电解加钛共晶铝硅活塞合金的组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以汽车、摩托车发动机活塞使用的共晶铝硅合金材料为研究对象,直接使用电解低钛铝基合金细晶铝锭替代纯铝锭配制共晶铝硅ZL108试验合金(简称EZL108Ti),详细分析研究了该试验合金的微观组织、室温和高温力学性能、磨损性能,对电解加钛EZL108Ti合金的晶粒细化机理、强化机理及磨损机理进行了探讨。在此基础上进行了电解加钛EZL108Ti合金在摩托车活塞上的应用研究,并对试验活塞进行了台架试验。结果表明:直接采用电解低钛铝基合金完全可以制备出高性能的活塞,在汽车、摩托车发动机活塞行业具有广阔的应用前景。
     首次对不同钛含量电解加钛共晶铝硅试验合金的微观组织进行了对比分析研究,发现当钛含量为0.10%左右时,电解低钛铝基合金表现出了最佳的晶粒细化效果。此时,电解加钛试验合金的α(Al)二次枝晶臂间距最小为16.71μm;共晶Si颗粒的长径、短径和直径最小,分别为3.28μm、2.29μm和2μ69μm;金属间化合物富Fe相的形态从鱼骨状转变成典型的汉字状,分布在晶界或枝晶间,外形圆钝,是高温热稳定相,对提高合金的高温性能非常有利。相同钛含量电解加钛和熔配加钛试验合金的α(Al)二次枝晶臂间距和共晶Si颗粒尺寸相差不大。
     分析了钛对试验合金的细化机理:电解加钛共晶铝硅试验合金的微观组织细化与电解低钛铝基合金中均匀细小、高度弥散分布的Al_3Ti第二相质点有紧密的联系。在钛含量低于0.15%时,成份过冷引起的非自发形核以及钛元素抑制铝晶粒长大是钛细化合金的重要原因。同时,由于合金中Si、Mg、Cu等元素的存在可降低Al-Ti包晶反应温度和钛在铝液中的溶解度,使包晶点成分向低钛量方向位移,因此,即使钛含量低于0.15%,包晶反应可能也在起作用。共晶硅相总是与α(Al)相协调生长,随着α(Al)相的细化,也会相应细化合金中的硅颗粒尺寸,改善硅颗粒形状。当合金中的钛含量超过0.13%时,熔体中形成的第二相粒子将聚集、长大,晶粒细化作用逐步减弱。
     首次对比分析研究了共晶铝硅不加钛ZL108、不同钛含量电解加钛EZL108Ti和熔配加钛MZL108Ti活塞合金的力学性能,结果表明:电解加钛试验合金的室温力学性能在钛含量范围0.10%~0.13%时较高,抗拉强度达到
In this paper, the eutectic Al-Si alloys used in pistons of automobile and motorcycle engine have been studied mainly. The eutectic Al-Si ZL108 experimental alloys are produced directly by the electrolytic low-titanium Al-based alloy ingots replacing the pure aluminum ingots, which named EZL108Ti. The microstructure, mechanical properties at room and elevated temperature as well as the wear performance of the eutectic Al-Si EZL108Ti piston alloys adding titanium by electrolysis are investigated in detail. The mechanism of grain refinement, strengthening and wear resistance of the alloys is analyzed carefully. Based on above the investigation, the application of EZL108Ti alloys in pistons of motorcycle and the stand test of experimental pistons are made. The results show that it is feasible for the electrolytic low-titanium Al-based alloys to be used directly to produce high quality pistons, this kind of EZL108Ti pistons should have good prospect of application in pistons of automobile and motorcycle engine.
    The microstructure of the eutectic Al-Si alloys with different titanium content adding titanium by electrolysis are analyzed and investigated comparatively for the first time. The results show that the microstructure of experimental alloys adding titanium by electrolysis is refined remarkably, when titanium content in the alloys is about 0.10%. Here, the α (Al) second dendrite arm spacing is minimum which is 16.71 μm. The long diameter, short diameter and mean diameter of the eutectic silicon particles are all minimum which are 3.28 μm, 2.29 μm and 2.69 μm respectively. The morphobgy of tntermetallic compound iron-rich phases turn from fish-bone shape to typical blunt Chinese characters shape, distributing in grain boundary or interdendrite, it is heat-stability phase at elevated temperature and helpful to improve mechanical properties of experimental alloys at elevated temperature. Comparing the microstructure of experimental alloys adding titanium by electrolysis with that adding titanium by Al-Ti master alloys, their α (Al) second dendrite arm spacing and the size of eutectic silicon particles are almost equivalent.
