胰岛素的海藻酸盐—壳聚糖微球载体制备和口服给药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,注射几乎是胰岛素临床应用的惟一给药途径,存在突出问题是,药物在血液中半衰期短,必须重复注射给药。对于必须长期甚至终身依赖胰岛素治疗患者,这种特性将造成患者在身体、精神、经济上的巨大负担。因此,发展胰岛素非注射给药途径是国内外医药界关注的重大课题。可能的非注射给药途径中,口服是理想的给药方式,具有服用方便安全、患者治疗依从性高等优势。但是,胰岛素直接口服易被胃肠道消化酶降解并丧失疗效。同时,作为两性分子,其亲水特性使之不能跨越小肠上皮吸收屏障。
     针对胰岛素口服给药面临的主要问题,本文采用脉冲电场微球制备工艺,以海藻酸盐、壳聚糖为载体材料,开展了载胰岛素口服微球的制备工艺研究。采用真空冷冻干燥技术对载药微球干燥处理后,进行了微球口服给药的药效学、药动学、以及药理相对生物利用度的研究。主要研究结果如下:
     1.采用脉冲电场工艺制备了载胰岛素壳聚糖-海藻酸钙微球。以微球粒径和球形度为指标,采用正交实验设计法优化工艺条件;利用倒置生物显微镜和扫描电镜测定微球粒径、观察微球的表面形态以及内部结构。采用考马斯亮蓝法测定微球中胰岛素药物的包封率。结果表明,锐孔孔径是影响微球粒径的最显著的因素。优化工艺条件为450μm锐孔直径、2cm液面距、10mg/mL海藻酸钠浓度、8mL/h推进速度、金属皿作凝胶浴容器。
     2.采用真空冷冻干燥法制备了载胰岛素微球的冻干剂,考察了微球冷冻干燥前后粒径变化以及微球中胰岛素相对活性的变化。结果表明,冻干对微球中药物的活性影响较小,但能够大大减小微球的粒径,冻干后,微球平均粒径由123μm减小为48μm,粒径减小率为61%。
     3.建立糖尿病动物模型,为进行微球口服的药效学和药动学研究提供稳定可靠的动物模型。采用体重为18~22g的昆明种小白鼠腹腔注射200mg/kg四氧嘧啶生理盐水溶液,建立了类似人类Ⅰ型糖尿病的动物模型。
     4.胰岛素微球口服给药的药效学实验表明:微球不仅对正常小鼠有降血糖作用,而且对四氧嘧啶致糖尿病小鼠也有降血糖作用,且血糖降低水平与剂量之间存在一定量效的关系。正常小鼠口服平均粒径48μm载胰岛素微球,6h时血糖降低率最大,10h内具有降血糖作用。给予正常小鼠不同剂量的胰岛素微球,口服3.2IU/kg剂量6h时使小鼠血糖下降27.2%,6IU/kg剂量使小鼠血糖降低40%。对于糖尿病小鼠而言,降血糖作用更为明显。口服粒径为48μm、剂量为4.8IU/kg载胰岛素微球,在6h~10h内维持血糖值处于较低水平,6h达到最低值,10h血糖值恢复为原有的46.01%,整个降血糖过程缓慢而有效。与皮下注射给药方式相比,口服胰岛素的药理相对生物利用度为41.20%。糖尿病小鼠口服高(4.8IU/kg)、中(3.6IU/kg)、低(2.4IU/kg)三个剂量的载胰岛素微球,高剂量的降血糖作用明显优于中低剂量,最大降血糖百分率分别为57.31%、40.16%、23.87%。
     5.药动学实验表明:采用糖尿病小鼠模型作为研究对象,口服4.8IU/kg载胰岛素微球,血清胰岛素呈现出缓慢而平稳的上升过程,血清胰岛素含量在4h为最高值。与皮下注射给药方式相比,口服胰岛素的药理相对生物利用度为41.22%。对糖尿病小鼠口服不同剂量载胰岛素微球,高、中、低三种剂量均体现出良好的升高血清胰岛素含量的作用,体现良好的量效关系。药理相对生物利用度分别为41.22%,37.32%,35.37%。
At present, injection is the only means of administration of insulin in clinic. The problem is the short half-life and repeated injection administration, resulting physical and spiritual burdens for long-term or life-long insulin-dependent patients. Therefore, the development of non-injection administration of insulin is very important. Oral delivery is the perfect administration of the non-injection because of security and higher advantage of the compliance of patients. However, insulin, must first be broken down by digestive enzyme and loss of efficacy. Meanwhile, as amphoteric element, insulin with hydrophilic properties are not absorbed by intestinal epithelial barrier.
