钾离子对铝酸钠溶液种分过程影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝酸钠溶液种子分解过程是氧化铝生产的一个极其重要的工序,生产流程中的杂质会对种分产品的产量与质量产生影响。有些学者在研究纯铝酸钠和铝酸钾溶液的种分过程时发现,这两种溶液在自发成核、二次成核及晶种的附聚、长大等动力学过程中的行为存在着一定差异,但由于钾与钠是处于同一个主族的碱金属元素,它们的化学性质较为接近,因此,作为铝酸钠溶液中的一种杂质,钾离子的存在并没有引起研究者们足够的重视。事实上,有些氧化铝厂的铝酸钠溶液中钾离子的积累已达到相当高的浓度,它对生产过程的影响目前还不清楚,因此,系统研究钾离子对铝酸钠溶液种分过程的影响具有非常重要的现实意义。
     本文系统研究了钾离子对铝酸钠溶液种分过程的分解率、产品及其二次成核、附聚及长大等动力学过程的影响。研究表明,铝酸钠溶液中存在一定浓度的钾离子会对种分过程产生一定的影响。实验得到了如下结论:
     1、钾离子的存在有利于铝酸钠溶液种分分解率的提高,但受分解条件的影响,在较低的温度和α_k条件下,钾离子提高分解率的作用较为明显。
     2、由于钾离子的存在促进了铝酸钠溶液二次成核,使得分解产品中细粒子的含量有所增加;随着铝酸钠溶液温度、α_k和晶种添加量的升高,钾离子对种分产品中细粒子含量的影响作用降低。
     3、钾离子的存在使铝酸钠溶液分解产品中Na_2O的含量有某种程度的降低,K~+与Na~+半径的差异可能是引起种分产品中Na_2O含量降低的原因。
     4、钾离子的存在并不改变种分产品的物相及其热稳定性,对产品微观结构的影响也不显著。
     5、铝酸钠溶液种分反应的二次成核、附聚及长大等动力学过程的研究表明:
     钾离子的存在使铝酸钠溶液二次成核过程的诱导期有不同程度的延长;
     在一定的成核条件下,钾离子的存在能在一定程度上促进铝酸钠溶液二次成核。铝酸钠溶液温度、α_k和晶种添加量升高,这种作用降低;
     由于铝酸钠溶液中的钾离子能在一定程度上促进溶液中细粒子的产生,因此会对不同粒级范围内的晶种附聚产生不同影响。钾离子的存在能在一定程度上促进10~30μm粒级范围内晶体的附聚,这种促进作用随着铝酸钠溶液温度和α_k的升高而降低;但对0~10μm粒级范围内晶体的附聚作用并不明显。
     采用自行研制的微分型种分反应器,在较为单一的条件下了研究铝酸钠溶液中的晶体长大动力学。实验结果表明,在恒推动力的条件下,铝酸钠溶液中晶体的长大遵循晶体长大速率与粒度无关的结论;钾离子的存在不影响铝酸钠溶液中
Seeded precipitation of sodium aluminate solutions is an important process in alumina production. The yield and the quality of the product in the process are often affected by the impurities exist in the solutions. Potassium ion is one of the impurities in sodium aluminate liquor. Potassium and sodium elements are in the same main group and their chemical properties are very similar. Potassium ions, as an impurity, are not attracted enough attention. However, researchers have already found that there are some differences between potassium aluminate and sodium aluminate solutions in the kinetics of homogeneous nucleation, secondary nucleation and crystal growth during the seeded precipitation. Since the accumulation of potassium ions has come to a considerable high level in some alumina plant, study of the influence of potassium ions on the seeded precipitation process is of great practical significance.In this thesis, the influences of potassium ions on the seeded precipitation process were studied systematically, and conclusions were made as follows:1. During the seeded precipitation process of sodium aluminate solutions, the presence of potassium ions can promote the precipitation process. The decomposition ratio is obviously increased at relatively low temperature and α_k.2. The presence of potassium ions can affect the particle size distribution (PSD) of the product, especially the number of fine particles. The influence is weakened as the temperature, α_k and seed amount are increased. The main reason is that potassium ions could promote the secondary nucleation during the precipitation process of sodium aluminate solutions.3. The presence of potassium ions leads the content of Na_2O in the products decreased. It may be caused by the radius diversity of K~+ and Na~+.4. The presence of potassium does not change the phase of crystal, the
