,神经元原代培养上清液进行神经元及神经胶质样细胞诱导分化后,采用免疫荧光染色检测神经元特异性标志物NSE、NeuN及神经胶质特异性标志物GFAP的表达情况并收集细胞,用生理盐水调整细胞浓度至5×105/μl细胞悬液备用;选取12周龄健康C57小鼠24只,按随机数字表法分为神经断离处+MPC移植组、神经断离处+生理盐水组、肌肉+MPC移植组、肌肉+生理盐水组,其中上述各组小鼠右后肢作为实验侧,左后肢为假手术侧。参照文献操作方法,4组小鼠右后肢均切断坐骨神经建立小鼠失神经腓肠肌萎缩模型,左后肢仅分离坐骨神经但不做切断处理。神经断离处+MPC移植组和肌肉+MPC移植组:右侧坐骨神经切断处、右侧腓肠肌内及左侧对应部位分别注入5μl MPCs悬液;神经断离处+生理盐水组和肌肉+生理盐水组:右侧坐骨神经切断处、右侧腓肠肌内及左侧对应部位均注入5μl生理盐水。术后4周,荧光显微镜下观察肌内移植细胞存活情况,并采用免疫荧光染色检测移植细胞神经元特异性标志物NSE、NeuN及神经胶质特异性标志物GFAP的表达情况。
     结果:
     1、通过小鼠密质骨培养获得的MPCs主要表达间质细胞免疫表型CD29、CD44、CD90、CD106,不表达造血干细胞免疫表型CD31和CD45,且在体外能够诱导分化为骨细胞及脂肪细胞,提示通过小鼠密质骨培养获得的MPCs是细胞同源性好、纯度高、排除了造血干细胞干扰且具有多向分化潜能的成体干细胞。
     2、MPCs经神经元原代培养上清液诱导24h后,大部分细胞阳性表达NSE、NeuN,少数细胞阳性表达GFAP,而对照组未见确切阳性表达细胞,提示MPCs经体外定向诱导分化后具备神经元或神经胶质的某些特性。
     3、术后4周,荧光显微镜下观察发现移植细胞均匀分布于肌细胞间隙;免疫荧光检测发现,神经断离处+MPC移植组和肌肉+MPC移植组右后肢注射部位周围肌肉组织中大部分移植细胞阳性表达NSE、NeuN,少量细胞阳性表达GFAP,而左侧对应部位肌肉组织以及另外两组均未见明显阳性细胞表达,提示MPCs源性神经元样细胞移植于神经断离处及失神经支配靶肌中能够定植存活并很好地维持其移植前特性。
     结论:
     1、成功培养出生长良好、纯度高且具有多向分化潜能的MPCs细胞。
     2、MPCs体外可定向诱导分化为神经元及神经胶质样细胞。
     3、MPCs源性神经元样细胞肌内移植后能够在原位定植存活并很好地维持其移植前特性。
     第二部分:间充质祖细胞源性神经元样细胞体内移植延缓骨骼肌萎缩的研究
     目的:
     初步探讨间充质祖细胞源性神经元样细胞移植于神经断离处和靶肌肉中延缓失神经性骨骼肌萎缩作用及其机制。
     方法:
     取GFP转基因C57小鼠后肢长骨进行MPCs培养及鉴定,选取生长良好的第三代MPCs,采用神经元原代培养上清液进行神经元及神经胶质样细胞诱导分化后收集细胞,生理盐水调整细胞浓度至5×105/μl细胞悬液备用。选取C57小鼠48只,随机分为对照组、神经断离组、神经断离处移植组、肌肉移植组,每组12只。参照文献操作方法,建立小鼠失神经腓肠肌萎缩模型,其中对照组不做任何处理。神经断离处移植组和肌肉移植组分别于坐骨神经断离处、腓肠肌内注入5μl MPCs悬液,神经断离组于腓肠肌内注入等量生理盐水,对照组不作任何处理。观察小鼠后肢活动能力,术后2和4周测量腓肠肌湿重、肌纤维横截面积维持率及观察超微结构,用Western blot检测α-actin、MHC及RT-PCR检测Myogenin、MyoD的表达情况。
     结果:
     1、术后2和4周,神经断离处移植组和肌肉移植组腓肠肌湿重及肌纤维横截面积维持率显著高于神经断离组,提示两种治疗方法均可有效延缓失神经性骨骼肌萎缩,其中神经断离处移植组治疗效果更显著。
     2、术后4周,神经断离处移植组和肌肉移植组肌细胞核、线粒体、内质网的退变及肌肉纤维化程度明显低于神经断离组,且部分细胞表现出旺盛的增殖活性的特点(细胞核内移,核增大,核仁明显,异染色质发达、线粒体数量增多等),表明两种治疗方法均可有效抑制失神经性骨骼肌纤维化;
     3、术后4周,Western blot检测发现,神经断离处移植组和肌肉移植组腓肠肌内α-actin及MHC的表达程度均显著高于神经断离组和对照组,表明两种治疗方法既可有效抑制失神经性骨骼肌蛋白质的降解,又能够促进蛋白质的加快合成。
     4、术后4周,RT-PCR检测发现,神经断离处移植组和肌肉移植组腓肠肌内Myogenin及MyoD的基因表达丰度显著高于神经断离组和对照组,其中以MyoD的高表达更为显著。
     结论:
     1、MPCs源性神经元样细胞移植于神经断离处及靶肌肉内均可有效延缓失神经性骨骼肌萎缩及肌肉纤维化的发生,其中以神经断离处细胞移植的疗效更为显著;
     2、MPCs源性神经元样细胞移植于神经断离处及靶肌肉内均可有效抑制失神经支配靶肌肉蛋白质的降解;
     3、初步得出MPCs源性神经元样细胞移植于神经断离处及靶肌肉内延缓失神经性骨骼肌萎缩的机制。
Patients whose skeletal muscle appears severe atrophy or injury torecovery of muscle function after nerve repair are very common inclinical, and the treatment is very difficult. Further elaboration ofmechanisms of denervated skeletal muscle atrophy, effectively delaying orpreventing skeletal muscle atrophy,to the greatest extent to maintain theoriginal function of skeletal muscle,is the focus of research in recent yearsand the problems to be solved urgently. Although microsurgical techniqueof widely application can improve the repair level of peripheral nerve injury,recovery of skeletal muscle function after the operation is not very ideal.when the damaged nerve was replanted or grown back into the targetmuscle,long time inreversible changes (such as muscle atrophy,myofibrosis) after denervation makes it unable to recover the normalfunction of skeletal muscle as a result of slow regeneration of motor nerve.,For the prevention and treatment of denervated skeletal muscle atrophy,scholars at home and abroad have adopted many methods, including functional electrical stimulation, passive motion, drug therapy, neuralimplantation, growth factor therapy, gene therapy, ect, and achieved somesuccess in experimental studies, but the clinical efficacy was limited.
     Stem cell (SC) is a type of self-proliferation ability and multipotencyof cells, can both produce the descendant cells with their genotype identicaland differentiate into progenitor cells,and have be potential to regenerateinto various tissue and organ,then are called “universal cells” in themedical profession. Studys have shown that adult stem cells (ASCs)usually prefer to differentiate into all kinds of cells of autochthonous tissuesnuder natural conditions to mainly used to replace to aging death cells andmaintain relative stability of the metabolism of organism,but underspecified induction conditions, ASCs of an organization can be "transversal differentiation " as functional cells of other organizations toparticipate in injury and recovery of tissues. In addition, ASCs taken fromthe patient 's own tissues through directional differentiation in vivo andthen implant patients to avoid problems of immune rejection. Due toplasticity, strong self proliferation and multilineage differentiation potentialof ASCs, and the injury or disease be able to induce the cell proliferationand differentiation of ASCs, some scholars argued that ASCs for treatmentof various neurological damage will be an important measure, and hasbroad application prospects.