     In order to sovle problems of oral insulin delivery, impulsive electrostatic technique was used with chitosan and sodium alginate as microsphere material, studies on preparation of insulin microspheres.The pharmacodynamic, pharmacokinetic and the relative pharmacological bioavailability of oral freeze-drying insulin-loaded Alginate/ chitosan microspheres, were mainly studied in this article.The research were made as follow:
     1. Insulin-loaded alginate/chitosan microspheres were preparede by impulsive electrostatic technique. The interrelated factors influencing the diameter and sphericity were studied through orthogonal experiments,and finally the statistic analysis made sure the optimum conditions to prepare microspheres. The scanning electron microscope and biological inverted microscope were used to observe diameter, the surface morphology and internal structure of microspheres. The encapsulation efficiency of insulin-loaded microspheres were determined by CBBG.The results showed that the diameter of needle was the most significant factor to the diameter of microspheres. The optimum conditions for the least diameter of microspheres were 450μm diameter of needle, 2cm from needle tips to the gelation surface, 10mg/mL alginate concentration,8mL/h speed of flowing-liquid and metal containers.
     2. Microspheres were prepared by Vacuum freeze-drying, then inspected the diameter of microsphere before freeze-drying, and changes in the relative activity of insulin. The results showed that the freeze-dried microspheres were slight effect on the drug activity, but the diameter of the microspheres were greatly reduced. The average diameter of microspheres decreased from 123 urn to 48 urn , the rate of decreasing is 61%.
     3. Diabetic animal model provided stable and reliable animal model for following oral pharmacokinetic and pharmacodynamic. In this paper, the weight of 18~22g Kunming-rats were subcutaneous injected 200mg/kg alloxan-saline solution, to establish a similar animal model of human type 1 diabetes.
     4. Studies of pharmacodynamic on insulin-loaded microspheres showed that microspheres had hypoglycemic effect not only on the normal rats, but also on alloxan-induced diabetic rats, Also there was a certain relationship between dose and hypoglycemic effect. Hypoglycemic effect showed the maximum rate at 6h, and maintained within 10h after oral 48μm microspheres on normal rats. Blood glucose level decreased to 27.2% , 40% respectively after 6h with oral 3.2IU/kg, 6IU/kg on normal rats. For diabetic rats, the hypoglycemic effect became more apparent, and blood glucose level maintained lower during 6~10h after oral 4.8IU/kg microspheres.The lowest level was at 6h, then cameback to 46.01% of original level .The whole process showed a steady and effective hepoglycemic effect after oral. Compared to the administration of subcutaneous injection method, the relative pharmacological bioavailability of oral insulin-loaded microspheres reached 41.20%.The hypoglycemic effect of the high dose (4.8IU/kg)was better than lower dose after oral different dose of insulin-loaded microspheres to diabetic rats,, the largest of hypoglycemic effect reached was 57.31%, 40.16%, 23.87%.
     5. Study of pharmacokinetic showed : With diabetic rats as animal model, the serum insulin level were determined by Radioimmunoassay(RIA) after oral insulin-loaded microspheres. the serum insulin level showed a slow and steady increase after oral 4.8IU/kg insulin-loaded microspheres, and the serum insulin level was the highest value at 4h. Compared to the administration of subcutaneous injection method, the relative pharmacological bioavailability of oral insulin-loaded microsphere reached 41.22%. It was a good dose-response relationship after oral different doses of insulin-loaded microspheres in diabetic rats, the relative pharmacological bioavailability were 41.22% , 37.32% and 35.37% respectively.
