多糖基pH-菌群触发型结肠定位给药体系的设计、合成及其相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口服结肠定位释药系统(Oral Colon-specific Drug Delivery System,OCDDS)是胃肠道给药系统的重要分支,也是现代药物剂型重要的高新技术之一。它通过专一载体,采用专属释药技术,使药物口服后,避免上消化道释药,只当药物转运到回盲肠部位后,才开始崩解或蚀解并释放出来,达到结肠定位释放给药的目的,提高了药物的治疗效果。魔芋葡甘聚糖来自天然的植物资源,它具有优良的生物相容性、可生物降解性和许多独特的理化性能。尤其特别的是,魔芋葡甘聚糖在经过上消化道时不会被存在于胃及小肠的酶所降解,而到达结肠部位后,则被存在于结肠部位的β-糖苷键酶降解。因此,它被认为是比较有前途的结肠定位给药新载体材料,近年得到了广泛关注。
     本工作以魔芋葡甘聚糖为原料,通过氧化、桥联等方法,制备了一种具有一定长度空间臂的新型pH-菌群触发型结肠定位给药体系;并在系统研究载体葡甘聚糖溶液和醛基葡甘聚糖溶液荧光光谱特性的基础上,从药剂学角度探讨了载体、模型药物、药用辅料之间相互作用问题。这对于进一步开发与合理应用辅料,提高药物制剂质量,开发新剂型和研制药物制剂新品种具有非常重要的意义,也为提高魔芋资源的综合利用价值及丰富制剂辅料品种提供了重要依据。具体的研究工作如下:
     1、以魔芋葡甘聚糖(KGM)为原料,制备了一种具有一定长度空间臂的结肠定位给药体系。采用高碘酸钠氧化方法制备了醛基葡甘聚糖(DAKGM);以己二酰肼(ADH)为空间臂,通过偶合桥联的方式,将4-氨基水杨酸(4-ASA)通过共价键连接的方式引入醛基葡甘聚糖,制备出具一定长度空间臂的结肠定位给药体系。以醛基含量为指标,考察了氧化剂用量、反应体系pH值和反应时间对醛基含量的影响,得到了较佳的氧化工艺条件:pH=7,氧化剂高碘酸钠:葡甘聚糖=1.5:1(mol:mol);通过控制反应时间即可得到不同醛基含量的醛基葡甘聚糖。通过FTIR、1H NMR、13C NMR、DSC、WAXRD等手段表征了产物结构。结果表明,高碘酸钠氧化主要发生在糖单元上的2位和3位碳原子,醛基葡甘聚糖和葡甘聚糖一样无明显的结晶特征峰出现,均为无定形聚合物,在此基础上对氧化机理进行了初步探讨。
     2、系统地研究了葡甘聚糖溶液的荧光光谱特性。采用稳态荧光光谱研究葡甘聚糖溶液的荧光光谱特性,发现激发波长在210~280 nm范围内,葡甘聚糖溶液的最强荧光波长峰值均在334 nm左右,并对葡甘聚糖溶液进行波长依赖性研究,初步判断KGM荧光主要是六元环结构中醚键C-O-C的氧未共享电子发生n→σ*跃迁。研究还发现,葡甘聚糖水溶液荧光光谱随浓度变化出现三段规律。在0.05~1.0 g/L低浓度范围内,KGM随浓度的升高,其荧光强度变大且有较好的线性关系。在1.0~7.0 g/L浓度范围内,随浓度升高荧光强度变大,但没有浓度小于1.0 g/L时明显。当KGM浓度大于7.0 g/L时,出现了荧光强度随着浓度增大而下降的现象。探讨了不同溶剂对魔芋葡甘聚糖化合物的荧光性质的影响,溶剂的介电常数、极性、空间结构等因素都对KGM的荧光性质产生影响。而且KGM的荧光特性受溶液pH值影响很大,在pH为7时荧光强度最大,当pH大于或小于7时,KGM荧光强度急剧下降;且最大发射峰有所蓝移。过渡金属离子Fe~(3+)和Cu~(2+)能显著降低KGM的荧光强度,根据Stern-Volmer方程得到了Fe~(3+)和Cu~(2+)对KGM的淬灭常数分别为203.8 L/mol和171.0 L/mol。
     3、系统地研究了醛基葡甘聚糖溶液的荧光光谱特性。采用稳态荧光光谱研究醛基葡甘聚糖溶液的荧光光谱特性,发现DAKGM溶液的最大荧光波长出现在425 nm和465 nm;在此基础探讨了DAKGM的荧光机理,即425 nm附近的发射峰主要是六元环结构中醚键C-O-C的氧未成键电子发生n→σ*跃迁所致,而465 nm附近的发射峰则归属于醛基C=O氧未共价成键电子发生n→π*跃迁。研究了DAKGM浓度对荧光强度的影响,在本实验浓度为0.8~10 g/L的范围内,DAKGM在425 nm和465 nm处的荧光强度均随浓度的增大而荧光强度都增强,且荧光强度与溶液浓度之间呈两段变化。探讨了不同溶剂对醛基葡甘聚糖荧光性质的影响,溶剂的极性、介电常数、空间效应等因素都对DAKGM的荧光性质产生影响。
     4、研究了DAKGM-ADH-4-ASA(K1)结肠定位给药体系的体外药物释放行为,并与KGM包埋给药体系(K0)的体外释放行为进行了对比分析,结果表明,对于包埋型给药载体K0,释放行为基本属于突释行为。在pH=1.0时,4-ASA在1h内迅速释放,释放率高达95%,药物很容易从给药载体中崩解出来。同样,K0体系在pH 6.8和pH 7.4的环境中释放行为相似,释放率约达到50~60%,也属于突释行为。而K1在pH 1.0的环境中,4-ASA释放量在24h时只有少量释放,释放量仅约为5%;而在pH 6.8和pH 7.4时,4-ASA在pH 7.4时的12小时内的总释放量约为20%;在pH 6.8时12小时内则约为60%,药物从体系内部缓慢地释放出来。说明该结肠定位给药体系具有更强的定位给药功能。
     5、通过紫外光谱、荧光光谱、荧光共振散射光谱研究方法,探讨了表面活性剂与4-ASA的相互作用。结果表明,阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)主要通过静电相互作用影响着4-ASA的光谱性质;非离子型表面活性剂聚乙烯基吡咯烷酮(PVP)主要通过静电相互作用和氢键相互作用影响着4-ASA的光谱性质;阴离子表面活性剂十二烷基磺酸钠(SDS)则主要依靠疏水相互作用和静电相斥作用影响着4-ASA水溶液体系的光谱性质,并提供了相应的相互作用示意图。
     6、采用荧光猝灭方法和荧光散射方法研究了KGM与4-ASA相互作用结合常数及结合位点。结果表明KGM与4-ASA的相互作用结合常数及结合位点分别为:结合常数K=77.32 L/mol,结合位点数n=0.940。当体系中存在表面活性剂时,上述数值有所改变,具体为:阳离子表面活性剂CTAB:K=4.26×10~5 L/mol,结合位点数n=1.31;阴离子表面活性剂SDS:K=0.19×10~5 L/mol,结合位点数n=1.08;非离子型表面活性剂PVP:K=4.36×10~5 L/mol,结合位点数n=1.45。表面活性剂促进了4-ASA与KGM的结合。
     7、采用DSC、WAXRD和荧光光谱方法研究了KGM-ASA-表面活性剂体系中的相互作用。结果表明,体系中存在多种相互作用,KGM与4-ASA之间存在氢键和疏水相互作用,4-ASA与表面活性剂之间存在静电相互作用和疏水相互作用,KGM和表面活性剂之间存在疏水相互作用,这些相互作用将直接影响到4-ASA的控释性能。
Oral colon-specific drug delivery system (OCDDS) is one of important gastrointestinal drug delivery systems and one of the important advanced techniques in contemporary drug dosage. OCDDS is adopted by the special technique through single carrier to avoid to release in upper digestive tract. The drug will start disintegrate and release when it arrives at the caecum to reach the goal for the colon-specific drug delivery and elevate therapeutic effects. Konjac glucomannan (KGM) is a natural polysaccharide having excellent biodegradability, biocompatibility, and many unique pharmacological functions. It is not degraded by digestive enzyme in the upper gastrointestinal tract of humans but can be degraded byβ-mannanase to produce manno-oligosaccharides. Recently, KGM has been paid special attention to use for a potential carrier in OCDDS.