     In recent years, some scholars study found that neural stem cells (NSCs) and mesenchymal stem cells (MSCs) transplanted into thetransected peripheral nerve or injected directly into the target muscleeffectively prevented denervated skeletal muscle atrophy. Although theyhave obtained success in animal experiment, the way to obtain plenty ofNSCs was relatively limited and amplification of them was difficult, andthe proliferation effect of MSCs was not ideal due to be vulnerable to bepolluted by hematopoietic stem cells in vitro culture, so the finding of newcells for transplantation is particularly urgent. Recent research found thatmesenchymal progenitor cells (MPCs) coming from the compact bone ofmice could be induced to differentiate into neuron-like cells, and was thecharacteristics of easy access, easy to grow, powerful reproductive activity,and could avoid the contamination of hematopoietic stem cells during becultured in vitro, therefore,therefore,it is expected to become the seed cellreplacing the NSCs and MSCs.
     Therefore,this topics proposed to cultivate MPCs from compactbone fragments of GFP transgenic C57mice,and then be transplanted intothe transected position or directly injected into the target muscle topreliminary study the survival situation of transplanted cells in situ and theeffect and mechanisms delaying skeletal muscle atrophy after be induceddifferentiation into neuron-like cells in vitro.This will provide thetheoretical guidance and experimental basis for further proving itsmolecular mechanism and clinical application of later, at the same time, and also provide a new way of thinking for the individual identificationmethod for forensic science and the grasp of the identification time andextent of the damage after nerve injury.
     Our study mainly consisted of three parts:
     The first part: Study on their own characteristic maintenance ofneuron-like cells from mesenchymal progenitor cells after beingtransplanted into muscle.
     Objective:
     MPCs from compact bone fragments of green fluorescent proteintransgenic C57mice was cultivated and induced differentiation intoneuron-like cells and neuroglia-like cells in vitro,and then weretransplanted into the transected position and directly injected into the targetmuscle to study the survival situation of transplanted cells in situ and themaintenance of pretransplant characteristics.
     Methods:
     MPCS were isolated from Bones of hind limbs of3week old healthyGFP transgenic C57mice mechanically and cultivated, and its purity andmulti-directional differentiation potency were detected by flow cytometryand induced differentiation of osteogenic and adipogenic cellsrespectively. After MPCs of the third generation(P3) in good growth wereinduced directionally into neuron-like cells and neuroglia-like cells by the supernatant cultured with primary neuron in vitro, detected its expressionof neuronal specific markers(NSE, NeuN) and glial specific marker(GFAP) by immunofluorescence staining,and collected it to prepared intocell suspension (5×105/μl) with physiological saline.24healthy C57miceaged12week old were divided into4groups evenly in random, thetransected position+MPC transplantation group, the transected position+physiological saline group, the muscle+MPC transplantation group and themuscle+physiological saline group, right leg as experimental side and leftleg for sham operation side among mice. According to the literature method,the sciatic nerves of right hind limbs of4groups of mice were transected toestablish the denervation atrophy model of gastrocnemius muscle while thesciatic nerves of the left hind were only isolated but not transected.5μl ofMPCs suspension were injected into the right sciatic nerve transectedposition,the right gastrocnemius muscle and the corresponding parts ofleft legs in the transected position+MPC transplantation group and themuscle+MPC transplantation group respectively while5μ L physiologicalsaline were injected into the right sciatic nerve transected position,theright gastrocnemius muscle and the corresponding parts of left legs in thetransected position+physiological saline group and the muscle+physiological saline group. At4weeks postoperatively, the survivalsituation of transplanted cells in situ were observed under fluorescentmicroscope, and the expression of neuronal specific markers(NSE, NeuN) and glial specific marker (GFAP) of transplanted cells were detected byimmunofluorescence staining.
     Results:
     1,Studies have shown that MPCs from the compact bone of mice didnot express immune phenotype of hematopoietic stem cell CD31andCD45but expressed immune phenotype of interstitial cells CD29, CD44,CD90and CD106Detection of flow cytometry,and could be induceddifferentiation into osteocyte and adipocyte. Therefore, it suggested thatMPCs from the compact bone of mice were a type of adult stem cells withgood homology, high purity, exclusion of hematopoietic stem cells andmulti-directional potency.
     2,Studies have shown that the majority of MPCs after being inducedby the supernatant cultured with primary neuron for24h expressedpositively NSE, NeuN and a few cells expressed positively GFAP byimmune fluorescence detection while positive expression cells were notfound in the control group. It suggested that MPCs after being directionlyinduced in vitro are some characteristics of neuronal or glial.
     3,At4weeks postoperatively,studies have shown that transplantedcells distributed evenly in the muscle fiber gap and the majority oftransplanted cells in right hindlimb muscles around the injection siteexpressed positively NSE, NeuN and a few cells expressed positivelyGFAP in the transected position+MPC transplantation group and the muscle+MPC transplantation group while no obvious positive cells werefound in the corresponding site of muscle tissue of left hindlimb in theother two groups.This indicates that neuron-like cells derived from MPCscould survive in situ and maintain the pretransplant characteristics afterbeing transplanted into the transected position and the denervated targetmuscle.
     Conclusion:
     1, MPCs with good growth, high purity and multilineagedifferentiation potentiality were successful cultivanted.
     2, MPCs could directiongly induced and differentiated intoneuron-like cells and neuroglia-cells in vitro.
     3,The fact was revealed that neuron-like cells derived from MPCscould survive in situ and well maintain the pretransplant characteristicsafter transplantation.
     The second part: Study on Delay of denervated Skeletal MuscleAtrophy After Transplantation of Neuron-like Cells derived fromMesenchymal Progenitor Cells in vivo
     Objective:
     To study the effect and mechanism delaying denervated skeletalmuscle atrophy after neuron-like cells derived from MPCs weretransplanted into the transected position and the target muscle.
     Methods:
     MPCS were isolated from bones of hind limbs of GFP transgenic C57mice for cultivation and identification. After being directionally inducedinto neuron-like cells and neuroglia-like cells by the supernatant culturedwith primary neuron in vitro,P3MPCs with good growth were collectedand prepared into cell suspension (5×105/μl) with physiological saline.48C57mice were divided into4groups evenly in random, the control group,the transected group, the transected transplantation group and the muscletransplantation group. According to the literature method, the sciaticnerves of mice were transected to establish the denervation atrophy modelof gastrocnemius muscle while nothing was treated in the control group.5μl of MPCs suspension was injected into the sciatic nerve transectedposition and the gastrocnemius muscle in the transected transplantationgroup and the muscle transplantation group respectivelyand5μl ofphysiological saline was injected into the gastrocnemius muscle in thetransected group while nothing was injected in the control group. Theactivity ability of hind limbs of mice were observed. At2and4weekspostoperatively, the retain ratio of wet weight of gastrocnemius muscleand cross sectional area of muscle fiber was measured and theultrastructural organization was observed. The expression of α-actin,myoglobulin (MHC) were detected by western blot and the expression ofMyogenin and MyoD were detected by RT-PCR.
     Results:
     1,At2and4weeks postoperatively, the retain ratio of the wet weightof gastrocnemius muscle and the cross sectional area of muscle fiber ofmice of the transected transplantation group and the muscletransplantation group were higher than that of the transected groupsignificantly (P <0.01), which suggested that two kinds of treatmentmethods could effectively delay denervated skeletal muscle atrophy and thecurative effect of the transected transplantation group was moresignificant.
     2,At4weeks postoperatively, compared with the degeneration ofmyocyte, mitochondria and sarcoplasmic reticulum and the extent ofmusculus fibrosis of the transected group, that of the transectedtransplantation group and the muscle transplantation group were lowersignificantly and some cells showed the characteristics of vigorousproliferation activity (nuclear ingression, nuclear enlargement, nucleolusmanifestation, developed heterochromatin and the number of mitochondriaincreased,ect), which suggested that two kinds of treatment methodscould effectively could inhibit the fibrosis of denervated skeletal muscle.
     3,At4weeks postoperatively, compared with the the expression ofα-actin, MHC of the transected group, that of the transected transplantationgroup and the muscle transplantation group were higher significantly byWestern blot,which suggested that two kinds of treatment methods not only could effectively inhibit the degradation of skeletal muscle proteinafter denervation,but also accelerate the synthesis of protein.
     4,At4weeks postoperatively, compared with the the expression ofMyogenin and MyoD of the transected group, that of the transectedtransplantation group and the muscle transplantation group were highersignificantly by RT-PCR,and the expression of MyoD were the mostsignificant.