    The refinement mechanism of titanium on experimental alloys is analyzed. The
引文
1.中国机械工程学会铸造分会.铸造手册.北京:机械工业出版社,2002:96-213;633-663.
    2.陆文华,李隆盛,黄良余主编.铸造合金及其熔炼.北京:机械工业出版社,2002:262-339.
    3.刘达利,齐丕襄.新型铝活塞.北京:国防工业出版社,1999:418.
    4.Pacz, USA Patent, 1387900, 1920.
    5.上海交通大学.铝硅合金新的变质方法,1976.
    6.《铸造有色合金及其熔炼》联合编写组.铸造有色合金及其熔炼.北京:国防工业出版社,1985:67-123.
    7. Haque M. M., Maleque M. A.. Effect of process variables on structure and properties of aluminium-silicon piston alloy. Journal of Materials Processing Technology[J], 1998, 77:122-128.
    8. Oswait K. J., Misra M. S.. Dendrite Arm Spacing(DAS):A Nondestructive Test to Evaluate Tensile properties of premium Quality Alumininm Alloy(AI-Si-Mg) Castings. AFS Trans., 1980, 88: 845.
    9.万建新,金长庚.铝合金铸件壁厚对机械性能的影响.特种铸造及有色合金,1994(2):1-4.
    10. Easton M., StJohn D.. Grain Refinement of Aluminium Alloys: Part Ⅰ. The Nucleant and Solute Paradigms-A review of the Literature. Metallurgical and Materials Trans., 1999, 30A(6):1613-1623.
    11. Easton M., StJohn D.. Grain Refinement of Aluminium Alloys: Part Ⅱ. Confirmation of, and a Mechanism for the Solute Paradigm. Metallurgical and Materials Trans., 1999, 30A(6): 1625-1633.
    12. Cook R. et aL Master alloy melt treatments in the aluminium foundry industry. Foundryman, 1997, vol. 90(5): 169-174.
    13. Jonas Fjellstedt, Anders E. W., Jarfors, Lena Svendsen. Experimental analysis of the intermediary phases AIB2, AlB_(12), and Ti_B2 in the Al-B and Al-Ti-B systems. Journal of Alloys and Compounds, 1999: 192-197.14.高泽生.铝晶粒细化机理研究的进展(1).轻合金加工技术,1997,25(6):1.
    15.高泽生.铝晶粒细化机理研究的进展(2).轻合金加工技术,1997,25(7):1.
    16.黄良余,张少宗.铝合金精练要点和工艺原则.特种铸造及有色合金,1998,(2):40-42.
    17.张忠华,元效刚,孙益民等.原材料中的氢在熔炼过程中的遗传性.特种铸造及有色合金,1999(1):1-3.
    18. Viswanathan S., Brody H D. Microporosity in Grain-refined Aluminum-4.5%Copper alloys and It's Relation to Casting Practice. AFS Trans., 1992 (100): 685-696.
    19. Spada A T. Aluminum Casters Discuss Porosity, Melt Quality. Modern Casting, 1999(2): 58-60.
    20.黄良余,张少宗.铝合金熔体处理及炉料处理的若干问题.特种铸造及有色合金,2001,(4):36-39.
    21.刘伏梅,刘志坚.铁在铝合金中的有害作用及其控制[J].内燃机配件,2002,(4):7-11.
    22.林小征,印飞,孙宝德.铁对铝硅合金性能的影响及抵消其有害作用的措施[J].铸造技术,1999,(5):29-32.
    23.黄良余,张少宗.铝合金变质处理及炉料处理.特种铸造及有色合金,2001,(5):31-33.
    24. OGRIS E., WAHLEN A., LUCHINGER H., et al. On the silicon spheroidization in Al-Si alloys. Journal of Light Metals[J], 2002, (2): 263-269.
    25. Ding D Y, Sun Z M, Chen Z H. Characteristics of Rapidly Solidified Al-22%Si Alloy Powders. Journal of Central South University of Technology, 1995, 26(1):92-96.
    26.徐振湖.对旋转磁场作用下的Al-18%Si合金的研究.铸造,2000, 49(2):115-117.