引文
1.《1994年中国糖尿病患病率及其危险因素》中华内科杂志,1997,36(6):384
    2.刘国良.糖尿病控制目标操作及其评价[J],中国实用内科杂志,2001,21(9):521~5231
    3. Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery[J]. J Controlled Release, 2000, 65(1-2): 261~269
    4. Nishihata T, Liversidge G, Higuchi T, et al. Effect of aprotinin on the rectal delivery of insulin[J]. J Pharm Pharmacol, 1983, 35: 616
    5. Aungst 13J, Rogers NJ. Comparison of the effects of various transmucosal absorption promoters on buccal insulin delivery[J]. Int J Pharm, 1989, 53: 227
    6.冷光,孔宪珠.胰岛素鼻腔给药微球剂的制备及药效学研究[J].中国药房.2003,14(5):277
    7.沈赞聪,张大卫,张强,等.胰岛素经口腔给药对正常大鼠的降血糖作用[J].中国药理学通报,2000,16(6):685~687
    8.王晓燕,曾垂宇,王东凯,等.胰岛素新型制剂的研究[J],中国医院医药杂志,2003,23(5):298~299
    9. Agarwal V, Reddy I. K, Khan M. A. Polymethyacrylate based microparticulates of insulin for oral delivery: preparation and "in vitro" dissolution stability in the presence of enzyme inhibitors[J]. Int. J. Pharm. 2001, 225: 31~39
    10. Suchat W, Nigel M D, Thomas R, et al. Preparation of Biodegradable Insulin Nanocapsules from Biocompatible Micro emulsions[J]. Pharm Res. 2000, 17(6): 684
    11. Gerardo P, Carino, Jacob J S. Nanosphere based oral insulin delivery[J]. J Controlled R dease, 2000, 65(1-2): 261
    12.薛伟明,刘袖洞,雄鹰,等.胰岛素口服给药[J],科学通报.2002,47(14):1044~1049
    13. Modi P, Mihic M, Lewin A. The evolving role of oral insulin in the treatment of diabetes using a novel RapidMist System[J]. Diabetes Metab Res Rev. 2002, 18(11): 38~42
    14. Mounir S. Mesiha, Madiha B. Sidhom, Babattmde Fasipe. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles[J]. 2005, 288(2): 289~293
    15.王萍,陈钧.酶抑制剂在蛋白质和肽类药物口服制剂中的应用[J].中国医药工业杂志,2005,36(8):510~513
    16. Guggi D, Bernkop-Schnurch A. In vitro evaluation of polymeric excipents protecting calcito- nin against degradation by intestinal serine protease[J]. Int J Pharm, 2003, 252: 1~2
    17.文爱东.吸收促进剂在口服制剂中增强药物生物利用度的作用[J].国外医学·药学分册,2000,27(6):354~357
    18. Aim r LO, Wolimer P, Jonson B, et al. Insulin inhalation with absorption enhancer at mealtime results in almost normal postprandial insulin profiles[J]. Clin Physiol Funct Imaging. 2002, 22: 218~221
    19. Caliceti P, Salmaso S, L illie C, et al. Development and in vivo evaluation on an oral insulinPEG delivery system. 30th Annual Meeting and Exposition of the Controlled Release Society [J], CRS, Glasgow, 2003: 677.
    20. Fix J A. Oral controlled release technology for peptides: status and future prospects. Pharm Res, 1996, 13(12): 1760~1764
    21. Hosny E A, A 12Shora a H I, ElmazarM M A. Oral delivery of insulin from entericcoatedcap sulescontaining sodium salicylate: effect on relative hypoglycemia of diabetic beagle dogs[J]. International Journal of Pharmaceutics, 2002, 237: 71
    22.吴琼珠,平其能.胰岛素非注射给药途径研究进展[J].解放军药学学报,2000,16(1):28~30
    23. Tozaki H, Nishika J, Komoike J, et al. Enhanced absorption of insulin and(Asu~(1.7)) eelcalcitonin using novel azopolymer-coated pellets for colon-specific drug delivery[J]. J Pharm Sci, 2001, 90(1): 89~97