    thermal stability, and the micrographic structure of the product. 5. By the kinetics studies on secondary nucleation, agglomeration and crystal growth, it was found that the presence of potassium ions can prolong the induction period of secondary nucleation process of sodium aluminate solutions; and promote the secondary nucleation process. The effect is decreased as the temperature, a k and seed amount increased. The promotion on the agglomeration of the crystals with the particle size in the range of 0~10 u m is small, but obvious in the range of 10~30 u m, and will be weakened as the temperature, a k and seed amount increased. As potassium ions can promote the formation of fine particles, it has different effect on the agglomeration of crystals with difference particle sizes. The kinetics of crystal growth was studied with a self-designed differential reactor that can be performed on a relatively single condition. It was found that the growth of crystals obeys the rules that the rate of crystal growth is not related to the crystal size under constant impulsion. The presence of potassium does not affect the kinetics of crystal growth and the crystal growth of sodium aluminate obeys the law of diffusion theory.
引文
[1] 杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1992.
    [2]. Jun Li, Clive A. Prestidge, and Jonas Addai-Mensah. The Influence of Alkali Metal Ions on Homogeneous Nucleation of AI(OH)_3 Crystals from Supersaturated Caustic Aluminate Solutions. J. Colloid and Interface Science, 2000, 224:317~324.
    [3]. Jun Li, Clive A. Prestidge, and Jonas Addai-Mensah. Secondary nucleation of gibbsite crystals from liquors: effect of alkali metal ions. J. Crystal Growth, 2000, 219: 451~464
    [4]. Clive A. Prestidge, Igor Ametov. Cation effects during aggregation and agglomeration of gibbsite particle under synthetic Bayer crystallisation conditions. J. Crystal Growth, 2000, 209: 924~933
    [5].李洁,陈启元,尹周澜等.K~+、Na~+离子对铝酸盐溶液分解过程的影响.铝—21世纪基础研究与技术发展研讨会论文集.2002.276~282.
    [6] Lippincol, E. R., Psellos, J. E. The Raman Spectra and Structures of aluminate and zincate ions. J. Chemical Physics, 1952, 20:536
    [7] Mal'tsev; Malinin G. V.. Thermodynamic properties and H~- and Na~(23) NMR spectra of sodium hydroxide solutions. Russ J. Structural Chemistry, 1965, 16: 353~358
    [8] Mal'tsev G. Z., Malinin G. V.. The structure of aluminate solutions. Russian J.Structural Chemistry, 1965, 6: 359~362
    [9] Helen Watling. Spectroscopy of Concentrated sodium aluminate solution. Applied Spectroscopy, 1998, 52(2): 250~258
    [10] Moolenaar R J., Evans. The structure of the aluminate ion in solutions at high pH. J. Physcal Chemistry, 1970, 74: 3629~3636
    [11] Carreira, L. A., Maroni, V. A.. Raman and Infrared Spectra and Structures of the aluminate ions. J. Chemical Phy., 1966, 45:2216~2220
    [12] Mironov, V. E., Pavlov, L. V.. On the structure of aluminate ions. Tsvetnye Metally (in Russian), 1969, 42(7): 56~57
    [13] Pavlov, L. N., Eremin, N. I.. Raman spectra of aqueous solutions of lithium, sodium and potassium aluminates. Tsventnye Metally (in Russian), 1969, 8:56~58
    [14] Plumb, R. C., and Swaine, J. W.. Oxide-coated electrodes. Ⅱ Aluminum in alkaline solutions and the nature of the aluminate ion. J. Phy. Chem. 1964, 168: 2057~2064
    [15] 柳妙修,曹益林,陈念贻等.高苛性比铝酸钠溶液的Raman光谱研究.金属学报,1991,27(6):443~445
    [16] 孙素琴,洪梅,陈念贻.NIRFT—Raman研究铝酸钠溶液的碳酸化过程.光谱学与光谱分析,1994,14(5):35~37
    [17] 洪梅,曹益林,柳妙修等.铝酸钠溶液的~(27)Al核磁共振谱研究.轻金属1994,5:26~27
    [18] 邱国芳,陈念贻,阎立诚等.高浓度铝酸钠溶液的光谱.中国有色金属学报,1996,6(1):53~56
    [19].李洁,陈启元,张平民等.中等浓度过饱和铝酸钠溶液自发分解过程Raman光谱研究.中国学术期刊文摘,2001,7(8):1008.