    27.毛卫民,李树索,赵爱民,等.电磁搅拌对过共晶铝硅合金初生硅大过程和形貌的影响.材料科学与工艺,2001,9(2):117-121.
    28. Abd EI-Azim A. N., EI-Sheikn A. M., Abou EI-Khair M. T.. Effect of Low??Frequency Mechanical Vibration on Structure and Properties of Al-20%Si. Materials Science and Forum, 2000: 331-337, 339-406.
    29.陈文松.过共晶Al-Si合金的变质处理.轻合金加工技术[J],1998,26(8):12-15.
    30.康嘉华.新型过共晶铝硅合金的研究.兵器材料科学与工程[J],1994,17(5):65-66.
    31.张良明,廖恒成,孙国雄.锶对铸造Al-Si合金中铁相的影响[J].铸造,2001,50(11):654-657.
    32.施忠良,范同祥,顾明元等.具有初生硅相的亚共晶铝硅合金的微观组织.电子显微学报[J].1998,17(5):577-578.
    33.姚书芳,王树朝,安钢,等.CX型长效无公害铝硅合金变质剂的应用[J].铸造,1997,(6):35-37.
    34.张金山,许春香,韩富银.复合变质对过共晶高硅铝合金组织和性能的影响[J].中国有色金属学报,2002,12(3):107-110.
    35.杨朝聪.过共晶铝硅合金的细化变质[J].云南冶金,1997,26(1):40-42.
    36.全燕鸣.过共晶型铝—硅合金研究的进展[J].轻合金加工技术,1996,24(2):26-30.
    37.乐秀伟,王道胤,丁玉文,等.过共晶铝硅合金的熔炼及变质处理[J].北京理工大学学报,1995,15(1):61-66.
    38.鲁薇华,王汝耀.锶变质铝硅合金的组织、性能及其变质工艺[J].铸造,1997,(9):44-49.
    39.李树索,郑承利,王德仁等.共晶铝硅合金Sr、RE以及P变质处理的研究[J].热加工工艺,1998,(3):15-16.
    40.黄兴波.稀土-钡-磷复合变质剂对ZL108合金变质效果的研究[J].铸造,1997,(5):6-8.
    41.齐广慧,刘相法,杨志强等.绿色高效Al-Si合金变质剂Al-P中间合金[J].材料科学与工艺,2001,9(2):211-214.
    42.姚书芳,毛卫民,赵爱民,等.铸造铝硅合金细化变质处理的研究进展.铸造,2000,49(9):512-515.
    43. Shu-zu, A. Hellwell. Modification of Al-Si Alloys: Microstructure, Thermal??Analysis and Mechanisms. JOM, 1995, (2):38-40.
    44. Lu S Z, Hellawell A. The Mechanism of Silicon Modification in Al-Si alloys. Metal Trans., 1987, 18A(10): 1721-1733.
    45.黄良余.铝硅合金变质机理的新发展和新观点(上).特种铸造及有色合金,1995,(4):30-32.
    46.黄良余.铝硅合金变质机理的新发展和新观点(下).特种铸造及有色合金,1995,(5):19-22.
    47.刘启阳,李庆春,张吉人.Al-Si合金中Na的变质作用及其机理.机械工程学报,1990,(2):8-13.
    48. Mondolfo L. E Aluminum Alloys: Structure and Properties. London: Butterworth, 1976.
    49.耿浩然,马家骥.Al-Si合金变质技术的应用现状与进展.机械工程材料,1995,(5):6-9.
    50.耿浩然.Na、Sr、Sb、P对铝硅合金致密性的作用.特种铸造及有色合金,1996,(3):1-4.
    51. Bian Xiufang, Wang Weimin, Yuan Shujuan, et al. Structure Factors of Liquid Al-Si Alloys. Science and Technology of Advanced Materials, 2001,(2):19-23.
    52.盛险峰,李伟,戢家齐.国内外Al—Si合金变质处理的研究现状.机械,1997,24(6):48-50.
    53. Fuoco G., Gcorrea E., Gddenstein H.. Effect of Modification Treatment on Microporosity Formation in 356Al Alloys. AFS Trans., 1996: 1151.
    54. Argo D., Gruzlski J. E.. Porosity in Modified Aluminum Alloy Castings. AFS Trans., 1988:65.
    55. Gruzleski J., Hancliak H., Campbell H.. Hydrogen Measurement by Telegas in Strontiun-treated A356 Metals. AFS Trans.,1986:147-154.