    24. Avadi M R, Jalali A, Sadeghi M M, et al. Diethyl methyl chitosan as an intestinal paracellular enhancer: ex vivo and in vivo studies[J]. Int J Pharm, 2005, 293: 83~89
    25.吴正红,平其能,魏毅,等.壳聚糖包覆胰岛素脂质体处方与工艺优化[J].中国医药工业杂志,2003,34(2):76
    26. KiselM A, Kulik a L N, T sybovsky I S, et al. Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat[J]. International Joumal of Pharmaceutics, 2001, 216: 105
    27. CA, 1328401, 1994
    28. Jerry N, Anitha Y, Sharma C P, et al. In vivo absorption studies of insulin from an oral delivery system[J]. Drug Delivery, 2001, 8(1): 19~23
    29. Damge C, Aprahamian M, Humbert W, et al. Heal uptake of polyalkylcyanoacrylate nanocapsules in the rat[J]. J Pharm Pharmacol, 2000, 52: 1049~1056
    30. Damage C, Michel A, Couvreur P, et al. Advantage of a new colloidal drug deivery system in the insulin treatment of streptozotocin-induced diabetic rats[J]. Diabetologia, 1986, 29: 531
    31.郑彩虹,梁文权,虞和永.海藻酸-壳聚糖-聚乳酸羟乙醇酸复合微球的制备及其对蛋白释放的调节[J].药学学报,2005,40(2):182~186
    32. Leonard M, Boisseson M, Hubert P, et al. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties[J]. J Control Release, 2004, 98: 395
    33.丁红,刑桂琴,谢茵.阿霉素明胶微球的制备与特性研究[J].中国医院药学杂志,2000,20(7):387~389
    34.许天开,赵树杰.PHB在生物医学中的应用研究进展[J].应用与环境生物学报,1995,7(1):85~88
    35.王正容,陆彬,杨红.左炔诺孕酮2聚232羟基丁酸酯缓释微球的研究[J].药学学报,1999,34(1):57~59
    36.方华丰,周宜开.壳聚糖微球的研究进展[J].国外医药合成药生化药制剂分册,1999,20(5):315~318
    37.张珠.利福平壳聚糖蛋白微球的制备及性能研究[J].武汉理工大学学报,2001,23(1):21~23
    38. El ShafyMA, KellAwaylW, Taylor G, et al. Improved nasal bioavailability of FITC-dextran (Nw 4300) from mucoadhesive microspheres in rabbits[J]. Drug Target, 2000, 7(5): 355
    39. MIFL, TANY C, L IANGH F, et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant[J]. Biomaterials, 2002, 23(1): 181
    40. HE P, DAVIS S S, ILLUM L. Sustained release chitosan and gelation coated microparticles: prepared by novel spray dryingmethods[J]. Microencapsul, 1999, 16(3): 343
    41. Filipovic-Grcic J, Perissutti B, Moneghini M, et al. Spray-dried carbamazepine loaded chitososan and HPMC microspheres: preparation and chamcterisation[J]. J Pharm Pharmacol, 2003, 55(7): 921~931
    42. Poncelet D, Babak V G, Goosen M F A, et al. Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Advances in Colloid and Interface Science, 1999, 79(2~3): 213~228
    43. Ma X J, Vaccic I, un A. Generation of alginate-poly-L-lysine(APA) biomicrocapsules. Art Cells Blood Subs and Immob Biotech, 1994, 22(1): 43~69
    44. Martin A, Janerik L. Small particles of a heparin/chitosan complex prepared from a pharmaceutically acceptable microemulsion[J]. Int J Pharm, 2003, 257: 305
    45. Hirofumi T, Hiromitsu Y, Yoshiaki K. Mucoadhesive nanoparticulate systems for peptide drug delivery[J]. Adv Drug Deli Rev, 2001, 47: 39