     Conclusion:
     1,That neuron-like cells derived from MPCs were transplanted intothe transected position and the target muscle could effectively delaydenervated skeletal muscle atrophy and inhibit muscle fibrosis, and theeffect of cell transplantation into the transected position was moresignificant.
     2,That neuron-like cells which derived from MPCs were transplantedinto the transected position and the target muscle could effectively inhibitthe degradation of skeletal muscle protein after denervation.
     3, It was drawn the preliminary mechanism delaying skeletal muscleatrophy that neuron-like cells derived from MPCs were transplanted intothe transected position and the target muscle.
引文
[1]徐建广、顾玉东.缺血对失神经支配骨骼肌萎缩影响的研究[J].中华手外科杂志,1999;15(3):175-177.
    [2]徐建广,顾玉东.失神经支配骨骼肌退变形态学及酶组织化学研究[J].中华显微外科杂志,2000,23(3):213-214.
    [3]殷畸,胡蕴玉.运动终板退变的量化分析[J].中华实验外科杂志,1996,13(1):55-55.
    [4]徐建广、顾玉东.大鼠失神经支配骨骼肌及其运动终板蜕变观察[J].中华显微外科杂志,1999;22(3):215-215.
    [5] Rodrigues Ade C, Schmalbruch H. Satellite cells and myonuclei in long-termdenervated rat muscles[J]. Anat Rec,1995,243(4):430-437.
    [6] Carlson BM, Billington L, Faulkner J. Studies on the regenerative recovery oflong-term denervated muscle in rats[J]. Restor Neurol Neurosci,1996,10(2):77-84.
    [7] Tews DS, Goebel HH, Schneider I, et al. DNA-fragmentation and expression ofapoptosis-related proteins in experimentally denervated and reinnervated rat facial[J]. Neuropathol Appl Neurobiol,1997,23(2):141-149.
    [8] Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis [J].Curr Opin Cell Biol,2007,19(6):628-633.
    [9] Borisov AB, Carlson BM. Cell death in denervated skeletal muscle is distinct fromclassical apoptosis [J]. Anat Rec,2000,258(3):305-318.
    [10] Popovic MR, Popovic DB, Keller T. Neuroprostheses for grasping [J]. NeurolRes,2002, Jul;4(5):443-452.
    [11] Cameron T.Safety and efficacy of spinal cord stimulation for the treatment ofchronic pain: a20-year literature review[J]. J Neurosurg,2004,100(3SupplSpine):254-267.
    [12] Kebaetse MB, Binder-Macleod SA. Strategies that improve human skeletalmuscle performance during repetitive, non-isometric contractions[J]. PflugersArch,2004,448(5):525-532.
    [13] Kebaetse MB, Lee SC, Johnston TE, et a1. Strategies that improve paralyzedhuman quadriceps femoris muscle performance during repetitive, nonisometriccontractions[J]. Arch Phys Med Rehabil,2005,86(11):2157-2164.
    [14] Scott WB, Lee SC, Johnston TE,et a1. Contractile properties and the forcefrequency relationship of the paralyzed human quadriceps femoris muscle [J].Phys Ther.2006,86(6):788-799.
    [15] Kesar T, Binder-Macleod S. Effect of frequency and pulse duration on humanmuscle fatigue during repetitive electrical stimulation[J]. Exp Physiol,2006,91(6):967-976.
    [16] Jubeau M, Sartorio A, Marinone PG, et a1. Comparison between voluntary andstimulated contractions of the quadriceps femoris for growth hormone responseand muscle damage[J]. J Appl Physiol,2008,104(1):75-81.
    [17] Tomori K, Ohta Y, Nishizawa T,et al. Low-intensity electrical stimulationameliorates disruption of transverse tubules and muscle fibers[J]. J Muscle ResCell Motil,2010,31(3):195-205.
    [18] Arakawa T, Katada A, Shigyo H,et al. Electrical stimulation prevents apoptosis indeenrvated skeletal muscle[J]. NeuroRehabilitation,2010,27(2):147-154.
    [19] Kern H, Carraro U, Adami N,et al. One year of home-based daily FES incompete lower motor neuron paraplegia:recovery of titanic contractility drives thestructural improvements of denervated muscle[J]. Neurol Res,2010,32(1):5-12.
    [20]陈德松,满富强.被动活动对小鼠失神经支配肌肉萎缩的影响[J].中国康复医学杂志,1992,7(5):215-216.
    [21] Takanashi G. Effect of endurance training on the compositions of fiber types andmyosin light chains in muscles under disuse atrophy[J]. Nihon Seikeigeka GakkaiZasshi,1992,66(1):92-101.
    [22] Loughna PT, Morgan MJ. Passive stretch modulates denervation inducedalterations in skeletal muscle myosin heavy chain mRNA levels[J]. PflugersArch,1999,439(1-2):52-55.
    [23] Akima H, Kubo K, Imai M,et al. Inactivity and muscle:effect of resistancetraining during bed rest on muscle size in the lower limb[J]. Acta PhysiolScand,2001,172(4):269-278.
    [24]徐建广,顾玉东,李继峰,等.被动活动对失神经支配骨骼肌超微结构及酶组织化学影响[J].骨与关节损伤杂志,2003,18(1):27-29.
    [25]徐建广,顾玉东,李继峰,等.被动活动对失神经支配骨骼肌萎缩的影响[J].中华显微外科杂志,2003,26(3):210-211.
    [26] Sakakima H, Yoshida Y, Sakae K,et al. Different frequency treadmill runningimmobilization-induced muscle atrophy and ankle joint contracture of rats[J].Scand J Med Sci Sports,2004,14(3):186-192.
    [27] Szabo A,Wuytack F,Zador E. The effect of passive movement on denervatedsoleus highlights a differential nerve control on SERCA and MyHC isoforms[J].Histochem Cytochem,2008,56(11):1013-1022.
    [28]徐向阳,顾玉东.氨哮素对成年大鼠失神经支配肌肉的作用[J].中华手外科杂志,1996,12(A00):42-45.
    [29] Vandenburgh H, Del Tatto M, Shansky J,et al. Attenuation of skeletal musclewasting with recombinant human growth hormone secreted form atissue-engineered bioartificial muscle[J]. Hum Gene Ther,1998,9(17):2555-2564.
    [30]姜广良,顾玉东,张丽银,等.氨哮素防治失神经骨骼肌萎缩的临床研究[J].中华手外科杂志,1998,14(3):164-166.
    [31]吴朝晖,田涛,金惠铭,等.氨哮素延缓臂丛神经损伤后骨骼肌萎缩的机理研究[J].中华手外科杂志,2000,16(4):198-200.
    [32] Becque MD, Lochmann JD, Melrose DR. Effects of oral creatinesupplementation on muscular strength and body composition[J]. Med Sci SportsExerc,2000,32(3):654-658.
    [33] Hespel P, Op't Eijnde B, Van Leemputte M,et al. Oral crearine supplementationfacilitates the rehabilitation of disuse atrophy atrophy and alters the expression ofmuscle myogenic factors in humans[J]. J Physiol,2001,536(Pt2):625-633.
    [34] Op 't Eijnde B, Urs B, Richter EA, et al. Effect of oral creatine supplementationon human muscle GLUT4protein content after immobilization[J]. Diabetes,2001,50(1):18-23.
    [35] Herrera NM Jr, Zimmerman AN, Dykstra DD,et al.Clenbuterol in the preventionof muscle atrophy:a study of hindlimb-unweighted rats[J]. Arch Phys MedRehabil,2001,82(7):930-934.
    [36] Dodd SL, Koesterer TJ.Clenbuterol attenuates muscle atrophy and dysfunction inhindlimb-suspended rats[J]. Aviat Space Environ Med,2002,73(7):635-639.
    [37] Hinkle RT, Donnelly E, Cody DB, et al. Activation of the CRF2receptormodulates skeletal muscle mass under physiological and pathologicalconditions[J]. Am J Physiol Endocrinol Metab,2003,285(4):E889-898.
    [38] Hinkle RT, Donnelly E, Cody DB,et al. Urocortin Ⅱtreatment reduces skeletalmuscle mass and function[J]. Endocrinology,2003,144(11):4939-4946.
    [39] Derave W, Eijnde BO, Verbessem P, et al. Combined creatine and proteinsupplementation in conjunction with resistance training promotes muscle GLUT-4content and glucose tolerance in humans[J]. J Appl Physiol,2003,94(5):1910-1916.