    56. Denton J. R., Spittle J. A.. Solidification and Susceptibility to Hydrogen Absorption of Al-Si Alloys Casting Stronium. Mater. Sci. Technol., 1985, (4):305-311.
    57.丁文江,黄良余,王至琼.Al-Si合金中锶钠锑变质作用机理.兵器材料科学工??程,1986,(8):35.
    58. Kim C. B., Heine R. W.. Journal of Institute of Metals, 1964, 92:367-376.
    59. Kyffin W. J., Rainforth W. M., Jones H.. Effect of Treatment Variables on Size Refinement by Phosphide Inoculants of Primary Silicon in Hypereutectic Al-Si Alloys. Materials Science and Technology, 2001, 17:901-905.
    60. Ben Heshmatpour. Modification of Silicon in Eutectic and Hypereutectic Al-Si Alloys. Light Metals, 1997: 801-808.
    61.齐广慧,刘相法,杨志强,等.绿色高效Al-Si合金变质剂Al-P中间合金.材料科学与工艺,2001,9(2):211-214.
    62.刘相法,乔进国,刘相俊,等.新型Al-P中间合金对活塞合金中初晶硅的团球化.内燃机配件,2002,(4):3-6.
    63.郭国文.高强韧铸造铝合金材料及其挤压铸造技术的研究[D].华南理工大学,2002:1~48.
    64.田长生.金属材料及热处理.航空专业材料编审室,1985:173.
    65.潘重远.共晶硅铝合金活塞热处理工艺的改进.汽车工艺与材料,1998:46.
    66.吉国光.提高发动机铝活塞使用寿命的措施.汽车工艺与材料,1995,(12):14-16.
    67.冯增建,赵士博,张国华.提高活塞材料综合性能的研究.内燃机配件,2001,(1):18-21.
    68.解瑞店.铝活塞热处理工艺参数的研究.内燃机,1995,(6):14-16.
    69.全燕鸣,周泽华,张发英.过共晶铝硅合金组织对切削加工性能的影响[J].机械工程学报,1998,34(1):1-6.
    70.汪立亮,徐寅.活塞材料的应用及新材料的开发.汽车工艺与材料,1998(9):22-24.
    71.周裕干,赵士博,李承俭.复合材料活塞发展动态,山东内燃机,1996,(4):6-9.
    72.郭领军,李贺军,石振海.内燃机活塞材料的研究及应用述评.铸造,2003,52(9):657-660.
    73.郑哲文,刘长生.活塞的材料分析.内燃机,2001,(6):39-42.
    74.康积行,傅高升,等.铝硅合金中初晶硅细化的现状与初探.福州大学学??报,1996,24(6);46-51.
    75.R.W.卡恩,P.哈森,E.J.克雷默.非铁合金的结构与性能,材料科学与技术丛书,第8卷.
    76.钟掘.提高铝材质量基础研究的进展[J].轻合金加工技术,2002,22(5):1-10.
    77.张明杰,邱竹贤,狄鸿利.在铝电解槽中生产铝基合金的几个基本问题(上).轻金属,1987,(1):27-31.
    78.邱竹贤,于亚鑫,张明杰.在铝电解槽中生产Al-Ti合金.轻金属,1986,(4):32-37.
    79. Qiu Zhuxuan, Zhang mingjie, Yu Yaxin, et al. Formation of Aluminum-Titanium Alloys by Electrolysis and by Thermal Reduction of Titania in Cryolite-Alumina melts. Aluminium, 1988, 64(6):606-609.
    80.车承焕,邱竹贤.电解法制取铝-钛合金.辽东冶金,1987,(6):47-50.
    81.丁亚鑫,邱竹贤,张明杰,等.铝-硼及铝-钛-硼中间合金的研制(上).轻金属,1988,(4):31-33.
    82.沈时英.在工业铝电解槽中直接制取铝基合金时金属在铝液与电解质间的浓度分配.轻金属,1991,(9):26-28.
    83. Qiu Zhuxuan, Yu Yaxin, Zhang mingjie. Preparation of Al-Ti-B Master Alloys by Thermal Reduction and Electrolysis Reduction and Electrolysis of B2O3 and TiO_2 in Cryolite-Alumina melts. Aluminium, 1988,64(12):1254-1257.