    46. Huguet ML, Groboillot A, Neufeld RJ, et al. Hemoglobin encapsulation in chitosan/calcium alginate beads[J]. J Appl Poly Sci, 1994, 51: 1427~1432
    47. Yoshikawa Y, Komuta Y, Nishihara T, et al. Preparation and evaluation of once a day injectable microspheres of interferon alpha in rats[J]. J Drug Target, 1999, 6(6): 449~461
    48. Cho NH, Seong SY, Chun KH, et al. Novel mucosal polysaccharide-protein conjugates entrapped in alginate microspheres[J]. J Contr Release, 1998, 53(3): 215~224
    49. Esquisabel A, Hemandez RM, Igartua M, et al. Production of BCG alginate-PLL microcapsules by emulsification/internal gelation[J]. J Microencapsul, 1997, 14(5): 627~638
    50. Vdhitehead L, Fell JT, Collet JH. Floating dsage forms: an in vivo study demonstrating prplonged gastric retention[J]. J Controlled Release, 1998, 55(1): 300~304
    51.徐砾.真空冷冻干燥技术在生物制药方面的应用[J].武汉科技学院学报,2003,16(5)
    52.黎先发.真空冷冻干燥技术在生物材料制备中的应用于进展[J].西南科技大学学报,2004,19(2):117~121
    53.程江,涂伟萍,杨卓如.粉体真空冷冻干燥制备技术的应用与进展[J].真空,2001,2:21~24
    54.吴正红,平其能,魏毅,等.壳聚糖包覆胰岛素脂质体处方与工艺优化[J].中国医药工业杂志,2003,34(2):76~80
    55. T. Morcol, P. Nagappan, L. Nerenbaum, et al. Calcium phosphate-PEG-insulin-casein (CAP-IC) particles as oral delivery systems for insulin[J]. International Journal of Pharmaceutics, 2004, 277: 91~97
    56.王思玲,苏德森,顾学裘.胰岛素微粒剂的制备、含量、包裹率与生物活性稳定剂[J].沈阳药科大学学报,2000,17(1):23~25
    57.曹稳根,焦庆才,刘茜,等.考马斯亮蓝显色剂变色反应机理的研究[J].化学学报,2002,60(9):1656~1661
    58. Rousseau I, Cerf D L, Picton L, et al. Entrapment and release of sodium polystyrene sulfonate(SPS) from calcium alginate gel beads[J]. European polymer Joumal, 2004(40): 2710
    59.马平,孙淑英.一种新的缓释载体——海藻酸钙凝腔小球的研究概况[M].国外医药——合成药,生化药,制剂分册,1998,19(3):190
    60.薛伟明,刘袖洞,于炜婷,等.静电液滴法制备10μm粒径的蛋白质药物微球载体[J].科学通报,2005,50(22):2463
    61.刘占杰,肖洪海,苏树强,等.冷却方式对冻干脂质体药物的粒径和包封率影响的实验研究[J].工程热物理学报.2002,23(5):599~601
    62.倪春.医用生物制品的真空冷冻干燥技术[J].广西机械,1999,1:15~18
    63.徐砾.真空冷冻干燥技术在生物制药方面的应用[J].武汉科技学院报,2003,16(5):58~60
    64.林志共,刘群丽,郭红,等.小鼠血糖法测定胰岛素生物效价的探讨——用葡萄糖氧化酶法测定小鼠血糖值[J].药物分析杂志,1985,5(6):333~334
    65.薛伟明,于炜婷,刘袖洞,等.载细胞海藻酸钠/壳聚糖微胶囊的化学破囊方法研究[J].高等学校化学学报,2004,7(25):1342~1346
    66. Susana Martins, Bruno Sarmento, Eliana B. Souto, et al. Insulin-loaded alginate microspheres for oral delivery-Effect of polysaccharide reinforcement on physicochemical properties and release profle[J]. Carbohydrate Polymers, 2007: 1~7
    67.陈军,易以木,杨希雄,等.口服胰岛素聚乳酸纳米粒的胃肠道吸收与药效学研究[J].中国药理学通报.2003,19(8):920~923
    68. Young-Chang Nho, Sung-Eun Park, Hyung-I1 Kim, et al. Oral delivery of insulin using PH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation[J]. 2005, 236(1): 283~288
    69.国家药典委员会.中华人民共和国药典(一部)[S]2005版,北京:化学工业出版社,2005
    70.孙子林.1-型糖尿病动物模型及其进展[J].实验动物科学与管理,1999,16(2):44~46
    71.嵇扬,张癸荣,王文俊.建立四氧嘧啶糖尿病模型的研究[J].中医药学刊,2003,21(7):1125
    72.韩丽莎,阎秀英,任健梅,等.Alloxan糖尿病模型复制中的多因素作用[J].内蒙古医学杂志,1996,16(6):340~342
    73.陈建国,梅松,付颖,等.四氧嘧啶致小鼠高血糖模型的研究[J].卫生毒理杂志,2004,2(18):98~100
    74.黄敏,王书奎,王小峰,等.不同禁食时间对四氧嘧啶糖尿病小鼠模型的血清胰岛素和血糖的影响[J].中国药科大学学报,2001,32(3):217~220