     In this research, a novel pH-bacterially triggered having a spatial arm colon-specific drug delivery system based on konjac glucomannan was designed and prepared by means of oxidation, coupling reaction, and so on. On the basis of the investigation on the fluorescence properties of the carriers of konjac glucomannan solutions and dialdehyde konjac glucomannan solutions, the interactions of all kinds of compositions in the resulted OCDDS were studied, including carrier, model drug and auxiliary materials. The studied results plays great significance for applying in the field of auxiliary materials, improving the qualities of medicine preparation and exploiting the new medicine preparation. The main contents of the research were as follows:
     1. A novel pH-bacterially triggered having a spatial arm oral colon-specific drug delivery system based on konjac glucomannan was prepared and characterized.
     Firstly, konjac glucomannan (KGM) was oxidized to dialdehyde konjac glucomannan (DAKGM) via sodium periodate. Secondly, the model drug of 4-aminosalicylic acid (4-ASA) was connected to dialdehyde konjac glucomannan by covalent bond to prepare oral colon-specific drug delivery system which having a spatial arm with adipic dihydrazides (ADH) between DAKGM chain and 4-ASA. The effects of oxidizing agent, pH values and reaction time on the content of dialdehyde were studied. The optimum oxidation conditions were pH=7, NaIO4 : KGM=1.5:1 (mol : mol), and the dialdehyde content of dialdehyde konjac glucomannan was controlled by the reaction time. Thirdly, the structure and properties of the resulted products were characterized by FTIR, 1H NMR, 13C NMR, thermogravimetric analysis (TGA), and wide angle X-ray diffraction (WAXRD). The oxidation positions are occurred between C2 and C3 in the sugar hexahydroxy-ring. There are not any obvious crystal diffraction occurred in DAKGM and KGM, which illuminated DAKGM and KGM are amorphous. And finally, the mechanism of oxidation were discussed.
     2. The fluorescence properties of KGM solutions were systematically investigated.
     The fluorescence properties of KGM solutions were investigated via steady fluorescence spectra. Firstly, the excited wavelength dependence of the fluorescence of KGM solutions was measured. The results indicate that the maximum emission appears at about 334 nm when excited by the wavelength range from 200 to 300 nm. It can conclude that fluorescence of KGM can attribute to the n→σ* transition of ether oxygen (C-O-C) in the sugar hexahydroxy-ring. Secondly, the concentration dependence of fluorescence of KGM solutions was studied in detail, and a three-stage change of the concentration was showed as follows: (1) The concentration is lower than 1.0 g/L in the range from 0.05 to 1.0 g/L, the fluorescence intensity increases linearly with rising KGM concentration. (2) In the concentration range from 1.0 to 7.0 g/L, an unconspicuous enhancement in intensity with increasing concentration was observed. (3) The fluorescence intensity decreased with further rising KGM concentration in the solutions is greater than 7.0 g/L. The effect of solvent on the fluorescence properties of KGM was also investigated. The dielectirc constant, dipolarity and spatial effect of solvent will affect the fluorescence properties of KGM greatly. Moreover, the influence of the pH value on fluorescence of KGM was discussed. A maximum intensity appeared at pH 7.0. However, the intensity decreased dramatically at other pH values except for 7.0. A blue-shift of the emission peak was observed with changing the pH value. Finally, the effect of metal ions on emission of KGM was studied. The fluorescence emission of KGM can be quenched effectively by transition metal ions such as Fe3+ and Cu~(2+). According to the Stern-Volmer Equation, the activation energies for the quenching by Fe~(3+) and Cu~(2+) are estimated to be 203.8 and 171.0 L/mol, respectively.
     3. The fluorescence properties of DAKGM solutions were studied in detail.
     The fluorescence properties of DAKGM solutions were studied via steady fluorescence spectra. Two emission peaks appeared at 425 and 465 nm, respectively. The peak at 425 nm is attributed to the n→σ* transition of ether oxygen (C-O-C) in the sugar hexahydroxy-ring, and the peak at 465 nm originated from the n→π* transition of aldehyde group. The dependence of fluorescence of DAKGM on concentration was studied. In the experimental concentration range of 0.8 to 10 g/L, the emission intensities at both 425 and 465 nm increased with increasing DAKGM concentration. And the effect of solvent on the fluorescence properties of DAKGM was investigated. The dielectirc constant, dipolarity and spatial effect of solvent will affect the fluorescence properties of DAKGM greatly.
     4. The drug release of DAKGM-ADH-ASA (K1) was studied in artificial gastrointestinal tract, and compared with embedding delivery system of KGM (K0).
     The results show that the drug release in vitro of K0 is belonged to burst releasing process. The model drug of 4-ASA released rapidly in 1h with high release rate of 95% in pH 1.0 buffer solution. Drug disintegrates easily in carrier and was almost totally released. The delivery system of K0 had a similar sudden releasing process in pH 6.8 and pH 7.4 buffer solution, and its release rate amount to 50~60%. While in the delivery system of K1, the content of 4-ASA release reached 5% at 24h in pH 1.0 buffer solution. However, the release amount of 4-ASA amount to 20% in pH 7.4 buffer solution, and 60% in pH 6.8 buffer solution at 12h. The drug released slowly the system of K1. These results indicate the delivery system of K1 has proficient pH sensitivity and has more efficiency of colon-specific drug delivery system.
     5. The interactions between three surfactants and 4-ASA were discussed based on the ultraviolet spectrum, the fluorescent spectrum and the fluorescent resonance scatter of 4-ASA aqueous solution in the presence of surfactant.
     The results demonstrate that the cationic surfactant cetyltrimethyl ammonium bromide (CTAB) has the effect on the spectrum properties of 4-ASA aqueous solution via the static interaction. The non-ionic surfactant polyvinylpyrrolidone (PVP) has the effect on the spectrum properties of 4-ASA aqueous solution via the static interaction and hydrogen-bonding interactions. The anionic surfactant of sodium dodecyl sulfate (SDS) has the effect on the spectrum properties of 4-ASA aqueous solution via the hydrophobic interactions and static interaction. And the interactions between the surfactants and 4-ASA were provided with the schemes.