    [20]. Liu miaoxiu, Chen nianyi. Influence of preparative history on structure and properties of sodium aluminate solution. Transactions of Nfsoc, 1992,2(2):28~31.
    [21] 刘洪霜,陈念贻等.铝酸钠溶液的紫外吸收峰.物理化学学报,1992,8(4):441
    [22] Chen N Y., Liu M. X.. Studies on the anionic species of sodium aluminate selutions. Science in China, Series B, 1993, 36:32~38
    [23] 张声俊,陈念贻等.铝酸钠溶液碳酸化过程的红外光谱研究.光谱学与光谱分析,1996,16(4):21~23
    [24] 孙素琴,陈念贻等.铝酸钠溶液碳酸化过程的Raman光谱研究.光谱学与光谱分析,1994,14(5):35~37
    [25] J. Addai-Mensah, J. Ralston. The Influence of Interfacial Structuring on Gibbsite Interactions in Synthetic Bayer Liquors. J. Colloid and Interface Science, 1999, 215: 124~130
    [26] J. Addai-Mensah, J. Dawe, et al. The Unusual Colloid Stability of Gibbsite at High pH. J. Colloid and Interface Science, 1998, 203: 115~121
    [27] J. Addai-Mensah, A. Gerson, C.A.Prestidge, et al. Interactions Between Gibbsite Crystals in Supersaturated Caustic Aluminate Solutions. Light Metals. San Antonio: Minerals, Metals& Materials Soc (TMS), 1998. 159~166
    [28] S. C. Loh, H. R. Watling, et al. A kinetic investigation of Gibbsite precipitation using in situ time Resolved Energy dispersive x-ray diffraction. Phys. Chem. Chem. Phys., 2000, 2(16): 3597~3604
    [29] Zambo, Janos. Structure of sodium aluminate liquors: molecular model of the mechanism of their decomposition. Light Metal. Warrendale, PA: Metallurgical Soc of AIME, 1986. 199~215
    [30] 陈念贻.铝酸钠溶液分解的一种可能机理.科学通报,1992:242
    [31] S. C. Loh, H. R. Watling, et al. A kinetic investigation of Gibbsite precipitation using in situ time Resolved Energy dispersive x-ray diffraction. Phys. Chem. Chem. Phys., 2000, 2(16): 3597~3604
    [32] A. R. Gerson, J. A. Counter et al. Influence of solution constituents, solution conditioning and seeding on the crystalline phase of aluminum hydroxide using in situ x-ray diffraction. J. Crystal Growth, 1996, 160: 346~354
    [33] J. Counter, A. Gerson et al. Caustic Aluminate Liquors: Preparation and Characterization using Static Light Scattering and In Situ x-ray Diffraction. Collids and Surface A,1997, 126:2~3
    [34] Ray L.F., Kloprogge J. T., et al. Vibrational spectroscopy and dehydroxylation of aluminum (oxo) hydroxides: Gibbsite. Applied Spectroscopy, 1999, 53(4): 423
    [35] H. A. Vanstraten, M. A. A. Schoonen, et al. Precipitation from supersaturated Aluminate Solutions, Ⅳ. Influence of citrate ions. J. Colloid and Interface Science, 1985, 106(1): 175~185
    [36] S. Fleming, G. Parkinson, et al. Atomistic Modeling of Gibbsite: Surface Structure and morphology. J. Crystal Growth, 2000, 209: 159~166