    84.陈本孝,唐冠中.直接电解法生产稀土铝钛硼合金的电化学原理.南方冶金学报学院,1997,18(4):271-277.
    85.东北工学院,保定铝厂.24KA铝电解槽生产铝钛合金的工业试验.轻金属,1988,(4):22-25.
    86.钟社恩,王家乃,许俊荣.在电解槽中生产铝钛合金.有色金属,1988,(3):14-15.
    87.王平甫.我国铝电解的技术进展.世界有色金属,1999,(7):4-8.
    88.杨升,杨冠群,杨巧芳,等.电解法生产铝硅钛合金的现状与前途.有色金属,1997,(3):15-17.
    89.杨冠群,杨升.电解法直接生产铝硅钛多元合金的可行性分析.铸??造,1997,(1):44-46.
    90.杨冠群,杨升,杨巧芳,等.电解法生产铝硅钛多元合金述评.铸造,1999,(4):51-54.
    91.杨冠群,顾松青,刘高兴,等.直接电解生产铝硅钛合金试验结果概述.铝镁通讯,1993,(1):32-38.
    92.杨冠群,顾松青,刘高兴,等.铝矿处理并直接电解生产铝硅钛合金(1).有色金属,1993,(6):19-23.
    93.杨冠群,顾松青,刘高兴,等.铝矿处理并直接电解生产铝硅钛合金(2)-除铁矿粉电解生产铝硅钛合金.有色金属,1999(2):11-15.
    94.黄英科,肖辉照.电解法直接制取Al-Si-Ti合金工业试验研究.轻金属,1995,(4):31-36.
    95.杨冠群,顾松青,刘高兴,等.铝矿处理并直接电解生产铝硅钛合金(3)-铝硅钛合金的应用.有色金属,1994,(3):8-10.
    96. Ruyao Wang, Weihua Lu. High-quality Automotive Wheels Made from a Direct Electrolytic Al-Si Alloy. Light Metal Age. 2001, (6):6-10.
    97.杨留栓,杨涤心,刘亚民,等.新型铝硅钛多元合金在摩托车发动机上的应用.热加工工艺,1999,(4):54-56.
    98.鲁薇华,王汝耀,杨涤心.电解Al-Si-Ti合金金相组织和性能.特种铸造及有色合金,1999,(1):10-12.
    99.王明星.电解低钛铝合金工业试验及其组织与性能的研究.中国科学院合肥等离子研究所博士论文,2002.4.
    100.刘志勇.工业电解低钛铝基合金细化效果、细化原理及其应用研究[D].河南郑州:郑州大学,2003.5.
    101.刘忠侠,宋天福,谢敬佩,等.低钛铝合金的电解生产与晶粒细化[J].中国有色金属学报,2003,13(5):1257-1261.
    102. Wang Ruyao, Lu Weihua, Hogan L M. Self-modification in direct electrolytic A1-Si alloys (DEASA) and its structural inheritance[J]. Materials Science and Engineering, 2003, A348:289-298.
    103.张士林,任颂赞主编.简明铝合金手册.上海:上海科学技术文献出版社,2002.104.刘志勇,王明星,翁永刚等.ZL108合金淬火敏感性的研究.郑州大学学报,2001,33(1):41-44.
    105. Mohanty P S, Gruzleski J E. Mechanism of grain refinement in aluminium[J]. Aluminium, 1995,87(5):2001-2012.
    106.黄良余.铝及其合金的晶粒细化处理简述[J].特种铸造及有色合金,1997(3):41-54.
    107.杨留栓,杨涤心,王汝耀,等.新型高钛活塞铝合金的研究.机械工程材料,1994,18(4):16-18.
    108. Backerud Johnsson. The relative importance of nucleation and growth mechanisms to control grain size in various aluminium alloys[J]. Light Metals, 1996, 27(4):679-685.
    109. Heiberg G. Nogita K, Dahle A K, et al. Columnar to equiaxed transition ofeutectic in hypoeutectic aluminium-silicon alloys[J]. Acta Materialia, 2002,50:2537-2546.
    110.王汝耀,鲁薇华.钛对AlSi7Mg0.3合金力学性能的影响.特种铸造及有色合金,1999,(1):16-17.