     6. The interaction between KGM and 4-ASA was investigated by methods of fluorescence quenching and fluorescence scatter, the combined constant of K and the number of binding sites of n were studied.
     The results show that the combined constant of K is 77.32 L/mol and the number of binding sites of n is 0.94. While the surfactant is added to the system of 4-ASA-KGM; the above values of K and n are changed. In the system of cationic surfactant (4-ASA-CTAB-KGM), the combined constant of K is 4.26×10~5 L/mol, and the number of binding sites of n is 1.31. In the system of anionic surfactant (4-ASA-SDS-KGM), the combined constant of K is 0.19×10~5 L/mol, and the number of binding sites of n is 1.08. In the system of non-ion surfactant (4-ASA-PVP-KGM), the combined constant of K is 4.36×105, the number of binding sites of n is 1.45. The results show that the surfactant can promote the combination between 4-ASA and KGM effectively.
     7. The molecular conformation of 4-ASA in KGM-surfactant system was investigated via methods of DSC, WAXRD and fluorescent spectra analysis.
     The results show that there are many kinds of intensive interaction in the system, like the hydrogen bonds and hydrophobic interaction between KGM and ASA, the static interaction and hydrophobic interaction between ASA and surfactant, the static interaction between KGM and surfactant, all of which will affect the control-release of ASA directly.
引文
[1]邹梅娟,程刚.口服结肠定位给药系统[J].沈阳药科大学学报,2001,18(5):376-380
    [2]朱盛山.药物新剂型[M].北京:化学工业出版社,2003:132-136
    [3] Francesco MV,Paolo C.Integrated biomaterials science[M]:New York,2002:833-873
    [4]季文.口服结肠定位给药系统研究进展[J].临床医药实践杂志,2006,15(10):727-730
    [5] Theodore J,Kathryn E.Aminosalicylate-based biodegradable polymers:syntheses and in vitro characterization of poly(anhydride-ester)s and poly(anhydride-amide)s[J].J Polym Sci:Part A:Polym Chem,2003,41(22):3667-3679
    [6] Sinha VR,Kumria R.Polysaccharides in colon-specific drug delivery[J].Int J Pharm, 2001,224(1/2):19-38
    [7] Ravi V,Pramod Kumar TM.Influence of natural polymer coating on novel colon targeting drug delivery system[J].J Mater Sci:Mater Med,2008,19:2131-2136
    [8] Asayama S,Kawakami H,Nagaoka S.Design of a poly(L-histidine)-carbohydrate conjugate for a new pH-sensitive drug carrier[J].Polym Adv Technol,2004,15(8):439-444
    [9] Kidane A,Bhatt PP.Recent advances in small molecule drug delivery[J].Curr Opin Chem Biol.2005,9(4):347-351
    [10] Marieb EZ,Mallatt J.Human anatomy menlo park[M]:Benjamin and Cummings, 1997:561-599
    [11] Evans DF,Pye G,Bramley R,et al.Measurement of gastrointestinal pH profiles in normal ambulant human subjects[J].Gut,1988,29(8):1035-1041
    [12] Gazzaniga A,Iamartino P,Maffione G,et al.Oral delayed- release system for colonic specific delivery[J].Int J Pharm,1994,108 (1):77-84
    [13] Pozzi F,Furlani P,Gazzaniga A,et al. The time clock system: a new oral dosage form for fast and complete release of drug after a predetermination lag time[J].J Control Release,1994,31 (1):99-108
    [14] Sinha VR,Kumria R.Coating polymers for colon specific drug delivery:a comparative in vitro evalution[J].Acta Pharm,2003,53 (1):41-47
    [15] Muraoka M,Kimura G,Zhaopeng H,et a1.Ulcerative colitis-colon delivery of5-aminosalicylic acid[J].Japanese J Clin Med,1998,56(3):788-794
    [16]周宇.口服结肠定位给药系统[J].国外医药:药学分册,1999,26 (4):225-228
    [17]邓树海.现代药物制剂技术[M].北京:化学工业出版社,2007:120
    [18] Zahirul M,Khan I,Helena P,et al.A pH-dependent colon-targeted oral drug delivery system using Methacrylic acid copolymers.II.Manipulation of drug release using Eudragit L100 and Eudragit S100 combinations[J].Drug Dev Ind Pharm,2000,26(5):549-554
    [19] Leopold CS.Coated dosage forms for colon-specific drug delivery[J].Pharm Sci Tech Today,1999,2(5):197-204
    [20]张正全,陆彬.口服结肠定位给药系统新进展[J].中国药学杂志,2000,35(4):221-223
    [21] Muraokea M,Hu Z,Shimokawa T,et a1.Evaluation of intestinal pressure-controlled colon delivery capsule containing caffeine as a model drug in human volunteers[J].J Control Release,1998,52(1/2):119-129
    [22]陈建海,陈清元,沈家瑞,等.结肠定位给药系统载体的设计、合成及降解性能的研究[J].药学学报,2004,39(3):223-226
    [23] Chourasia MK,Jain SK.Design and development of multi-particulate system for targeted drug delivery to eolon[J].Drug Deliv,2004,11(3):201-207
    [24]周四元,梅其炳,刘莉,等.不同分子量葡聚糖-地塞米松连接物的体外靶向释药特性[J].药学学报,2003,38(5):388-391
    [25] Krishnaiah YS,Muzib YI,Bhaskar P,et al.Pharmacokinetie evaluation of guar gum-based colon-targeted drug delivery systems of tinidazole in healthy human volunteers[J].Drug Deliv,2003,10(4):263-268
    [26] Fude C,Lei Y,Jie J,et a1.Preparation and in vitro evaluation of pH,time-based and enzyme-degradable pellets for colonic drug delivery[J].Drug Dev Ind Pharm,2007,33(9):999-1007
    [27] Uekama K,Minami K,Hirayarna F.6A-O-[(4-biphenyly1) acety1]-α-,β-,andγ-cyclodextrins and 6A-deoxy-6A[[(4-biphenyly1)acety1]amino] ]-α-,β-,andγ-cyclodextrins:potential prodrugs for colon-specific delivery[J].J Med Chem,1997,40(17):2755-2761