    [37] Li Jie, Chen Qi-yuan. Investigation on the mode of the Growth Unit for Alumina Trihydrate Crystals Precipitating from Supersaturated Sodium Aluminate Solution. In: Yang Xianwan, Chen Qiyuan, He Aiping, eds. Hydrometallurgy, ICHM'98. Bei Jing: International Academic Publishers, 1998. 240
    [38] 李洁.过饱和铝酸钠溶液结构及分解机理的研究.博士学位论文.长沙.2002
    [39] 李洁,陈启元,尹周澜等.铝酸盐中阳离子对铝酸根离子电子结构性质的影响.铝21世纪基础研究与技术发展研讨会论文集.2002.283~291
    [40] Gutowsky, H. S., and Saika A.. Dissociation chemical exchange, and the proton magnetic resonance in some aqueous electrolytes. J. Phy. Chem., 1953, 21: 1688~1694
    [41] Jardetzki, O., and Wertz, J. E.. Weak complexes of the sodium ion in aqueous solution studied by nuclear spin resonance. Journal of the American Chemical Society, 1960, 82: 318~323
    [42] V. S. Griffiths and G. Socrates. The sodium resonance of aqueous salts. J. Molecular Spectroscopy, 1968, 27: 358~363
    [43] E. L. Shock and H. C. Helgeson. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures. Correlation algorithms for ionic species and equation of state predictions to 5kb and 1000℃. Geochimica et Cosmochimica Acta, 1988, 52: 2009~2036
    [44] E. L. Shock and H. C. Helgeson. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Effective electrostatic radii; dissociation constants and standard partial metal properties to 1000℃ and 5kb. J. Chemical Society, Faraday Transactions, 1992, 88: 803~826
    [45] E. L. Shock and H. C. Helgeson. Standard partial molar properties of inorganic neutral species. Geochimica et Cosmochimica Acta, 1989, 53: 2157~2183
    [46] Lyapunov, A. N., Khodukova. Solubility of hydrargillite in NaOH solutions, Containing soda or sodium chloride, at 60℃ and 95℃. Tsvetnye Metally, 1964, 37(2): 48~51
    [47] Pascal, M. L., and Anderson, G. M.. Speciation of A1, Si and K in supercritical solutions: Experimental study and interpretation. Geochimica et Cosmochimica Acta, 1989, 53: 1843~1855
    [48] Anderson, G. M., Castet, S., et al. Reaction of quartz and corundum with aqueous chloride and hydroxide solutions at high temperatures and pressure. American J. of Science, 1967,265: 12~27
    [49] Anderson, G. M., Castet, S., et al. Feldspar solubility and the transport of aluminum under metamorphic condition. American J. of Science, 1983, 238-A: 283~297
    [50] C. Misra and E.T. White. Crystalisation of bayer aluminium trihydroxide. J. Crystal Growth, 1971: 172~178.
    [51] K. Wefers. Naturwissenechaften Vol.49(1962): 294.
    [52] K. Wefers. Metall.Vol.21(1967): 422
    [53] C. Sweegers, M. Plomp, H.C.de Coninck, et al. Surface topography of gibbsite crystals grown from aqueous sodium aluminate solutions. Applied Surface Science. Vol. 187(2002): 218~234.
    [54] C. Sweegers, H.C.de Coninck, W. J. P. Meekes, et al. Morphology, evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions. J. crystal growth. Vol. 233(2001): 567~582.