    111.P. N.Oeapeau.Effect of Iron in Al-Si Casting Alloys:A Critical Review.AFS Transactions,1995, 110:361-366.
    112.孙业赞,于敞,张国伟,等.铁在铝硅合金中存在的形态及其作用分析.铸造,1998,(7):42-46.
    113.祝汉良,贾均,边秀房.添加剂及硫元素对ZL108合金中铁相形态的影响.特种铸造及有色合金,1996,(4):5-7.
    114.祝汉良,贾均.A357合金中铁的有害作用.铸造,1996,(5):9-16.
    115.加藤锐次.Relation Between Fracture Process of Al-Si Alloy Casting and Shape pf Iron compounds. Light Metal, 1995, 45(1): 9-14.
    116.银健民,张连英.铁元素对ZL108合金铸造性能的影响.热加工工艺,1992,(6):22-23.
    117.黄键,李洪涛.铁对Al-Si合金活塞强度的影响.兵器材料科学与工程,1990,(4):1-7.
    118. E A. Badia. Effect of certain elements on mechanicaj properties of 1%Cu, 5%Si??and 0.5%Mg aluminium sand casting alloy. AFS Transactions, 1946, 154:465-478.
    119.谭锁奎,任全宝.金属型铸造活塞铝合金中铁的作用研究.特种铸造及有色合金,1998,(3):31-33.
    120.傅高升,孙锋山,王连登,等.中间合金对铝合金细化处理的现状分析与初探.特种铸造及有色合金,2001,(2):50-53.
    121. Mats. Johnsson, Lennart Bacjerud. Nucleants in grain refined aluminum after addition of Ti-and B-containing master alloys. Z Metallkd, 1992, 83(11):774-785.
    122. Easton M A, Stjohn D H. A.. model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles[J]. Acta mater, 2001,49: 1867-1878.
    123. P. S. Mohanty, J. E. Gruzleski. Mechanism of Grain Refinement in Aluminum. Acta Metall. Mater., 1995, 43(5):2001-2012.
    124. P. S. Mohanty, J. E. Gruzleski. Grain Refinement Mechanisms of Hypoeutectic Al-Si Alloys. Acta Mater., 1996, 44(9):3749-3760.
    125.姜文辉,韩行霖,朱丽红.Al-12%Si合金α-Al晶粒细化剂的研究.铸造,1997,(1):19-21.
    126. Hengcheng Liao, Yu Sun, Guoxiong Sun. Correlation between mechanical properties and amount of dendritic a-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium. Materials Science and Engineering, A335(2002): 62-66.
    127. Mark Easton and David Stjohn. Grain refinement of aluminium alloys: Part Ⅰ. The nucleate and solute paradigms-A review of the literature[J]. Metallurgical and Materials Transactions A. 1999, 30A(6):1613-1623.
    128. Mats Johnsson. Grain refinement of aluminium studied by use of thermal analytical teelmique[J]. Thermochimica Acta, 1995, 256: 107-121.
    129. Greer A L, Bunn A M, Tronche A, et al. Modeling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B[J]. Acta mater, 2000, 48: 2823-2835.
    130. Lee Cheng-Te, Chen Sinn-Wen. Quantities of grains of aluminium and those of??TiB_2 and Al_3Ti particles added in the grain-refining process[J]. Materials Science and Engineering, 2002, A325: 242-248.
    131.李继文,谢敬佩,王杰芳,等.电解低钛铝合金凝固过程数学模型的建立及应用[A].特种铸造及有色合金年会专刊,武汉:特种铸造及有色合金杂志社[C],2004:24-27.
    132.马润香.电解低钛铝合金的晶粒细化及电解加钛6063合金的组织、工艺及性能研究.郑州大学博士论文,2005.5.
    133.张作贵,刘相法,边秀房,等.Al-Ti-B中间合金的遗传性研究与推广应用[J].铸造,2000(10):758-763.
    134. Momdolfo L E Grain Refinement of Aluminium Alloy by Titanium and Boron Preprint of Solidification Processing[J]. Sheffield, Ld K, 1987:104-106.
    135.王汝耀,鲁薇华,罗全顺.ZL108合金高温强度与化学成分的关系.特种铸造及有色合金,2004,(4):60-62.
    136.宋谋胜,刘忠侠,李继文,等.加钛方式与钛含量对A356合金组织和性能的影响.中国有色金属学报,2004,14(10):1729-1735.