    [28] Milojevic S,Newton JM,Cummings JH,et al.Amylose as a coating for drug delivery to the colon:preparation and in vitro evaluation using 5-aminosalicylic acid pellets[J].J Control Release,1996,38(1):75-84
    [29] Rama Prasad YV,Krishmish YS,Satyanarayana S.In vitro evaluation of guar gum as a carrier for colon specific drug delivery[J].J Control Release,1998,51(2-3):281-287
    [30] Sinha VR,Mittal BR,Bhutani KK,et al.Colonic drug delivery of 5-fluorouracil:an in vitro evaluation[J].Int J Pharm,2004,269(1):101-108
    [31] Lee FS,Man SM,Newton JM,et al.Amylose form ulations for drug delivery to the colon:a comparison of two fermentation models to assess colonic targeting performance in vitro[J].Int J Pharm,2004,273(1/2):129-134
    [32] Shimono N,Takatori T,Ueda M,et al.Chitosan dispersed system for colon specific drug de1ivery[J].Int J Pharm,2002,245(1/2):45-54
    [33] Stubbe B,Maris B,Van den Mooter G,et a1.The in vitro evaluation of azo containing polysaccharide gels for colon delivery[J].J Control Release,2001,75(1/2):103-114
    [34]吴芳,张志荣,何伟玲,等.磷酸川芎嗪脉冲塞胶囊的制备与体外释放[J].药学学报,2002,37(9):733-738
    [35] Wilding IR,Davis SS,Bakhshaee M,et al.Gastrointestinal trasit and systemic absorption of captopril from a pulsed-release formulation[J].Pharm Res,1992,9(5):654-657
    [36]傅崇东,徐惠南,张瑜,等.5-氨基水杨酸结肠定位给药时控微丸的制备与体外释放[J].药学学报,2000,35(5):389-393
    [37] Rodríguez M,Vila-Jatto JL,Torres D.Design of a new multiparticulate system for potential site- specific and controlled drug delivery to the colonic region[J].J Control Release,1998,55(1):67-77
    [38] Conte U,Colombo P,Manna AI,et al.A new ibuprofen pulsed release oral dosage form[J].Drug Dev Ind Pharm,1989,15(14-l6):2583-2596
    [39]邹梅娟,程刚.口服结肠定位给药系统[J].沈阳药科大学学报,2001,18(5):376-380
    [40]陈燕忠,岗艳云,金志忠,等.法莫替丁脉冲控释胶囊剂的研究[J].中国药科大学学报,1997,28(3):150-153
    [41]沈熊,吴伟,徐惠南,等.5-氟尿嘧啶结肠定位释药微丸的研制及释药特性[J].中国医药工业杂志,2004,35(3):146-149
    [42] Bethke KK,Fischer W.Development of a multiple unit drug delivery system for positioned release in the gastrointestinal tract[J].J Control Release,1991,15(2):105-112
    [43]张静,平其能.口服择时释药系统[J].药学进展,1999,23(5):265-269
    [44]颜大海,王斌.结肠定位给药制剂现状[J].黑龙江医药,2001,14(4):292-293
    [45] Saffran M,Kumar GS,Savariar C,et al.A new approach to the oral administration of insulin and other peptide drugs[J]. Science,1986,233(4768):1081-1084
    [46] Ashford M,Fell JT,Attwood D,et al.An in vivo investigation into the suitability of pH dependent polymers for colonic targeting[J].Int J Pharm,1993,91(2-3):241-245
    [47] Davis SS,Hardy JG,Fara JW.Transit of pharmaceutical dosage forms through the small intestine[J].Gut,1986,27(8):886-892
    [48] Hunt JN,Knox MT.A relation between the chain length of faty acids and the slowing of gastric emptying[J].J Physiol,1968,194(2):327-336
    [49] Shareef MA,Khar RK,Ahuja A,et a1.Colonic drug delivery:an updated review[J].AAPS Pharm Sci,2003,5(2):El7
    [50] Abraham R.Colonic drug delivery[J].Drug Discov Today,2005,2(1):33-37
    [51] Sinha VR,Kumria R.Microbially triggered drug delivery to the colon[J].Eur J Pharm Sci,2003,18(1):3-18
    [52] Turkoglu M,Ugurlu T.In vitro evaluation of pectin-HPMC compression coated 5-aminosaclicylic acid tablets for colonic delivery[J].Eur J Pharm Biopharm,2002,53(1):65-73
    [53] Semdle R,Amighi A,Devleeschouwer M.Effect of pectinolytic enzymes on the theophylline release from pellets coated with water insoluble polymers containing pectin HM or calciumpectinate[J].Int J Pharm,2000,197(1-2):169-179
    [54] Semdle R,Amighi A,Devleeschouwer M.Studies of pectin HM/ Eudragit RL/ Eudragit NE film coating formulations intended for colonic drug delivery[J].Int J Pharm,2000,197(1-2):181-192
    [55] Musabayane C,Munjeri O,Matavire T.Transdermal delivery of chloroquine by amidated pectin hydrogel matrix patch in the rat[J].Renal Failure,2003,25 (4):525-534
    [56] Fernandez H,Fell J.Pectin/chitosan mixtures as coatings for colon specific drug delivery:an in vitro evaluation[J].Int J Pharm,1998,169(1):115-119
    [57] Meleod AD,Friend DR,Tozer TN.Synthesis and chemical stability of glucocorticoid- dextran esters:potential prodrugs for colon-specific delivery[J].Int J Pharm,1993,92(1-3):105-114
    [58] Jung YJ,Lee JS,Kim HH,et al.Synthesis and properties of dextran-5-amino salicyclic acid ester as a potential colon-specific prodrug of 5-amino salicylic acid[J].Arch Pharm Res,1998,21(2):179-186
    [59] Nagase Y,Hirata M,Wada K,et al.Improvement of some pharmaceutical properties of DY29760e by sulfobutyl etherβ-cyclodextrin[J].Int J Pharm,2001,229 (1-2):163-172
    [60] Piel G,Evrard B,Van HT,et al.Comparison of the IV pharmacokinetics in sheep of miconazole-cyclodextrin solutions and a micellar solution[J].Int J Pharm,1999,180(1):41-45
    [61] Stella VJ,Rao VM,Zannou EA,et al.Mechanisms of drug release from cyclodextrin complexes[J].Adv Drug Deliv Rev,1999,36 (1):3-16
    [62] Nagase Y,Arima H,Wada K,et al.Inhibitory effect of sulfobutyl etherβ-cyclodextrin on DY29760e induced cellular damage:In vitro and in vivo studies[J].J Pharm Sci,2003,92 (12):2466-2474