    [40] Joumaa WH, Bouhlel A, Bigard X,et al. Nandrolone decanoate pre-treatmentattenuates unweighting-induced functional changes in rat soleus muscle[J]. ActaPhysiol Scand,2002,176(4):301-309.
    [41] Bouhlel A, Joumaa WH, Léoty C. Nandrolone decanoate reduces changesinduced by hindlimb suspension in voltage-dependent tension of rat soleusmuscle[J]. Jpn J Physiol,2003,53(2):77-87.
    [42]姜广良,顾玉东,张丽银.胚胎运动神经元失神经骨骼肌内种植防治肌萎缩的研究[J].中华实验外科杂志,1998,15(4):364-365.
    [43]王欢,顾玉东,徐建广,等.不同方法的感觉神经(元)营养失神经骨骼肌实验研究的疗效比较[J].中华手外科杂志,2000,16(1):49-52.
    [44]庞水发,汪华侨,卢晓林,等.胚胎运动神经元移植对失神经肌肉影响的实验研究[J].中华显微外科杂志,2001,24(4):284-286.
    [45] Poduslo JF, Low PA, Nickander KK,et al. Mammalian endoneurial fluid:collection and protein analysis from normal and crushed nerves[J]. BrainRes,1985,332(1):91-102.
    [46] Helgren ME, Squinto SP, Davis HL,et al. Trophic effect of ciliary neurotrophicfactor on denervated skeletal muscle [J]. Cell,1994,76(3):493-504.
    [47]张西峰,朱盛修,张伯勋,等.神经提取液对周围神经及骨骼肌的作用[J].中华实验外科杂志,2001,18(5):448-449.
    [48]金捷,洪光祥,王度,等.胚胎肢芽提取液对失神经肌肉的作用[J].中国中医骨伤科杂志,2006,14(4):448-449.
    [49] Allen RE, Boxhorn LK. Regulation of skeletal muscle satellite cell proliferationand differentation by transforming growth factor.beta, insulin-like growth factor1,and fibmblast growth factor[J].J Cell Physiol,1989,138(2):311-315.
    [50]刘建华,柏志全.bFGF对大鼠坐骨神经损伤后骨骼肌功能恢复的促进作用[J].广州医药,1999,30(3):4-7.
    [51] Miller KJ, Thaloor D, Matteson S, et a1. Hepatocyte growth factor affectssatellite cell activation and diferentiation in regenerating skeletal muscle[J]. Am JPhysiol Cell Physiol,2000,278(1):C174-181.
    [52] Fisher J, Levkovitch-Verbin H, Schori H, et a1. Vaccination for neuroprotectionin the mouse optic nerve: implications for optic neuropathies [J]. J Neurosci,2001,21(1):136-142.
    [53] Lyon M, Deakin JA, Gallagher JT.The mode of action of heparin and dermatansulfates in the regulation of hepatocyte growth factor/scatter factor[J]. J BiolChem,2002,277(2):1040-1O46.
    [54]王敏,黄象艳.胰岛素样生长因子工原位注射抑制骨骼肌失神经萎缩[J].中国矫形外科杂志,2003,11(120:840-841.
    [55] Andreetta F, Bernasconi P, Baggi F,et a1.Immunomodulation of TGF-beta l inmdx mouse inhibits connective tissue proliferation in diaphragm but increasesinflammatory response: implications for antifibrotic therapy[J]. JNeuroimmunol,2006,175(1-2):77-86.
    [56] Haase G, Pettmann B, Vigne E,et al.Adenovirus-mediated transfer of theneurotrophin-3gene into skeletal muscle of pmnmice:therapeutic effects andmechanisms of action[J]. J Neurol Sci,1998,160Suppl1:S97-105.
    [57] Husom AD, Peters EA, Kolling EA,et a1.Altered proteasome function andsubunit composition in aged muscle[J]. Arch Biochem Biophys,2004,421(1):67-76.
    [58] Shavlakadze T, Winn N, Rosenthal N, et a1.Reconciling data from transgenicmice that overexpress IGF-I specifically in skeletal muscle[J]. Growth Horm IGFRes.2005,15(1):4-18.
    [59] Wang X, Blagden C, Fan J,et a1.Runx1prevents wasting, myofibrillardisorganization, and autophagy of skeletal muscle [J]. Genes Dev,2005,19(14):1715-1722.
    [60] Siu PM, Alway SE. Deficiency of the Bax gene attenuates denervation-inducedapoptosis[J]. Apoptosis,2006,11(6):967-981.
    [61]周桌妍,杨默,霍泰辉.成体干细胞的研究进展[J].中华儿科杂志,2005,43(1):20-23.
    [62] Daley GQ, Goodell MA, Snyder EY. Realistic prospects for stem celltherapeutics [J]. Hematology Am Soc Hematol Educ Program,2003:398-418.
    [63] Kageyama R, Ohtsuka T, Hatakeyama J,et al. Roles of bHLH genes in neuralstem cell differentiation [J]. Exp Cell Res,2005,306(2):343-348.
    [64] Harting M, Jimenez F, Pati S,et a1.Immunophenotype characterization of ratmesenchymal stromal cells[J].Cytotherapy,2008,10(3):243-253.
    [65]沈云东,徐建光,徐文东,等.神经干细胞移植延缓失神经肌肉萎缩的实验研究[J].中国修复重建外科杂志,2008,22(90):1051-1055.
    [66]黄新,江长青,肖颖锋,等.体外诱导神经干细胞移植治疗失神经肌萎缩的实验研究[J].深圳中西医结合杂志,2009,19:(2):73-76.
    [67]彭建平,何继业,王栋梁,等.骨髓间充质干细胞成肌诱导后移植对延缓失神经肌肉萎缩的作用[J].中国组织工程研究与临床康复,2008,12(25):4824-4828.
    [68] Faijerson J, Tinsley RB, Apricó K,et al. Reactive astrogliosis induces astrocyticdifferentiation of adult neural stem/progenitor cells vitro [J]. J Neurosci Res,2006,84(7):1415-1424.
    [69] Belegu V, Oudega M, Gary DS,et al.Restoring function after spinal cord injury:promoting sponatneous regneration with stem cells and activity based therapies[J].Neurosurg Clin N Am,2007,18(1):143-168.
    [70] Phinney DG, Kopen G, Isaacson RL,et al. Plastic adherent stromal cells from thebone marrow of commonly used strains of inbred mice:Variations in yield,growthand differentiation[J]. J Cell Biochem,1999,72(4):570-585.
    [71] Choi CB, Cho YK, Prakash KV,et al. Analysis of neuron-like differentiation ofhuman bone marrow mesenchymal stem cells [J]. Biochem Biophys ResCommun,2006,350(1):138-146
    [72] Tropel P, Platet N, Platel JC, et a1. Functional neuronal differentiation of bonemarrow-derived mesenchymal stem cells[J].Stem Cells,2006,24(12):2868-2876.
    [73]杨里,万立华,粟永萍,等.小鼠间充质祖细胞向神经元样细胞诱导分化的实验研究[J].重庆医科大学学报,2010,35(06):801-804.
    [74] Guo Z, Li H, Li X,et al. In vitro characteristics and in vivo immunosuppressiveactivity of compact bone-derived murine mesenchymal progenitor cells [J]. StemCells,2006,24(4):992-1000.
    [75] Yasuhara T, Matsukawa N, Hara K, et al. Transplantation of human neural stemcells exerts neuroprotection in a rat model of Parkinson’s disease [J]. JNeurosci,2006,26(48):12497-12511.
    [76]北京市科学技术委员会.北京市实验动物管理条例.实验动物科学与管理,1997,14(1):1-3.
    [77] Kadiyala S, Young RG, Thiede MA.Culture expanded canine mesenchymal stemcells possess osteochondrogenic potential in vivo and in vitro [J]. CellTransplant,1997,6(2):125-134.
    [78] Pittenger MF, Mackay AM, Beck SC,et al. Multilineage potential of adult humanmesenchymal stem cells [J]. Science,1999,284(5411):143-147.
    [79]邓均,艾国平,王军平,等.C3H1OT1/2细胞向神经元诱导分化的方法研究[J].中国修复重建外科杂志,2007,21(9):1221-1227.