    137. Criado A J, Martinez J A, CalaBres R. Growth of eutectic silicon from primary silicon crystals in AI-Si alloys[J]. Scripta Mtaeialia, 1997, 36(1):47-54.
    138. Haque M M, Maleque M A. Effect of process variables on structure and properties of aluminium-silicon piston alloy[J]. Journal of Materials Processing Technology, 1998, 77:122-128.
    139. Ogris E, Wahlen A, Luchinger H, Uggowitzer P J. On the silicon spheroidization in Al-Si alloys[J]. Journal of Light Metals, 2002, (2):263-269.
    140.陈全明.金属材料及强化技术[M].上海:同济大学出版社,1992:37-43,131-133.
    141.R.Mumo,周开方.发动机的心脏—活塞、活塞环、缸套系统.内燃机配件,2002,(5):3-12.
    142.罗俊明.概率论与数理统计.郑州:郑州大学出版社,2002:230-240.
    143.廖恒成,丁毅,孙国雄.锶变质近共晶Al-Si合金力学性能与枝晶α-Al特征参数的相关性[J],2002(9):541-545.
    144.冯端.金属物理学(Ⅰ)结构与缺陷[M].北京:科学出版社,2000:248-265.145.李超主编.金属学原理.哈尔滨:哈尔滨工业大学出版社,1996.
    146.孙茂才.金属力学性能.哈尔滨:哈尔滨工业大学出版社,2003:214-235.
    147.谈荣望.内燃机结构设计.北京:中国铁道出版社,1990.
    148.李良福译.采用铝合金制造柴油机活塞.国外机车车辆工艺,2001,(5):29-30.
    149.张巍.九十年代的活塞.内燃机配件,1999(2):28-32.
    150. A. D. Sarkar. Wear of aluminium-silicon alloys. Wear, 1975, 31:331-343.
    151. J. Clarke, A. D. Sarkar. Wear characteristics of as-cast binary aluminium-silicon alloys. Wear, 1979, 54:7-16.
    152. G. Timmermans, L. Froyen. Fretting wear behaviour of hypereutectic P/M Al-Si in oil environment. Wear, 1999, 230:105-117.
    153. B. K. Yen, T. Ishihara. Effect of humidity on friction and wear of Al-Si eutectic alloy and Al-Si alloy-graphite composites. Wear, 1996, 198:169-175.
    154. R. L Denis, C. Subramanian, J.M. Yellup. Dry sliding wear of aluminium composites-A review. Composites Science and technology, 1997, 57:415-435.
    155.Mohd Harun, I.A. Talib, A. R. Daud. Effect of element additions on wear property of eutectic aluminium-silicon alloys. Wear, 1996,194:54-59.
    156. L. Lasa, J. M. Rodriguez-lbabe. Wear behaviour of eutectic and hypereutectie Al-Si-Cu-Mg casting alloys tested against a composite brake pad. Materials Science and Engineering, 2003, A363: 193-202.
    157. N. Saheb, T. Laoui, A. R. Daud, et al. Influence of Ti addition on wear properties of Al-Si eutectic alloys. Wear, 2001, 249: 656-662.
    158. Gu Shuying, Wang Ruyao, Lu Weihua. Effect of Silicon Content on Wear Resistance of Al-Si Alloys. Journal of China Textile University, 1998, 15(3)88-91.
    159.王杰芳,谢敬佩,翁永刚,等.电解低钛ZL108合金中钛含量对铁相形态及性能的影响.铸造技术,2004,25(9):681-685.
    160. Banghong Hu, Hang Li. Grain refinement of DIN226S alloy at lower titanium and boron addition levels. Journal of Materials Processing Technology, 1998,74:56-60.
    161.沈心敏,闻英梅,孙希桐,等.摩擦学基础[M].北京:北京航空航天大学出版??社,1991:292.
    162.孙家桓.金属的磨损[M].北京:北京冶金出版社,1992.
    163.严立,余宪海.内燃机磨损及可靠性技术[M].人民交通出版社,1992.
    164.王祖唐.金属塑性加工工步的力学分析[M].北京:清华大学出版社,1987:225.
    165.庄懋年.工程塑性力学[M].北京:高等教育出版社,1983:178.
    166.材料耐磨抗蚀及其表面技术丛书编委会.材料的磨料磨损[M].北京:机械工业出版社,1990:62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700