    [63] Partyka M,Au BH,Evans CH.Cyclodextrins as phototoxicity inhibitors in drug formulations:studies on model systems involving naproxen andβ-cyclodextrin[J].J Photochem Photobio A,2001,140(1):67-74
    [64] Bom A,Bradley M,Cameron K,et al.A novel concept of reversing neuromuscular block:chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host[J].Angew Chem Int Ed Eng,2002,41 (2):266-270
    [65] Cheng JJ,Khin KT,Davis ME.Antitumor activity ofβ-cyclodextrin polymer-camptothecin conjugates[J].Mol Pharm,2004,1 (3):183-193
    [66] Kamada M,Hirayama F,Udo K,et al.Cyclodextrin conjugate based controlled release system:repeated and prolonged releases of ketoprofen after oral administration in rats[J].J Control Release,2002,82(223):407-416
    [67] Naoki Segi.Interaction of calcium-iduced alginate gel beads with propranolol[J].Chem Pharm Bull,1989,37(11):3092-3095
    [68]颜秋平,李富荣,汤顺清,等.免疫磁性海藻酸钠载药纳米微球的制备与评价[J].中国生物医学工程学报,2006,25(3):305-309
    [69] Ibekwe VC,Khela MK,Evans DF,et al.A new concept in colonic drug targeting:a combined pH-responsive and bacterially-triggered drug delivery technology[J].Aliment Pharm Therap,2008,28 (7):911-916
    [70] Levien TL,Baker DE.Reviews of levomethadyl acetate and degradable starch microspheres[J].Hosp Pharm,1993,28 (12):1214-1216,1222
    [71] Lee FS,Abdul WB,Newton JM.The potential of organic-based amylose-ethylcellulose film coatings as oral colon-specific drug delivery systems[J].AAPS Pharm Sci Tech,2000,1(3):53-61
    [72] Itziar S,MarilóG,Isabel G.The Influence of crosslinking amylose-methacrylic acid graft copolymers on the release of BSA[J].Macromol Symp,2007,253(1):82-87
    [73]何葆芳,姚日生,尤亚华,等.新型药物载体—淀粉微凝胶的研究[J].中国药学杂志,2004,39(2):120-122
    [74] Ohya Y,Takei T,Kobayashi H,et al.Release behaviour of 5-fluorouracil from chitosan-gel microspheres immobilizing 5-fluorouracil derivative coated with polysaccharides and their cell specific recognition[J].J Microencapsul,1993,10 (1):1-9
    [75] Mi FL,Wu YB,Shyu SS,et al.Control of wound infections using a bi-layer chitosan wound dressing with sustainable antibiotic delivery[J].J Biomed Mater Res,2002,59 (3):438-449
    [76] Yusof NL,Wee A,Lim LY,et al.Flexible chitin films as potential wound dressing materials:wound model studies[J].J Biomed Mater Res,2003,66A(2):224-232
    [77] Shimono N,Takatori T,Ueda M,et al.Chitosan dispersed system for colon-specific drug delivery[J].Int J Pharm,2002,245(1-2):45-54
    [78]李国锋,陈建海,江力宣,等.结肠用美沙拉秦壳聚糖胶囊的体外释药研究[J].中国药学杂志,2003,38(8):601-604
    [79] Wang K,He ZM.Alginate-konjac glucomannan-chitosan beads as controlled release matrix[J].Int J Pharm,2002,244(1/2):117-126
    [80] Yu HQ,Huang AB,Xiao CB.Characteristics of konjac glucomannan and poly (acrylicacid) blend films for controlled drug release[J].J Appl Polym Sci,2006,100(2):1561-1570
    [81] Liu ZL,Hu H,Zhuo RX.Konjac glucomannan-graft-acrylic acid hydrogels containing azo crosslinker for colon-specific delivery[J].J Polym Sci:Part A:Polym Chem,2004,42(17):4370-4378
    [82] Chen LG,Liu ZL,Zhuo RX.Synthesis and properties of degradable hydrogels of konjac glucomannan grafted acrylic acid for colon-specific drug delivery[J].Polymer,2005,46(16):6274-6281
    [83] Nakano M,Takikawa K,Arita T.Release characteristics of dibucaine dispersed in konjac gels[J].J Biomed Mater Res,1979,13(5):811-819
    [84] DavéV,McCarthy SP.Review of konjac glucomannan[J].J Environ Polym Degrad, 1997,5 (4):237-241
    [85] Jia CY,Chen SW,Mo WP,et al.Study on amorphophallus albus and amorphophallus konjac glucomannan[J].Chinese Biochemical Journal,1988,4(5):407-413
    [86] Maeda M,Shimahara H,Sugiyama N.Detailed examination of the branched structure of konjac glucomannan[J].Agric Biol Chem,1980,44(2):245-252
    [87] FMC Corp.Nutricol? Konjac general Technology Bulletin[M].Food Ingredients Division,1994
    [88] Toshifumi Y,Kozo O,Anatole S.Molecular and crystal structure of konjac glucomannan in the mannanⅡpolymorphic form[J].Carbohydrate Research,1992,229(1):41-55
    [89] Kozo O,Toshifumi Y,Takashi M.X-ray diffraction study of glucomannan and their acetates[J].Agri Biol Chem,1991,55 (8):2105-2112
    [90] Dave V,Sheth M,McCarthy PS.Theological and thermal properties of konjac glucomannan[J].Polymer,1998,39(5):1139-1148
    [91]黄明发,张盛林.魔芋葡甘聚糖的增稠特性及其在食品中的应用[J].中国食品添加剂,2008,(6):127-131
    [92]孙远明,吴青,谌国莲,等.魔芋葡甘聚糖的结构、食品学性质及保健功能[J].食品与发酵工业,1999,25(5):47-51
    [93]何东保,杨朝云,詹东风.黄原胶与魔芋胶协同相互作及其凝胶化的研究[J].武汉大学学报(自然科学版) ,1998,44 (2):198-200
    [94]伍胜.对卡拉胶及其与魔芋复配凝胶强度的测量[J].食品科学,1999,1(8):38-41
    [95]陈运中.魔芋精粉与黄原胶的协同增效作用及应用研究[J].食品科学,1999,1(9):12-14
    [96]张东华,汪庆平,杨学义.天然高分子魔芋葡甘聚糖的复配产物成膜研究[J].日用化学工业,2000,30 (1):19-21
    [97] Ross-Murphy SB,Shatwell KP,Sutherland IW,et al.Influence of acyl substituents on the interaction of xanthans with plant polysaccharides[J].Food Hydocolloids,1996,10(1):117-122
    [98] Williams PA,Day DH,Nishinari K,et al.Synergistic interaction of xanthan gum with glucomannnanns and galactomannans[J].Food Hydrocolloids,1991,4(6):489-493