    [80]赵文勇,王涛,王军平,等.肌肉特异性microRNAs在失神经肌肉萎缩中表达变化的研究[J].第三军医大学学报,2008,30(21):2034-2036.
    [81] Guan Rang-xian, Yan Xiao-hua, Chen Qi-wen. Baicalin induces thedifferentiation of human umbilical cord blood-derived mesenchymal stem cellstowards neurons-like cells in vitro.中国组织工程研究与临床康复,2009,13(14):2787-2792.
    [82]张晓明,孙海梅,杨慧,等.人羊膜上皮细胞分泌神经营养因子诱导人脐血间充质干细胞向神经元样细胞的分化:可能性验证[J].中国组织工程研究与临床,2010,14(6):973-978.
    [83]金钧,黄坚,王俊,等.体外羊膜间充质干细胞分离培养及向神经元样细胞的分化[J].中国组织工程研究与临床康复,2010,14(32):5939-5943.
    [84]李玉林,唐建武等《.病理学》第6版.2005年1月.ISBN7-117-05833-1/R.5834.
    [85]纪家武,王玮.神经干细胞在修复脊髓损伤中的应用[J].局解手术学杂志.2004,13(3):198-199.
    [86] Tropel P, Platet N, Platel JC,et a1. Functional neuronal differentiation of bonemarrow-derived mesenchymal stem cells[J].Stem Cells,2006,24(12):2868-2876.
    [87] Zyuz'kov GN, Suslov NI, Dygai AM,et a1.Role of stem cells in adaptation tohypoxia and mechanisms of neuroprotective effect of granulocyticcolony-stimulating factor [J].Bull Exp Biol Med,2005,140(5):606-611.
    [88] Moviglia GA, Varela G, Gaeta CA,et a1.Autoreactive T cells induce in vitro BMmesenchymal stem cell transdifferentitation to neural stem cells[J].Cytotherapy,2006,8(3):196-201.
    [89] Woodbury D, Schwarz EJ, Prockop DJ,et a1.Adult rat and human bone marrowstromal cells differentiate into neurons [J].J Neurosci Res,2000,1(4):364-370.
    [90] Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stemcells derived from adult marrow [J]. Nature,2002,418(6893):41-49.
    [91] Meirelles Lda S, Nardi NB. Murine marrow-derived mesenchymal stem cell:isolation, in vitro expansion, and characterization [J]. Br J Haematol,2003,123(4):702-711.
    [92] Tropel P, No l D, Platet N, et al. Isolation and characterization of mesenchymalstem cells from adult mouse bone marrow [J]. Exp Cell Res,2004,295(2):395-406.
    [93] Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow(MSCs) isolated form different strains of inbred mice vary in surface epitopes,rates of proliferation, and differentiation potential [J]. Blood,2004,103(5):1662-1668.
    [94] Dvorakova J, Hruba A, Velebny V, et al.Isolation and characterization ofmesenchymal stem cell population entrapped in bone marrow collection sets[J].Cell Biol Int,2008,32(9):1116-1125.
    [95]潘兴华,韩毅冰,郭坤元,等.成体干细胞的生物学特点及应用前景[J].生命科学,2002,14(5):272-274.
    [96] Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolatedfrom murine skeletal muscle [J]. Proc Natl Acad Sci USA,1999,96(25):14482-14486.
    [97] Krause DS, Theise ND, Collector MI,et al.Multi-organ, multi-lineageengraftment by a single bone marrow derived stem cell [J]. Cell,2001,105(3):369-377.
    [98]潘兴华,段连宁.成体干细胞的可塑性及临床意义[J].热带医学杂志,2001,1(2):158-162.
    [99] Rodrigues Ade C, Schmalbruch H.Satellite cells and myonuclei in long-termdenervated rat muscles[J]. Anat Rec,1995,243(4):430-437.
    [100] Fu X, Sun X, Li X,et a1.Dediferentiation of epidermal cells to stem cells invivo[J]. Lancet,2001,358(9287):1067-1068.
    [101] Sunderland S. Factors influencing the development and severity of thechanges in denervated muscle//Nerve injury and their repair:a criticalappraisal[J].London:Churchill livingstone,1991,41(2):241-263.
    [102]徐建广,顾玉东,李继峰,等.大鼠失神经支配骨骼肌退变的实验研究[J].上海医科大学学报,1999,26(4):265-267.
    [103] Ohira Y.Effects of denervation and deafferentation on mass and enzymeactivity in rat skeletal muscles[J]. Jpn J Physiol,1989,39(1):21-31.
    [104] Tischler ME, Kirby C, Rosenberg S,et aI. Mechanisms of acceleratedproteolysis in rat soleus muscle atrophy induced by unweighting or denervation [J].Physiologist,1991,34(1Suppl):S177-178.
    [105] Collins CA, Olsen I, Zammit PS,et a1.Stem cell function,self renewal,andbehavioral heterogeneity of cells from the adult muscle satellite cel1niche[J].Cell,2005,122(2):289-301.
    [106] Ashley Z, Salmons S, Boncompagni S,et a1.Effects of chronic electricalstimulation on long-term denervated muscles of the rabbit hind limb[J]. J MuscleRes Cell Motil,2007,28(4-5):203-217.
    [107] Dedkov EI, Kostrominova TY, Borisov AB,et a1.Reparative myogenesis inlong-term denervated skeletal muscles of adult rats results in a reduction of thesatellite cell population[J].Anat Rec,2001,263(2):139-154.
    [108]曾缨,张成,刘克玄,等.成肌调节因子MyoD与Myogenin在肌肉损伤修复过程的动态变化[J].第一军医大学学报,2004,24(5):542-545.
    [109] Kumai Y, Ito T, Miyamaru S,et a1.Modulation of MyoD and Ki-67-positivesatellite cells in the short-term denervated rat thyroarytenoidmuscle[J].Laryngoscope,2007,117(11):2063-2067.
    [110] Ekmark M, Rana ZA, Stewart G,et a1.De-phosphorylation of MyoD is linkingnerve-evoked activity to fast myosin heavy chain expression in rodent adultskeletal muscle[J]. J Physiol,2007,584(Pt2):637-650.
    [111] Russo TL, Peviani SM, Freria CM, et a1.Electrical stimulation based onchronaxie reduces atrogin-l and myoD gene expressions in denervated ratmuscle[J].Muscle Nerve,2007,35(1):87-97.
    [112] Hollenberg SM, Cheng PF, Weintraub H.Use of a conditional MyoDtranscription factor in studies of MyoD trans-activation and muscledetermination[J]. Proc Natl Acad Sci USA,1993,90(17):8028-8032.
    [113] F奥斯伯,R E金斯顿,J G塞德曼等.精编分子生物学实验指南[M].北京:科学出版社,1999,311-312.
    [114]邹仲敏,程天民,罗成基,等.肌形成及其基因调控的研究进展[J].中国科学基金,2000,14(3):137-142.
    [115] Weintraub H, Tapscott SJ, Davis RL,et al.Activation of muscle-spectfic genesin pigment,nerve,fat,liver,and fibroblast cell lines by forced expression ofMyoD[J]. Proc Natl Acad Sci USA,1989,86(14):5434-5438.
    [116] Etzion S, Barbash IM, Feinberg MS,et al.Cellular cardiomyoplasty of cardiacfibroblasts by adenoviral delivery of MyoD ex vieo:an unlimited source of cellsfor myocardial repair[J]. Circulation,2002,106(12Suppl1):I125-1130.
    [117] Kocaefe YC, Israeli D, Ozguc M,et al.Myogenic program induction in maturefat tissue (with MyoD expression)[J]. Exp Cell Res,2005,308(2):300-308.
    [1] Kirchhof N, Harder F, Petrovic S,et a1.Developmental Potential of Hematopoieticand Neural Stem Cells: Unique or Alltlle Same?[J]. Cells TissuesOrgans,2002,171(1):77-89.
    [2] Daley GQ, Goodell MA, Snyder EY. Realistic prospects for stem celltherapeutics[J]. Hematology Am Soc Hematol Educ Program,2003:398-418.
    [3] Clarke DL, Johansson CB, Wilbertz J,et al.Generalized potential of adult neuralstem cells[J].Science,2000,288(5471):1660-1663.