    [55] P. H. Hsu. Soil Sci.Vol. 103(1967): 101
    [56] H. Ginsberg, W. Hu ttig, H. Stiehl. Z.Anorg.allg.chem. Vol.309(1961):233
    [57] H. A. Van Straten, B. T. W. Holtkamp and P. L. De Bruyn. J. Colloid Interface Sci. Vol. 98(1984): 342
    [58] H. A. Van Straten, M. A. A. Schoonen and P. L. De Bruyn. Precipitation from supersaturated aluminate solutions.Ⅲ.Influence of alkali ions with special reference to Li~+. J. Colloid Interface Sci. Vol. 103(1985): 493
    [59] 李洁,陈启元,尹周澜.过饱和铝酸钠溶液中三水铝石自发成核动力学规 律的研究.铝—21世纪基础研究与技术发展研讨会论文集.2002.221~229.
    [60] N. Brown. Effect of Calcium ions on agglomeration of bayer aluminium trihydroxide. J. crystal growth. Vol. 92(1988): 26~32
    [61] N. Brown. Effect of Copper ions on the Bayer aluminium trihydroxide. J. crystal growth. Vol. 87(1988): 281~286
    [62] Sharma, S. K., Kashyap, S. G.. Ion interaction in alkali metal hydroxide solutions—A Raman Spectral Investigation. J. Inorganic and Nuclear Chemistry, 1972, 34: 3623~3630
    [63] W. D. McCabe, J. C. Smith. Unit operation of chemical engineering. 3rd. McGraw-Hill, 1976.
    [64] J. W. Mullin. Crystallisation. 2nd. Butterworths. 1972.
    [65] P. Simth, G. Woods. The measurement of very slow growth rates during the induction period in aluminium trihydroxide growth from bayer liquors. Light Metals, 1993, 113~117.
    [66] N. Brown. Crystal growth and nucleation of aluminium trihydroxide from seeded caustic aluminate solutions. J. Crystal Growth. 1972(12): 39
    [67] N. Brown. Secondary nucleation of aluminium trihydroxide-Kinetics mechanism. Light Metal,1977,1~4.
    [68] N. Brown. Secondary nucleation of aluminium trihydroxide. J.Crystal Growth, 1972,16:163~167.
    [69] A. D. Randolph and M. A. Larson. Theory of particulate Processes, 2nd Edition. New York: Academic Press,1988.
    [70] D. S. Rossiter, P. D. Fawell, D.Ilievski, et al. Investigation of the unseeded nucleation of gibbsite Al(OH)_3 from synthetic Bayer liquors. J. Crystal Growth. 1998, 191: 525~536.
    [71] A. Halfon, Kaliaguine. Alumina trihydrate Crystallization Part Ⅰ. Secondary Nucleation and Growth Rate kinetics. The Canadian Journal of Chemical Engineering, 1976, 54: 160~167.
    [72] A. Gerson, J. Addai-Mensah, J. Couter, et al. The nucleation mechanism of gibbsite from bayer liquors. Light Metals. 1998: 167~172.
    [73] G. D. Botsaris. Secondary nucleation-a review. Industrial crystallization. Plenum Press, New York. 1976.
    [74] E. J. de Jong. Nucleation-a review. Industrial crystallization. North Holland Pub. Co. 1979.
    [75] Xue Hong, Bi Shiwen, Shuai Shiwu, et al. Secondary nucleation of aluminium trihydroxide in Bayer Sodium aluminate solution. Light Metals, 1997, 101~104.
    [76] 谭军,尹周澜,陈启元等.氧化铝强度与显微结构研究。铝—21世纪基础研究与技术发展研讨会论文集.2002.242~244.
    [77] J. Scott. Extractive Metallurgy of Aluminium. Interscience, New York. 1963,1:203~218.
    [78] C. Misra and E. T. White. Kinetics of crystallization of aluminium trihydroxide from seeds caustic aluminate solution.Chem.Eng.Progr.Sympos.ser. 1970,110:53~65.
    [79] C. Misra. The Precipitation of Bayer aluminium trihydroxide. Ph.D. thesis, University of Queensland. Australia. 1970.