    [99] Williams PA,Clegg SM,Langdon MJ,et al.Investigation of the gelation mechanism in .kappa.-carrageenan/konjac mannan mixtures using differential scanning calorimetry and electron spin resonance spectroscopy[J].Macromolecules,1993,26(20):5441-5446
    [100] Kohyama K,Sano Y,Nishinari A.Mixed system composed of different molecular weight konjac-glucomannan andκ-carrageenan:2.Molecular weights dependence of viscoelasticity and thermal properties[J].Food Hydrocolloids,1996,10(2):229-238
    [101] Nishinaria K,Zhang H. Recent advances in the understanding of heat set gelling polysaccharides[J].Trends Food Sci Tech,2004,15(6):305-312
    [102] Huang L,Takahashi R,Kobayashi S,et al.Gelation behavior of native and acetylated konjac glucomannan[J].Biomacromolecules,2002,3:1296-1303
    [103]黄龙.魔芋葡甘露聚糖的凝胶化特性[J].食品科技,2003(6):38-41,45
    [104] Aoyama Y,Matsunmoto H,Tsuda T.Effect on liver and serum lipids in rats of dietary additions of fibers and cholestyramine to a cystine-excess diet[J].Agric Biol Chem,1988,52(11):2811-2816
    [105]张迎庆,干信,邹群,等.魔芋葡甘低聚糖硫酸酯化衍生物的制备及结构分析[J].药物生物技术,2001,8(4):200-203
    [106]可燕,车生泉,周秀佳.魔芋葡甘露聚糖的研究进展[J].中国中药杂志,1999,24(1): 6-8
    [107] Mizutani MT.Effect of konjac on spontaneous liver tumorgenesis and feeal flora in C3H/He male micc[J].Cancer Lett,1982,17(1):27-32
    [108]金描真,杨帆.魔芋魔芋葡甘露聚糖及其在药剂学中的应用研究进展[J].广东药学院学报,1994,10(1):123
    [109] Mizutani MT.Effect of konjac mannan induced intrstinal carcinogenesis in fischer 344 rats[J].Cancer Lett,1983,19(1):1-6
    [110]蒋与刚,张茂玉,候蕴华,等.魔芋精粉在二甲肼诱发大鼠肠癌中对粪中性类固醇排出的影响[J].解放军预防医学杂志,1995,13(1):27-32
    [111]罗德元,李玉琼,邓士林,等.魔芋精粉对MNNG诱发小鼠肺癌的预防作用[J].华西医科大学学报,1991,22(3):287-291
    [112]罗德元,李玉琼.魔芋精粉对MNNG诱发小鼠肺癌的抑癌效果[J].中华肿瘤杂志, 1992,14(1):48-50
    [113]茅彩萍,顾振纶.魔芋的研究进展[J].中国野生植物资源,1998,17 (4):15-18
    [114]王碧,王坤余,但卫华,等.葡甘聚糖-胶原蛋白-壳聚糖共混膜(I)[J].生物医学工程学杂志,2006,23 (1):102-106
    [115] Du J,Zhang S,Sun R,et al.Novel polyelectrolyte carboxymethyl konjac glucomannan–chitosan nanoparticles for drug delivery,II.release of albumin in vitro[J].Int J Biomed Mater Res Part B:Appl Biomater,2005,72B:299-304
    [116] Du J,Zhang S,Sun R,et al.Novel polyelectrolyte carboxymethyl konjac glucomannan–chitosan nanoparticles for drug delivery,I.physicochemical characterization of the carboxymethyl konjac glucomannan–chitosan[J].Biopolymers,2005,78(1):1-8
    [117]李斌,吴俊,汪超,等.可降解魔芋葡甘聚糖基互穿膜的制备、结构与性能[J].农业工程学报,2004,20(6):155-159
    [118]李娜,罗学刚.魔芋葡甘聚糖/丙烯酸甲酯薄膜的研究[J].塑料工业,2005,33(7):63-67
    [119]祁黎,李光吉,宗敏华.酶催化魔芋葡甘聚糖的可控降解[J].高分子学报,2003,(5):650-654
    [120] Li GJ,Qi L,Li AP,et al.Study on the kinetics for enzymatic degradation of a natural polysaccharide,konjac glucomannan[J].Macromol Symp,2004,216(1):165-178
    [121]张迎庆,干信,谢笔钧.纤维素酶制备魔芋葡甘低聚糖[J].吉首大学学报(自然科学版),2003,24(3):42-44
    [122]李斌,谢笔钧,任熙儒.魔芋葡甘聚糖的羧甲基化改性及其应用研究[J].西部粮油科技,2002,(3):29-31
    [123]王丽霞,庞杰,陆蒸.魔芋葡甘聚糖醚化研究.江西农业大学学报[J].2003,25(4):632-634
    [124]汪超,李斌,谢笔钧,等.魔芋葡甘聚糖羧甲基化方法改进研究[J].农业工程学报,2005,21(5):140-144
    [125]庞杰,肖丽霞,王丽霞,等.羧甲基及羟乙基葡甘聚糖及其性能的研[J].林产化学与工业,2003,23(4):63-65
    [126]张昌军,杨志孝,于敏,等.新型絮凝剂魔芋葡甘聚糖磷酸酯的研制和应用[J].化学世界,1994,35(2):83-84
    [127]奉平,陈旭东,杨大成,等.魔芋葡甘聚糖磷酸酯对高岭土悬浮液的絮凝作用研究[J].化学研究与应用,1995,7(3):326-328
    [128]肖云,张迎庆,干信.硫酸酯化葡甘聚糖凝胶颗粒的血液相容性研究[J].湖北工业大学学报,2005,20(1):4-7
    [129]张迎庆,干信,曾凡波,等.低聚魔芋葡甘聚糖醛酸丙酯硫酸酯钠盐抗凝血和抗血栓作用研究[J].中国生化药物杂志,2001,22(5):221-223
    [130]张迎庆,干信,曾凡波,等.魔芋葡甘低聚糖醛酸丙酯硫酸酯钠盐生物活性研究[J].湖北民族学院学报(自然科学版),2001,19(1):1-4
    [131]干信,张迎庆.魔芋葡甘低聚糖醛酸双酯钠的合成[J].精细化工,2002,19(2):105-108
    [132]朱焱,谭占鳌,史亚君.魔芋葡甘聚糖硫酸酯的制备及其体外抗凝血活性研究[J].武汉理工大学学报,2005,27(1):151-153
    [133]李斌,谢笔钧.魔芋葡甘聚糖的H2O2氧化改性及其流变性能研究[J].湖北化工,2002(1):9-11
    [134]廖敬阳,栗辉.魔芋胶粘剂[J].广西工学院学报,1998,9(3):76-82
    [135]庞杰,李斌,谢笔均.氧化魔芋葡甘聚糖的结构研究[J].结构化学,2004,23(8):912-917
    [136] Crescenzi V,Skjak-Brak G,Dentin M,et al.A high NMR study of products ensuing from konjac glucomannan (C6) oxidation followed by enzymatic (C5) epimerization[J].Biomacromolecules,2002,3:1343-1352
    [137]罗立新,冯长根.交联魔芋葡甘聚糖微球的制备与表征[J].林产化学与工业,2004,24(2):77-79
    [138]邹群,朱丹丹,夏服宝.交联魔芋葡甘聚糖水凝胶包裹尿素的缓释效果[J].江苏化工,2005,33(2):41-43
    [139]陈家任,贾成禹.魔芋葡甘雷聚糖新载体制备和对环糊精葡基转移酶的固定[P].中国专利:891097104
    [140] Yang G,Xiong XP,Zhang LN.Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution[J].J Membrane Sci,2002,201(1/2):161-173
    [141] Davies G.J,Gilbert HJ,Bolaml DN.Ligand-mediated dimerization of a carbohydratebinding module reveals a novel mechanism for protein-carbohydrate recognition[J].J Mol Biol,2004,337(2):417-426
    [142] Hogi T.The Extraction of a gluconnan polysaccharide from konjac corms[P].公开特许公报,平05,194603
    [143] Kameda N.Determination of the relative molecular mass of konjac mannan[P].公开特许公报,平06,345653
    [144]王碧,张廷有,王坤余,等.胶原蛋白-葡甘聚糖-软骨素共混膜的结构表征和物理性能研究[J].化学研究与应用,2003,15(6):768-770
    [145] Du J,Dai J,Liu JL,et a1.Novel pH-sensitive polyelectrolyte carboxymethyl konjac glucomannan chitosan beads as drug carriers[J].React Funct Polym,2006,66(10):1055-1059
    [146] Zhang YQ,Xie BJ,Xin Gan X.Advance in the applications of konjac glucomannan and its derivatives[J].Carbohyd Polym,2005,60(1):27-31
    [147]许东颖,盛家荣,李光吉.魔芋葡甘聚糖的改性及其在生物材料领域的应用概况,材料导报,2008,22(11):47-50