    [4] Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entityor function?[J]. Cell,2001,105(7):829-841.
    [5] Weissman IL.Stem cells:units of development,Units of regeneration and units inevolution[J]. Cell,2000,100(1):157-168.
    [6] Kadiyala S, Young RG, Thiede MA.Culture expanded canine mesenchymal stemcells possess osteochondrogenic potential in vivo and in vitro [J]. CellTransplant,1997,6(2):125-134.
    [7] Tani H, Morris RJ, Kaur P. Enrichment for murine keratinocyte stem cells on cellsurface phenotype[J]. Proc Natl Acad Sci USA,2000,97(20):10960-10965.
    [8] Deutsch G, Jung J, Zheng M. A bipotential precursor population for pancreas andliver within the embryonic endoderm[J]. Development,2001,128(6):871-881.
    [9] Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cellbiology [J]. Cell,1997,88(3):287-298.
    [10] Toma JG, Akhavan M, Fernandes KJ,et al. Isolation of multipotent adult stemcells from the dermis of mammalian skin [J]. Nat Cell Biol,2001,3(9):778-784.
    [11] Gronthos S, Mankani M, Brahim J,et al.Postnatal human dental prup stem cells(DPSGS) in vitro and in vivo [J]. Proc Natl Acad Sci USA,2000,97(25):13625-13630.
    [12] Bjornson CR, Rietze RL, Reynolds BA,et al.Turning brain blood:a hematopoieticfate adopted by adult neural stem cells in vivo[J].Science,1999,283(5401):534-537.
    [13] van der Kooy D, Weiss S. Why stem cells?[J]. Science,2000,287(5457):1439-1441.
    [14] Nierhoff D, Ogawa A, Oertel M,et al. Purification and characterization of mousefetal liver epithelial cells with high in vivo repopulation capacity[J].Hepatology,2005,42(1):130-139.
    [15] Lagasse E, Connors H, Al-Dhalimy M,et al.Purified hematopoietic stem cells candifferentiate into hepatocytes in vivo[J]. Nat Med,2000,6(11):1229-1234.
    [16] Krause DS, Theise ND, Collector MI,et al.Multi-organ,multi-lineage engraftmentby a single bone marrow-derived stem cell[J]. Cell,2001,105(3):369-377.
    [17] Vogel G.GENOMICS:Sanger Will Sequence Zebrafish Genome[J].Science,2000,290(5497):1671b.
    [18] Magli MC, Levantini E, Giorgetti A.Developmental potential of somatic stemcells in mammalian adults[J]. J Hematother Stem Cell Res,2000,9(6):961-969.
    [19] Wilmut I, Schnieke AE, McWhir J,et al. Viable offspring derived from fetal andadult mammalian cells [J]. Nature,1997,385(6619):810-813.
    [20] Ferrari G, Cusella-De Angelis G, Coletta M,et al.Muscle regeneration by bonemarrow-derived myogenic progenitors [J].Science,1998,279(5356):1528-1530.
    [21] Theise ND, Nimmakayalu M, Gardner R,et al. Liver from bone marrow inhumans[J]. Hepatology,2000,32(1):11-16.
    [22] Orlic D, Kajstura J, Chimenti S,et a1. Bone marrow cells regenerate infarctedmyocardium [J]. Nature,2001,410(6829):701-705.
    [23] Mezey E, Chandross KJ, Harta G,et al. Turning blood into brain: cells bearingneuronal antigens generated in vivo from bone marrow[J]. Science,2000,290(5497):1779-1782.
    [24] Masuya M, Drake CJ, Fleming PA,et a1. Hematopoietic origin of glomerularmesangial cells [J].Blood,2003,101(6):2215-2218.
    [25] Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolatedfrom murine skeletal muscle [J]. Proc Natl Acad Sci USA,1999,96(25):14482-14486.
    [26] Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries?[J]. Nat Med,2001,7(4):393-395.
    [27] Petite H, Viateau V, Bensa d W,et al. Tissue-engineered bone regeneration[J]. NatBiotechnol,2000,18(9):959-963.
    [28]李凌松.干细胞生物工程研究展望[J].中国生物化学与分子生物学报,2001,17(3):275-279.
    [29]潘兴华,韩毅冰.成体干细胞的可塑性及临床意义[J].热带医学杂志,2001,1(2):158-162.
    [30] Vogel G.Can adult stem cells suffice?[J]. Science,2001,292(5523):1820-1822.
    [31]谌卫,姚真真,冯伟华,等.成体干细胞的可塑性[J].《生命的化学>,2004,24(4):296-298.
    [32] Shen CN, Slack JM, Tosh D. Molecular basis of transdifferentiation of pancreasto liver [J]. Nat Cell Biol,2000,2(12):879-887.
    [33] Liu Y, Rao MS. Transdifferentiation--fact or artifact [J]. J Cell Biochem,2003,88(1):29-40.
    [34] Jiang Y, Vaessen B, Lenvik T,et a1.Muhipotent progenitor cells can be isolatedfrom postnatal murine bone marrow,muscle,and brain[J].Exp Hematol,2002,30(8):896-904.
    [35] Wei G,Schubiger G,Harder F,et al. Stem cell plasticity in mammals andtransdetermination in Drosophila:common themes?[J]. StemCells,2000,18(6):409-414.
    [36] Jackson KA, Majka SM, Wang H,et a1.Regeneration of ischemic cardiac muscleand vascular endothelium by adult stem cells[J]. J Clin Invest,2001,107(11):1395-1402.
    [37] Ying QL, Nichols J, Evans EP,et a1.Changing potency by spontaneous fusion[J].Nature,2002,416(6880):545-548.
    [38] Terada N, Hamazaki T, Oka M,et a1.Bone marrow cells adopt the phenotype ofother cells by spontaneous cell fusion[J].Nature,2002,416(6880):542-545.
    [39] Vassilopoulos G, Wang PR, Russell DW.Transplanted bone marrow regeneratesliver by cell fusion[J]. Nature,2003,422(6934):901-904.
    [40] Wang X, Willenbring H, Akkari Y,et a1.Cell fusion is the principal source ofbone-marrow-derived hepatocytes[J]. Nature,2003,422(6934):897-901.
    [41] Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampalneurogenesis [J]. J Comp Neurol,2000,425(4):479-494.
    [42] Pang W.Role of muscle-derived cells in hematopoietic reconstitution of irradiatedmice[J].Blood,2000,95(3):1106-1108.
    [43]郄淑燕,岳寿伟.废用性肌萎缩研究进展[J].中国临床康复.2003.7(5):710-714.
    [44]陈立典,田永胜.偏瘫后肩手综合征的综合康复[J].中华理疗杂志,1997,20(1):33-35.
    [45]黄智,余斌.废用性骨骼肌萎缩治疗的研究与进展[J].中国临床康复,2004,8(35):8060—8063.
    [46] Sakakima H, Yoshida Y, Sakae K,et a1.Different frequency treadmill running inimmobilization-induced muscle atrophy and ankle joint contraeture Ofrats[J].Scand J Med Sci Sports,2004,14(3):186-192.
    [47]李开刚,陆绍中,冯连世,等.不同强度耐力训练后大鼠骨骼肌酶活性适应性变化的研究[J].中国运动医学杂志,2002,21(2):166-169.
    [48]缪鸿石,纪树荣.脑卒中的康复评定和治疗[M].北京:华夏出版社,1996:150.
    [49]昊红瑛,范建中,洪军.综合理疗对偏瘫患者肩手综合征68例疗效观察[J].现代康复,2000,4(7):1074.
    [50]徐建广,顾玉东.大鼠失神经支配骨骼肌及其运动终板退变观察[J].中华显微外科杂志,1999,22(3):215-215.
    [51]徐建广,顾玉东.失神经支配骨骼肌退变形态学及酶组织化学研究[J].中华显微外科杂志,2000,23(3):213-214
    [52]徐建广,顾玉东,李继峰,等.被动活动对失神经支配骨骼肌萎缩的影响[J].中华显微外科杂志,2003,26(3):210-211.
    [53]陈德松,满富强.被动活动对小鼠失神经支配肌肉萎缩的影响[J].中国康复医学杂志,1992,7(5):215-216.