    [80] K. Sakamoto, M. Kanehara, Matsushita. Agglomeration of crystalline particles of gibbsite during the precipitation in sodium aluminate solution. Chem. Eng Soc. Japan. Vol.35(1971): 481~487.
    [81] G.C.Low. Agglomeration effects in aluminium trihydroxide precipitation. Ph.D.thesis, University of Queensland,Australia,1975.
    [82] A. Halfon, S. Kaliaguine. Aluminina trihydrate crystallisation. Part Ⅱ: a model of agglomeration.Can.J.chem.Engng, 1976,54:168~172.
    [83] M. Remillard, L. Cloutier, J. C. Methot. Crystallisation du trihydrate d' alumiine: effect des conditions d' agitation.Can.J.chem.Eng. 1980,58:348~356.
    [84] D.Ilievski. Modelling Al(OH)_3 agglomeration during batch and continuous precipitation in supersaturated caustic aluminate solutions.Ph.D.thesis, University of Queensland,Australia, 1991.
    [85] D. Ilievski and E. T. White. The development and use of tracer crystals for investigating Al(OH)_3 precipitation in caustic aluminate solutions, in chemeca' 90. Proceedings of the 18th Australasian Chemical Engineering Conference, pp. 1156~1163.
    [86] 周辉放,杨重愚,陈光渊等.铝酸钠溶液中不同粒度晶种的附聚行为.铝镁通讯,1992,2(4):12~15.
    [87] 周辉放,杨重愚,陈光渊等.铝酸钠溶液中晶体附聚机理研究.有色金属,1994.46(4):54~57.
    [88] I. Seyssiecq, S. Veesler, R.Boistelle, et al. Agglomeration of gibbsite Al(OH)_3 crystals in Bayer liquors. Influence of the process parameters. Chemical Engineering Science, 1998,53(12): 2177~2185.
    [89] I. Seyssiecq, S. Veesler, D. Mangin, et al. Modelling gibbsite agglomeration in a constant supersaturation crystallizer. Chemical Engineering Science.2000, 55:5565~5578.
    [90] P. Marchal, R. David, J. P.Klein, et al. Crystallization and precipitation engineering I. An efficient method for solving population balance in crystallization with agglomeration. Chemical Engineering Science, 1988, 43(1):59~67.
    [91] 王延明.轻金属.1979(2):48~53.
    [92] S. Veesler, S.Rource, R.Boistelle. About supersaturation and growth rates of hydragillite Al(OH)_3 in alumina caustic solution. J.Crystal Growth, 1993, 130:411~415.
    [93] B.Z.Satapathy(印度),王留柱译.分解过程中温度杂质、分解时间与种子添加量对晶体长大、晶核形成和氢氧化铝质量的影响.Light Metal,1990,105~113.
    [94] T.G.Pearson. The Chemical Background to the Aluminium Industry. London: Royal Institute of chemistry, Mongraph,NO.3,1955.
    [95] W. R. King. Some Studies in Alumina Trihydrate Precipitation Kinetics. Light Metals,1973: 551~563.
    [96] E. T. White and S. H. Bateman. Effect of caustic concentration on the growth rate of Al(OH)_3 particles. Light Metals. 1988:157~162.
    [97] Rochelle Cornell等(澳),王向丽译.拜尔溶液中三水铝石晶体的生长.氧化铝生产文集,1998(6):6~9.
    [98] N. Brown. A quantitative study of new crystal formation in seeds caustic aluminate solutions. J.Crystal Growth, 1975,29:309~315.
    [99] N. Brown. The production of coarse mosaic aluminium trihydroxide from ball-milled seed. Light Metal, 1990:131~137.
    [100] J. Mordini, B. Cristol. Mathematical Model of Alumina Trihydrate Precipitation from Bayer Aluminate Liquors. (paper presented at the 4th Yugosla Int.Symp.On Aluminium, Totograd, April, 1982).
    [101] W. J. Crama, P. Visser. Modeling and Computer Simulation of Alumina Trihydrate Precipitation. Light Metals. 1994: 73~82.