    [148]唐贵丹,杜小兵,张兴国,等.酸性乙醇法纯化魔芋葡甘聚糖的研究[J].食品科学,2008, 29(12):308-311
    [149]刘廷国,王洋,夏俊,等.纯化方法对魔芋葡甘聚糖结构及性能的影响[J].林产化学与工业,2005,25(3):71-75
    [150]许金钩,王尊本.荧光分析法[M].科学出版社第三版,北京:2006:12-13
    [151]兰秀风,刘莹,高淑梅,等.乙醇溶液的荧光光谱及其特性的研究[J].激光技术,2003,27(5):477-479
    [152] Lan XF,Liu Y,Liu JG,et al.Fluorometic determination of ethanol solution[J].Acta Photonica Sinica,2003,32(11):1371-1374
    [153]朱拓,陈国庆,虞锐鹏,等.甲醇分子荧光光谱的研究[J].光学技术,2006,32(1):11-13
    [154]陈国庆,朱拓,虞锐鹏,等.甲醇溶液的荧光光谱特性[J].光电工程,2005,32(6):31-34
    [155]陈肖静,朱拓.甲醇荧光光谱的量子分析[J].光子学报,2008,37(7):1433-1435
    [156]何海建,朱拓,虞锐鹏,等.四氢呋喃荧光光谱特性的研究[J].食品与生物技术学报,2008,27(1):53-56
    [157]何海建,朱拓,虞锐鹏,等.淀粉荧光光谱特性的研究[J].食品科学,2006,27(4):27-30
    [158]吴世康.高分子光化学导论基础和应用[M].北京:科学出版社,2003:247-255
    [159]樊美公.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001
    [160]许金钩,王尊本.荧光分析法[M].科学出版社第三版,北京:2006:67
    [161]张翼伸.多糖的构象研究[J].东北师大学报自然科学版,1998,(2):55-60
    [162]罗学刚.魔芋葡甘聚糖溶胶流变特性研究[J].中国学术期刊文摘,2000,6(3):389-391
    [163]过梅丽,赵得禄.高分子物理[M].北京:北京航空航天大学出版社,2005:40-41
    [164] Karim AA,Chang YP,Norziah MH,et al.Exothermic events on heating of semi-dilute konjac glucomannan-water systems[J].Carbohyd Polym,2005,61(3):368-373
    [165]汪超,李斌,徐潇,等.魔芋葡甘聚糖的流变特性研究[J].农业工程学报,2005,21(8):157-160
    [166] Clegg SM,Phillips GO,Williams PA,et al.Gums and stabilisers for the food industry[M].IBL Press at Oxford University Press,Oxford,1990:459
    [167] Maekaji K.Mechanism of gelation of konjac mannan[J].Agr Biol Chem,1974,38(2):315-321
    [168] Sugiyama N,Shimahara H,Andoh T,et al.Mannan and relatedcompounds.II.Molecular weights of konjac mannans of various sources[J].Agr Biol Chem,1972,36(8):1381-1387
    [169]刘凤岐,汤心颐。高分子物理[M].北京:高等教育出版社,1995:17
    [170] Shelso GJ.Gums and stabilisers for the food industry[M].IRL Press at Oxford University Press,Oxford,1990:563
    [171]林尚安,陆耘,梁兆熙.高分子化学[M].北京:科学出版社,2000:146
    [172]李斌,谢笔钧.魔芋葡甘聚糖分子链形态研究[J].中国农业科学2004,37(2):280-284
    [173] Ohya Y,Ihara K,Murata J,et al.Biodegradation and immunological enhancement activity of dicarboxy-glucomananan having recognizable branched saccharide residues[J].Intelligent Materials and Systems,1995:273-280
    [174] Ohya Y,Ihara K,Murata J,et al.Preparation and biological properties of dicarboxy-glucomannan:enzymatic degradation and stimulating activity against cultured macrophages[J].Carbohyr Polym,1994 (25):123-130
    [175]刑其毅.基础有机化学,第三版上冊[M].北京:高等教育出版社,2005
    [176] Drobchenko SN,Isaeva-Ivanova LS,Kleiner AR,et al.Aldo-enol transition in periodate-oxidized dextrans[J].Carbohydr Res,1996,280(1):171-176
    [177]陈松茂.有机电化学及其工业应用[M].上海:上海科学技术文献出版社,1992:115-118
    [178] Yu HQ,Lu J,Xiao CB.Preparation and properties of novel hydrogels from oxidized konjac glucomannan cross-linked chitosan for in vitro drug delivery[J].Macromolecular bioscience,2007,7(9-10):1100-1111
    [179] Domb AJ,Linden G,Polacheck I,et al.Nystatin-dextran conjugates:synthesis and characterization[J].J Polym Sci,Part A:Polym Chem,1996,34(7):1229-1236
    [180] Katsuraya K,Okuyama K,Hatanaka K,et al.Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy[J].Carbohyd Polym,2003,53(2) :183-189
    [181]田大听.魔芋葡甘聚糖羧甲基化改性及性能表征[J].安徽农业科学,2008,36(7):2621-2623
    [182]王运,郑兴愿,谢劲松,等.魔芋全降解塑料薄膜的制备和性能研究[J].塑料工业,2006,34(2):60-63
    [183]雷万学,徐霞,林芳,等.季铵盐型魔芋葡甘聚糖衍生物的合成、表征及生物学活性[J].光谱学与光谱分析,2008,28(5):l030-1034
    [184]刘文涛,田兴友,郑瑾,等.聚对苯二甲酸乙二酯荧光光谱的激发波长依赖性研究[J].高分子学报,2005,(4):637-640
    [185]张林国,唐旭东,赵百孝,等编.结肠炎[M].北京:科学技术文献出版社,2000:36-37
    [186]欧阳钦.我国炎症性肠病研究的概况与展望[J].中华消化杂志,1993,13(8):31-32
    [187] Campieri M.New steroids and new salicylates in inflammatory bowel disease:a criticalappraisal[J].Gut,2002,50:43-46
    [188] Campieri M.A double–blind clinical trial to compare the effects of 4-aminosalicylic acid to 5-aminosalicylic acid in toplical treatment of ulcerative colitis[J].Digestion,1984: 29(4):204-208
    [189] Beeken W,Howard D,Bigelow J,et al.Controlled trial of 4-ASA in ulcerative colitis[J].Digest Dis Sci,1997,42(2):354-358
    [190] Ginsberg AL,Beck LS,Mcintosh TM.Treatment of left sided ulcerative colitis with 4-aminosalicylic acidenemas:A double blind,placebo contolled trial[J].Ann Intern Med, 1988,108:195-199
    [191] Gaffney P,Doyle C,Gaffney A.Oral 4-aminosalicylic acid therapy in ulcerative colitis.Gastroenterology[J].1992,103(5):1706-1707
    [192] Sharma MP , Duphare HV . 4-Aminosalicylic acid enemas for ulcerative colitis[J].Lancet,1989,333(8635):450
    [193]òDonnell LJD,Arvind AS,Hoang P,et al.Double blind,controlled trial of 4-aminosalicylic acid and prednisolone enemas in distal ulcerative colitis[J].Gut,1992,33:947-949
    [194]温忠慧,欧阳钦.4-氨基水杨酸治疗溃疡性结肠炎[J].中华内科杂志,1997,36(7):470-471
    [195]杨希雄,陈军.氨基水杨酸类药物治疗溃疡性结肠炎[J].医药导报,2001,20(11):722-723
    [196]康景鉴,杨永福.PAS灌肠治疗溃疡性结肠炎疗效观察[J].中国肛肠病杂志,1992, 3(1):19-20
    [197] Tuleu C,Basit AW,Waddington WA,et al.Colonic delivery of 4-aminosalicylic acid using amylose–ethylcellulose-coated hydroxypropylmethylcellulose capsules[J].Aliment Pharm Therap,2002,16(10):1771-1779
    [198] Li Y,Li HJ,Yang GR,et al.Colon-specific delivery tablets of sodium 4-aminosalicylic acid[J].Acta Pharmacol Sin,2006,41(10):927-932