    75.嵇扬,张癸荣,王文俊.建立四氧嘧啶糖尿病模型的研究[J].中医药学刊,2003,21(7):1126~1127
    76.施新猷.现代医学实验动物学[M].北京.人民军医出版社,2000,482
    77.H.G沃格尔,W.H沃格尔编著.杜冠华,李学军,张永祥等译.药理学实验指南——新药 发现和药理学评价[M].北京:科学出版社,2001:699
    78.中国人民解放军后勤部卫生部.临床疾病诊断依据治愈好转标准[M].人民军医出版社,1987,208
    79.叶燕丽,王辉云,王莲桂,等.四氧嘧啶制作大鼠糖尿病模型[J].实验动物科学与管理,2001,18(2):53~55
    80.张均田.现代药理实验方法[M].北京:北京医科大学中国协和医科大学联合出版社,1998:981
    81.张淑君,闫雅更,李春艳,等.仙人掌对四氧嘧啶糖尿病大鼠降糖作用的实验研究[J].中国中医药科技,2002,9(3):192~193
    82.王柳萍,杨斌,周丽.四氧嘧啶制备小鼠糖尿病模型的影响因素探讨[J].广西医科大学学报,2004,21(1):23~35
    83.嵇扬,张癸荣,王文俊,等.建立四氧嘧啶糖尿病模型的研究[J].中医药学刊,2003,21(7):1125~1126
    84.程桦.内分泌代谢系统疾病[M].科学技术出版社,2000:235
    85.马利敏,张强,李玉珍,等.胰岛素聚酯纳米粒的制备及药效学研究[J].中国药学杂志,2001,36(1):38~42
    86.黄慧,田浩明,李雄伟,等.壳聚糖胰岛素微球在糖尿病大鼠中的降糖作用研究[J],生物医学工程学杂志,2001,18(3):425~427
    87.Jerry N, A nittha Y, Sharma CP, et al. In vivo absorption studies of insulin from an oral delivery system[J]. Drug Deliv, 2001; 8(1): 19
    88.董宝军,王常勇,郭希民,等.口服壳聚糖胰岛素纳米粒的制备及其降血糖作用研究[J].解放军医学杂志,2005,30(3):208~210
    89.吴正红,平其能,赖家明,等.小鼠口服多糖包覆胰岛素脂质体的降血糖作用[J].药学学报,2003,38(2):138~142
    90.潘妍,徐晖,赵会英,等.胰岛素乳酸-羟基乙酸共聚物纳米粒的制备及口服药效学研究[J].药学学报,2002,37(5):374~377
    91. Catarina M. Silva, Ant'onio J. Ribeiro, Isabel Vit'oria Figueiredo. Alginate microspheres prepared by internal gelation: Development and effect on insulin stability[J]. International Journal of Pharmaceutics, 2006, 311: 1~10
    92. Ehab A. Hosny, Hassan I. A1-Shora, Mohamed M. A. Elmazar, et al. Oral delivery of insulin from entericcoated capsules containing sodium salicylate: effect on relative hypoglycemia of diabetic beagle dogs[J]. International Journal of Pharmaceutics, 2002, 237: 71~76
    93.徐叔云,卞如濂,陈修.药理实验方法学[M]第2版.Beijing:人民卫生出版社,1991,1272.
    94.梁文权.生物药剂学与药物动力学[M],北京人民出版社,2000:22
    95. Simona Cemea. MD, Miriam Kidron. PhD, Jay Wohlgelemter. MD, et al. Comparison of Pharmacokinetic and Pharmacodynamic Properties of Single-Dose Oral Insulin Spray and Subcutaneous Insulin Injection in Healthy Subjects Using the Euglycemic Clamp Technique[J]. Clinical Tempeutics, 2004, 26(12): 2084~2091
    96.杨天智,陈启龙,陈大兵,等.胰岛素口腔喷雾制剂在大鼠及家兔体内的药效学和药动学研究[J].中国药学杂志,2003,38(6):448~452
    97.张志燕,平其能,叶晓霞.曲马朵药物树脂缓释混悬剂小鼠药效学与药动学研究[J].中国药学杂志,2001,36(6):399~402
    98.向继州,主编.药理学[M],北京:科学出版社,2002,37
    99.王思玲,苏德森,顾学裘,等.胰岛素微粒剂的体外释药、小鼠体内分布与绝对生物利用度[J].沈阳药科大学学报,2000,17(2):79~83
    100.王浩丹,周申.生物医学标记示踪技术[M].北京:人民卫生出版社,1995:69~71
    101. Sara L Tao, Tejal A, Desai. Gastrointestinal patch systems for oral drug delivery[J]. Drag Discovery Today, 2005, 10(13): 909~915
    102. Jani PU, Mccarthy DE, Florence AT. Nanosphere and rnicrosphere uptake via Peyer's patches: Observation of the rote of uptake in the rat after a single oral dose.[J]. Int J Pharm, 1992, 86: 239~46
    103. Jerry N, Anitha Y, Sharma C P, et al. In vivo absorption studies of insulin from an oral delivery system[J]. Drug Delivery, 2001, 8(1): 19~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700