    [54]霍传江,谢勤德.针刺配合头穴按摩防治骨折后下肢废用性肌萎缩临床观察[J].针灸临床杂志,2001,17(5):20-21.
    [55]傅如华,李梅,丁敏.七星针叩刺加拔罐治疗局限性肌萎缩30例[J].中国民间疗法,1999,7(7):16.
    [56] Kostrominova TY, Dow DE, Dennis RG,et al.Comparison of gene expression of2-mo denervated,2-mo stimulated-denervated,and control rat skeletal muscles[J].Physiol Genomics,2005,22(2):227-243.
    [57] Dean JC, Yates LM, Collins DF. Turning on the central contribution tocontractions evoked by neuromuscular electrical stimulation [J]. J ApplPhysiol,2007,103(1):170-176.
    [58] Crameri RM, Aagaard P, Qvortrup K,et al.Myofibre damage in human skeletalmuscle: effects of elects of electrical stimulation versus voluntary contraction[J]. JPhysiol,2007,583(Pt1):365-380.
    [59] Collins DF.Central contributions to contractions evoked by titanic neuromuscularelectrical stimulation[J].Exerc Sport Sci Rev,2007,35(3):102-109.
    [60] McCullagh KJ, Calabria E, Pallafacchina G,et al. NFAT is a nerve activity sensorin skeletal muscle and controls activity-dependent myosin switching[J]. Proc NatlAcad Sci USA,101(29):10590-10595.
    [61] Hood DA, Parent G. Metabolic and contractile responses of rat fast-twitch muscleto10-Hz stimulation[J]. Am J Physiol,1991,260(4Pt1):C832-840.
    [62] Boncompagni S, Kern H, Rossini K,et al. Structural differentiation of skeletalmuscle fibers in the absence of innervation in human[J]. Proc Natl Acad Sci USA,2007,104(49):19339-19344.
    [63] Kanchiku T, Lynskey JV, Protas D,et al.Neuromuscular electrical stimulationinduced forelimb movement in a rodent model[J]. J Neurosci Methods,2008,167(2):317-326.
    [64] M dlin M, Forstner C, Hofer C,et al.Electrical stimulation of denervatedmuscles:first results of a clinical study[J]. Artif Organs,2005,29(3):203-206.
    [65] Johnston TE, Betz RR, Smith BT,et al.Implantanle FES system for uprightmobility and bladder and bowel function for individuals with spinal cord injury[J].Spinal Cor,2005,43(12):713-723.
    [66]徐建广,屠永全,顾玉东,等.电刺激对失神经支配骨骼肌萎缩的影响[J].中国修复重建外科杂志,2003,17(5):396-399.
    [67] Naito H, Powers SK, Demirel HA,et al. Heat stress attenuates skeletal muscleatrophy of in hindlimb-unweighted rats[J]. J Appl Physiol,2000,88(1):359-363.
    [68]霍传江,谢勤德.针刺配合头穴按摩防治骨折后下肢废用性肌萎缩临床观察[J].针灸临床杂志,2001,17(5):20-21.
    [69]傅如华,李梅,丁敏.七星针叩刺加拔罐治疗局限性肌萎缩[J].中国民间疗法,1999,7(7):16.
    [70]杨川,蔡佩佩,董佳生.带神经血管肌束移植术在晚期面瘫修复中的应用[J].中国修复重建外科杂志,1995,9(2):84-87。
    [71] Viterbo F, Franciosi LF, Palhares A. Nerve grafting and end-to-sideneurorrhaphies connecting the phrenic nerve to the brachial plexus[J]. PlastReconstr Surg,1995,96(2):494-495.
    [72]徐清贵,洪光祥,王发斌,等.神经端侧缝合法防治失神经肌肉萎缩的实验研究[J].中华手外科杂志,1999,15(1):42-44.
    [73]陈振兵,王发斌,洪光祥,等.腓浅神经与腓肠神经端侧吻合的临床观察[J].中华手外科杂志,1997,13(2):122-123.
    [74]张少成,张雪松,刘会仁.侧侧缝合法治疗周围神经损伤的临床应用初步报告[J].中华骨科杂志,2002,22(7):398-401.
    [75] Hynes NM, Bain JR, Thoma A,et al. Preservation of denervated muscle bysensory protection in rats[J]. J Reconstr Microsurg,1997,13(5):337-343.
    [76]姜广良,顾玉东,张丽银.胚胎运动神经元失神经骨骼肌内种植防治肌萎缩的研究[J].中华实验外科杂志,1998,15(4):364-365.
    [77]王欢,顾玉东,徐建光,等.不同方法的感觉神经(元)营养失神经骨骼肌实验研究的疗效比较[J].中华手外科杂志,2000,16(1):49-52.
    [78]庞水发,汪华侨,卢晓林,等.胚胎运动神经元移植对失神经肌肉影响的实验研究[J].中华显微外科杂志,2001,24(4):284-287.
    [79] Ueda K, Harii K. Prevention of denervation atrophy by nerve implantation[J]. JReconstr Microsurg,2004,20(7):545-553.
    [80] Quinn LS, Haugk KL.Overexpression of the type-I insulin-like Growth factorreceptor increase liganddependent proliferation and differentiation in bovineskeletal myogenic cultures[J]. J Cell Physiol,1996,168(1):34-41.
    [81] Contreras PC, Steffler C, Yu E,et a1.Systemic administration of rhIGF-I enhancedregeneration after sciatic nerve crush in mice[J]. J Pharmacol Exp Ther,1995,274(3):1443-1449.
    [82] Vergani L, Di Giulio AM, Losa M,et a1.Systemic administration of insulin-likegrowth factor decreases motor neuron cell death and promotes musclereinnervation[J]. J Neurosci Res,1998,54(6):840-847.
    [83] Day CS, Riano F, Tomaino MM,et al.Growth factor may decrease muscle atrophysecondary to denervation[J]. J Reconstr Microsurg,2001,17(1):51-57.
    [84]马金忠,罗永湘,关晓明,等.神经生长因子对运动终板变性与再生的研究[J].中华显微外科杂志,1998,21(2):118-120.
    [85]王敏,黄象艳.胰岛素样生长因子工原位注射抑制骨骼肌失神经萎缩[J].中国矫形外科杂志,2003,11(12):840-841.
    [86]朱清远,王玉发,顾加祥,等. hIGF-1转基因抑制失神经肌肉萎缩的实验研究[J].中国实验诊断学,2009,13(12):1675-1677.
    [87] Agrawal S, Thakur P, Katoch SS.Beta adrenoceptor agonists,clenbuterol,andisoproterenol retard denervation atrophy in rat gastrecnemius muscle: use of3-methylhistidine ag a marker of myofibrillar degeneration[J]. Jpn J Physiol,2003,53(3):229-237.
    [88] Sneddon AA, Delday MI, Maltin CA.Amelioration of denervation-inducedatrophy by clenbutereol is associated with increased PKC-alpha activity[J]. Am JPhysiol Endocrinol Metab,2000,279(1):E188-195.
    [89] Philippou A, Maridaki M, Halapas A,et a1. The role of the insulin-like growthfactor1(IGF-1) in skeletal muscle physiology [J]. In Vivo,2007,21(1):45-54.
    [90] Maltin CA, Delday MI, Hay SM,et al. Denervation increases clenbuterolsensitivity in muscle from yound rats[J]. Muscle Nerve,1992,15(2):188-192.
    [91]姜广良,顾玉东,张丽银,等。氨哮素防治失神经骨骼肌萎缩的临床研究[J]。中华手外科杂志,1998,14(3):164-166.
    [92]徐向阳,顾玉东.氨哮素对成年大鼠失神经支配肌肉的作用[J].中华手外科杂志,1996,12(A00):42-45.
    [93]徐向阳,顾玉东.氨哮素对神经切断再缝合后肌肉功能恢复的影响[J].中华手外科杂志,1996,12(A00):46-48.
    [94]吴朝晖,田涛,金惠铭,等。氨哮素延缓臂丛神经损伤后骨骼肌萎缩的机理研究[J]。中华手外科杂志,2000,16(4):198-200.
    [95] Yimlamai T, Dodd SL, Borst SE,et al.Clenbuterol induces muscle-specificattenuation of atrophy through effects on the ubiquitin-proteasome pathway[J]. JAppl Physiol,2005,99(1):71-80.