    [199] Suneela SD,Mukta C,Mahavir P,et al.Colon-specific mutual amide prodrugs of 4-aminosalicylic acid for their mitigating effect on experimental colitis in rats[J].Eur J Med Chem,2009,44(1):131-142
    [200] Heidel ND,Zhao H,Leiby J,et al.Hydrazide pharmaceuticals as conjugates to polyaldehyde dextran:syntheses,characterization,and stability[J].Bioconjugate Chem,1990,1(1):77-82
    [201] Soyez H,Schacht E,Vanderkerken S.The crucial role of spacer groups in macromolecular prodrug design[J].Adv Drug Deliv Rev,1996,21(2):81-106
    [202]王积涛.高等有机化学[M].北京:人民教育出版社:158-160
    [203]赖俊英.偶氮类结肠靶向高分子药物的合成、生物降解和释药性能的研究[D].浙江大学博士论文,2006:54
    [204]李妍,李宏建,苏乐群,等.4-氨基水杨酸钠结肠定位包衣片的制备与体外释放[J].中国医院药学杂志,2006,26(4):402-405
    [205]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:清华大学出版社,1989:263-266
    [206]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:清华大学出版社,1989:109-115
    [207] Sinclair GW,Peppas NA.Analysis of non-fickian transport in polymers using simplified exponential expression[J].J Membr Sci,1984,17(3):329-331
    [208] Peppas NA,Ritger PL.A simple equation for description of solute release.Ⅱ.Fickian and anomalous release from swellable device[J].J Control Release,1987,5(1):37-42
    [209]罗明生,高天惠,宋民宪主编.中国药用辅料[M],化学工业出版社,2005:51-57
    [210] Nassar PM,Almeida LE,Tabak M.Binding of dipyridamole to DPPG and DPPCphospholipid vesicles:Steady-state fluorescence and fluorescence anisotropy decay studies[J].Langmuir,1998,14(24):6811-6817
    [211] Scherlund M,Brodin A,Malmstem M.Nonionic cellulose ethers as potential drug delivery systems for periodontal anesthesia[J].J Colloid Interf Sci,2000,229(2):365-374
    [212]¨Osth K,Paulsson M,Bj¨ork E,et al.Evaluation of drug release from gels on pig nasal mucosa in a horizontal using chamber[J].J Control Release,2002,83(3):377-388
    [213] Chang CM,Bodmeier R.Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase [J].Int J Pharm,1998,173(1-2):51-60
    [214] Rafael B,Carmen AL,Angel C.Controlled release of estradiol solubilized in carbopol/surfactant aggregates[J].J Control Release,2003,93(3):319-330
    [215] Pant D,Levinger NE.Polar solvation dynamics of H2O and D2O at the surface of zirconia nanoparticles[J].J Phys Chem B,1999,103(37):7846-7852
    [216] Blackett PM,Buckton G.A microcalorimetric study of surfactant aggregation and surfactant-drug interaction in a model inhalation aerosol system[J].Int J Pharm,1995,125(1):133-139
    [217] Corswant C,Thorén PEG.Solubilization of sparingly soluble active compounds in lecithin-Based microemulsions:Influence on phase behavior and microstructure[J].Langmuir,1999,15(11):3710-3717
    [218] Frauchiger L,Shirota H,Uhrich KE,et al.Dynamic fluorescence probing of the local environment within amphiphilic starlike macromolecules[J].J Phys Chem B,2002,106(30):7463-7468
    [219] Pasterneck RF,Bustamante C,Collings PJ,et al.Porphyrin assemblies on DNA as studied by a resonance light-scattering technique[J].J Am Chem Soc,1993,115(13):5393-5399
    [220]薛奇.高分子结构研究中的光谱方法[M],高等教育出版社,1995年:第六章
    [221]蒋萍初,陶虹,王一峰.添加剂对CTAB临界胶束浓度影响的研究[J].表面活性剂工业,1996(2):15-22
    [222] Chieu D,Yu SF.Near-infrared spectroscopy method for the sensitive and direct determination of aggregations of surfactants in various media[J].J Colloid Interf Sci, 2005,283(2):613-618
    [223] Huang CZ,Li KA,Tong SY.Determination of nucleic acids by a resonance light-scattering technique withα,β,γ,δ-tetrakis[4-(trimethylammoniumyl)phenyl] porphine[J].Ana1 Chem,1996,68(13):2259-2263
    [224]刘绍璞,胡小莉,罗红群,等.阳离子表面活性剂与核酸反应的共振Rayleigh散射光谱特性及其分析应用[J].中国科学·B辑,2002,32(1):18-26
    [225] Ma CQ,Li KA,Tong SY.Microdetermination of proteins by resonance light scattering spectroscopy with bromophenol blue[J].Ana1 Biochem,1996,239(1):86-91
    [226]魏永巨,李克安.蛋白质-铬天青S体系的弹性光散射及其初步分析应用[J].化学学报,1998,56(3):290-297
    [227]梁宏,沈星灿,蒋治良,等.共振散射研究I-与血清白蛋白的结合平衡[J].中国科学·B辑,2000,30(5):460-466
    [228]刘绍璞,刘忠芳,李明.离子缔合物二级散射光谱的分析应用-I.硒(IV)-碘化物-罗丹明B体系[J].化学学报,1995,53(12):1178-1184
    [229]刘绍璞,周光明,刘忠芳,等.共振瑞利散射法测定硫氰酸盐-碱性三苯甲烷染料体系中[J].高等学校化学学报,1998,19(7):1040-1044
    [230]蒋治良,冯忠伟,李廷盛,等.金纳米粒子的共振散射光谱[J].中国科学·B辑,2001,31(2):183-188
    [231]蒋治良,刘绍璞,赵保剐,等.CoFe204纳米粒子的共振散射光谱研究[J].光谱学与光谱分析,2002,22(4):615-618
    [232]蒋治良,李芳,李廷盛,等.共振散射光强度与金粒子粒径的关系[J].高等学校化学学报,2000,10:1488-1490
    [233] Micah N,Mallamace F,Romeo A,et al.Mesoscopic structure of meso-tetrakis(4-sulfonatophenyl)porphine J-aggregates[J].J Phys Chem B,2000,104(25):5897-5904
    [234]魏永巨,康志敏,戚秀菊,等.铝试剂的共振散射光谱研究[J].光谱学与光谱分析,2003,23(1):115-118
    [235]魏永巨,康志敏、刘翠格,等.罗丹明B的共振散射光谱研究[J].光谱学与光谱分析,2004,24(12):1659-1662
    [236]罗明生,高天惠,宋民宪.中国药用辅料[M],化学工业出版社,2005:5-7
    [237]刘佳,王清照.药用辅料在药物制剂中的作用及其应用[J].中国科技信息,2008(13):202-204
    [238]周锐.药物制剂的配伍与临床合理用药[J].山西医药杂志,2007,6(10):805-807
    [239]陈朝凤.药物制剂中附加剂的不良反应[J].科技资讯,2005(24):173-174
    [240]黄娟,陈秋云.5,7一二羟基黄酮与牛血清白蛋白相互作用的研究[J].光谱实验室,2007,24(6):1095-1098
    [241]颜承农,谢泽钰,梅平,等.荧光光谱法研究萘酚绿B与牛血清白蛋白相互作用特征[J].光谱学与光谱分析,2007,27(12):2542-2545

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700