    [102] S. H. Bateman. Effect of caustic concentration on the growth rate of aluminium trihydroxide particles. Mechanical Engineering Science at University of Queensland, Australia. 1984.
    [103] 赵清杰,杨巧芳,晏唯真等.提高拜尔法种分分解率的研究.轻金属,2000 (7):20~21.
    [104] 刘丕旺,裴昱.种子分解降温方式的理论和技术方案.轻金属,1999(2):19~23.
    [105] 柳尧文,高贵超.种分作业制度的确定及在拜耳法上的应用.轻金属,2000(4):15~17.
    [106] 李旺兴.种子分解过程温度对分解率的影响.轻金属,1998(5):14~18.
    [107] 《联合法生产氧化铝》编写组.“联合法生产氧化铝控制分析”.冶金工业出版社出版.北京.1977.
    [108] J. V. Sang. Factors affecting residual Na_2O in precipitaion products. Light metals 1985:147
    [109] J. ohkawa, T. Tsuneizumi, T. Hirao. Technology of controlling soda pick-up in alumina trihydrate precipitation. Light metals 1985:24
    [110] B. K. Satapathy, P. Vidyasagar. Effect of temperature, retention time and seeding on the rate of crystal growth and quality of alumina hydrate during precipitation. Light metals 1990:18
    [111] A. A. Khanamirova. Alumina and the approach to reducing the amount of imparity in alumina. Indate pstvo an armyanskoi ccp erevan 1983:116
    [112] D.R.Audet and J.E.Larocque. Development of model for prediction of productivity of alumina hydrate precipitation. Light metals 1989:21
    [113] 李小斌,龙远志,杨重愚等.铝酸钠溶液晶种分解过程动力学初步研究.轻金属.1988(11):10
    [114] 薛红,毕诗文,谢雁丽,等.晶种对拜尔法铝酸钠溶液分解的影响.有色金属.1998(2):26-28.
    [115] 阿布拉莫夫主编,陈谦德,黄际芬等译.碱法综合处理含铝原料的物理化学原理.中南工业大学出版社.1988.
    [116] A.A.阿格拉诺夫斯基等著,沈阳铝镁设计院氧化铝专业组译.冶金工业出版社.1974.
    [117] C. Misra. Solubility of aluminium trihydroxide(hydrargillite) in sodium hydroxide solutions. Chemistry and industry. Vol.20(1970):619
    [118] I. Woods. Investigation into the induction time in the precipitation of the seeded batches caustic aluminate solution. BE thesis, Department of chemical engineering, University of Queensland, 1983.
    [119] T. Wilkinson.The induction time in the precipitation of the seeded batches caustic aluminate solution. BE thesis, Department of chemical engineering, University of Queensland, 1982.
    [120] 上官正.过饱和铝酸钠溶液的诱导期.轻金属,1984(8):22-29.
    [121] P. Simth, P. Austin, D. Ilievki. Modelling the induction period in gibbsite precipitation. Light Metals 1995:45
    [122] I. Seyssiecq and S. Veesler. A non-immersed induction conductivity system for controlling supersaturation in corrosive media: the case of gibbsite crystals agglomeration in Bayer liquors. Journal of Crystal Growth. Vol. 169(1996): 124~128
    [123] Dean Ilievski. Development and application of a constant supersaturation,semi-batch crystalliser for investigating gibbsite agglomeration. Journal of Crystal Growth. Vol. 233(2001): 846~862
    [124] T. L. Overbey and C. E. Scott. Characterization of Bayer plant liquors and seeds, utilizing a mathematical model for precipitation. Light Metals 1978:163
    [125] G. P. Power and K. E. Moretto. Optimization of yield from continues alumina hydrate precipitation. (Proceedings of second international alumina quality workshop. Perth. 1990): 159
    [126] R. Calalo and T. Tran. Effects of sodium oxalate on the precipitation of alumina trihydrate from synthesis sodium aluminate liquors. Light Metals 1993:125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700