    [96] Ishii K, Sowa K, Zhai WG,et al. Effects of alpha-isoproterenol on denervationatrophy in orbicularis oculi muscle fibers[J]. Histol Histopathol,1998,13(4):1015-1018.
    [97] Kumar R, Katoch SS, Sharma S.Beta-adrenoceptor agonist treatment reversesdenervation atrophy with augmentation of collagen proliferation in denervatedmice gastrocnemius muscle[J]. Indian J Exp Biol,2006,44(5):371-376.
    [98] Kumar R, Sharma S.Remodeling of extracellular matrix protein,collagen bybeta-adrenoceptor stimulation and denervation in mouse gastrocnemius muscle[J].J Physiol Sci,2006,56(1):87-94.
    [99] Fu WM, Liu JJ.Regulation of acetycholine release by presynaptic nicotinicreceptors at developing neuromuscular synapses[J]. Mol Pharmacol,1997,51(3):390-398.
    [100]王栓科,洪光祥,王同光,等.细胞外ATP防治失神经肌肉萎缩的实验研究[J].中华手外科杂志,2002,18(1):43-45.
    [101]范存义,顾玉东.坐骨神经提取液对失神经肌肉的作用[J].中华手外科杂志,1995,11(2):90-91.
    [102]范存义,顾玉东.中枢神经提取液对失神经肌肉的作用[J]。中华手外科杂志,1997,13(1):46-48.
    [103] Davis HL, Kiernan JA. Effect of nerve extract on number of acetylcholinereceptors in denervated muscles of rats [J]. Exp Neurol,1984,83(1):108-117.
    [104]张西峰,朱盛修,张伯勋,等.神经提取液对周围神经及骨骼肌的作用[J].中华实验外科杂志,2001,18(5):448-449.
    [105] Haase G, Pettmann B, Vigne E,et a1.Adenovirus-mediated transfer of theneurotrophin-3gene into skeletal muscle of pmn mice:therapeutic effects andmechanisms of action[J]. J Neurol Sci,1998,160Suppl1:S97-105.
    [106] Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatalembryonic progenitor cell produces neurons and astrocytes[J]. J Neurosci,1992,12(11):4565-4574.
    [107] McKay R. Stem cells in the central nervous system [J]. Science,1997,276(5309):66-71.
    [108] Morrison SJ, White PM, Zock C,et al.Prospective identification, isolation byflow cytometry, and in vivo self-renewal of multipotent mammalian neural creststem cells[J]. Cell,1999,96(5):737-749.
    [109] Johansson CB, Momma S, Clarke DL,et al. Identification of a neural stem cellin the adult mammalian central nervous system[J]. Cell,1999,96(1):25-34.
    [110] Gage FH. Mammalian neural stem cells[J].Science,2000,287(5457):1433-1438.
    [111]王岩峰,吕刚,李雷,等.神经干细胞移植对大鼠脊髓损伤后胶质细胞源性神经营养因子与生长相关蛋白43基因表达的影响[J].中国修复重建外科杂志,2005,19(6):416-419.
    [112]赵志英,胡海涛,冯改丰,等.人脑源性神经营养因子基因修饰神经干细胞移植对痴呆大鼠学习记忆的改善[J].中国修复重建外科杂志,2005,19(5):331-334.
    [113] Zhu J, Zhou L, XingWu F.Tracking neural stem cells in patients with braintrauma[J]. N Engl J Med,2006,355(22):2376-2378.
    [114] Yasuhara T, Matsukawa N, Hara K,et al. Transplantation of human neuralstem cells exerts neuroprotection in a rat model of Parkinson’s disease[J]. JNeurosci,2006,26(48):12497-12511.
    [115] Kim SU. Genetically engineered human neural stem cells for brain repair inneurological diseases[J].Brain Dev,2007,29(4):193-201.
    [116]沈云东,徐建光,徐文东,等.绿色荧光蛋白转基因大鼠神经干细胞体外分化及体内移植的实验研究[J].中华手外科杂志,2007,23(4):196-199.
    [117] Jiang G, Gu Y. The observation of transplanted embryonic motoneurons in thedenervated muscles of adult rats[J]. Chin Med J (Engl),1998,111(1):63-66.
    [118] Thomas CK, Erb DE, Grumbles RM,et al.Embryonic cord transplants inperipheral nerve restore skeletal muscle function[J]. J Neurophysiol,2000,84(1):591-595.
    [119] Beaumont E, Houlé JD, Peterson CA,et al. Passive exercise and fetal spinalcord transplant both help to restore motoneuronal properties after spinal cordtransection in rats[J]. Muscle Nerve,2004,29(2):234-242.
    [120] MacDonald SC, Fleetwood IG, Hochman S,et al.Functional motor neuronsdifferentiating from mouse multipotent spinal cord precursor cells in culture andafter transplantationinto transected sceatic nerve[J]. J Neurosurg,2003,98(5):1094-1103.
    [121] Galli R, Binda E, Orfanelli U,et al.Isolation and characterization oftumorigenic, stem-like neural precursors from human glioblastoma[J]. CancerRes,2004,64(19):7011-7021.
    [122]沈云东,徐建光,徐文东,等.神经干细胞移植延缓失神经肌肉萎缩的实验研究[J].中国修复重建外科杂志,2008,22(9):1051-1055.
    [123]黄新,江长青,肖颖锋,等.体外诱导神经干细胞移植治疗失神经肌萎缩的实验研究[J].深圳中西医结合杂志,2009,19(2):73-76.
    [124] Caplan AI.Why are MSCs therapeutic?New data: new insight[J]. JPathol,2009,217(2):318-324.
    [125] Horwitz EM, Le Blanc K, Dominici M,et a1. Clarification of thenomenclature for MSC: The International Society for Cellular Therapy positionstatement [J]. Cytotherapy.,2005,7(5):393-395.
    [126] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietictissues[J]. Science,1997,276(5309):71-74.
    [127] Ashley Z, Salmons S, Boncompagni S,et al. Effects of chronic electricalstimulation on long-term denervated muscles of the rabbit hind limb[J]. J MuscleRes Cell Motil,2007,28(4-5):203-217.
    [128]彭建平,何继业,王栋梁,等.骨髓间充质干细胞成肌诱导后移植对延缓失神经肌肉萎缩的作用[J].中国组织工程研究与临床康复,2008,12(25):4824-4828.
    [129] Mauro A. Satellite cell of skeletal muscle fibers [J]. J Biophys BiochemCytol,1961,9:493-495.
    [130] Collins CA, Olsen I, Zammit PS,et a1.Stem cell function,self renewal,andbehavioral heterogeneity of cells from the adult muscle satellite cel1niche[J].Cell,2005, J122(2):289-301.
    [131] Chargé SB, Rudnicki MA. Cellular and molecular regulation of muscleregeneration [J]. Physiol Rev,2004,84(1):209-238.
    [132] Freeman M, Gurdon JB. Regulatory principles of developmental signaling [J].Annu Rev Cell Dev Biol,2002,18:515-539.
    [133] Rodrigues Ade C, Schmalbruch H.Satellite cells and myonuclei in long-termdenervated rat muscles[J]. Anat Rec,1995,243(4):430-437.
    [134] Carlson BM, Billington L, Faulkner J.Studies on the regenerative recovery oflong-term denervated muscle in rats[J]. Restor Neurol Neurosci,1996,10(2):77-84.
    [135] Lazerges C, Daussin PA, Coulet B,et al. Transplantation of primary satellitecells improves properties of reinnervated skeletal muscles[J]. Muscle Nerve,2004,29(2):218-226.
    [136]赵志强,刘强,李钢.骨骼肌卫星细胞移植对延缓失神经肌肉萎缩的作用[J].中华骨科杂志,2006,26(1):51-55.
    [137] Rodriguez AM, Pisani D, Dechesne CA,et al. Transplantation of a multipotentcell population from human adipose tissue induces dystrophin expression in theimmunocompetent mdx mouse[J]. J Exp Med,2005,201(9):1397-1405.
    [138] Gorio A, Torrente Y, Madaschi L,et al. Fate of autologous dermal stem cellstransplanted into the spinal cord after traumatic injury (TSCI)[J].Neuroscience,2004,125(1):179-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700