航空重力测量理论、方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国首套航空重力测量系统(CHAGS)的研制为背景,基于CHAGS在汉中、大同和哈尔滨的三次实测数据,重点研究了观测数据滤波、航空重力仪观测数据处理、垂直加速度精密确定及空中重力扰动矢量估算等四方面的理论和方法;侧重探讨了航空重力测量数据在确定局部大地水准面中的应用。本文的主要工作和创新点概括如下。
     1.基于牛顿第二运动定律,建立了平台式、捷联式矢量重力测量以及捷联式、旋转不变式和平台式标量重力测量的数学模型。
     2.针对重力仪与GPS观测数据的空间同步,建立了位置、速度和加速度的偏心改正公式;实测数据分析表明,实用中仅需顾及空间改正和垂直加速度的偏心改正。
     3.提出了参照不同滤波尺度下的内部精度,依据航空重力测量的频谱窗口,在兼顾分辨率的同时确定滤波器截止频率的新观点,有效地解决了滤波器设计的关键问题。
     4.摒弃了传统使用的6×20sRC滤波器和300s高斯滤波器,设计了适用于不同作业环境的FIR滤波器和级联式巴特沃思滤波器。针对FIR滤波器阶数过高之不足,提出了航空重力测量数据的FIR级联滤波法,即两步滤波法。
     5.研究了稳定平台倾斜角和水平加速度改正的频谱特性,确定了水平加速度改正的预滤波尺度,有效地减弱了水平加速度改正不完善引起的系统性误差。
     6.研究了K因子与滤波尺度的相关性,提出了K因子的四种标定方法。结果表明,利用重新标定的K因子计算的空中重力异常,精度提高了约0.2~0.4mGal。
     7.提出了交叉耦合系数的外部、内部标定法以及与K因子的联合标定方法,采用新系数显著地降低了系统误差的影响,对于大同航空重力测量,系统误差从约4mGal减小至约1mGal。内部标定法仅需在测区内构成一定数目的交叉点,无需其它外部信息,且其标定结果与外部标定结果非常一致,因此,这种方法有着更广的应用面和实际应用价值。
     8.从频域上研究分析了GPS大气误差、星历误差、多路径效应、测量误差和卫星几何结构变化对垂直加速度精密确定的影响,结果表明:多路径效应、测量噪声和卫星几何结构变化对垂直加速度的确定具有较大影响。
     9.从理论和实测数据两方面,对利用GPS测定加速度的三种常用方法即位置差分法、多普勒频移法和相位时序差分法进行了比较和分析,对于200s的滤波尺度,静态测量精度分别为0.7、7.5和0.3mGal,动态测量的精度分别为1.6、4.8和0.5mGal。
     10.设计了航空重力测量数据处理流程,优化处理了汉中、大同和哈尔滨三次试验的观
    
    信息工程大学博士学位论文
    测数据。精度估算表明,波长分辨率约为10km时,交叉点不符值的标准差分别为smGal、
    5.smGal和2.OmGal,空中5‘xs’格网平均重力异常的精度对于大同地区和哈尔滨地区分别
    为3 .6mGal和1 .7mGal。
     H.建立了当地水平坐标系和惯性坐标系下的INs/GPS误差状态方程,分别构建了利
    用GPS位置作为状态更新的重力扰动矢量水平分量的传统卡尔曼滤波估算模型和利用
    GPS加速度作为状态更新的重力扰动全矢量的新型卡尔曼滤波估算模型;首次利用航空标
    量重力测量数据计算了空中和地面格网的垂线偏差,其与地面重力测量数据计算结果之差
    的标准偏差,对于子午分量和卯酉分量分别为0.5”和0.4,。
     12.首次研究了空中数据向下延拓方法和滤波尺度对大地水准面精密确定的影响,结果
    表明:利用直接代表法、点质量法和正则化算法均可获得约3cm的精度,直接代表法由于
    不受测区形状及范围大小限制且无边界效应成为最合适的向下延拓方法;就滤波尺度而
    言,1005一2505的滤波尺度均适用于大地水准面的确定,顾及滤波器边界效应的影响,宜
    采用小一些的滤波尺度如1005。与地面重力测量数据计算的参考大地水准面相比,利用航
    空重力测量数据确定的大地水准面的精度可以达到3cm。
    关键词:航空重力测量;FIR低通滤波器;巴特沃思滤波器;摆杆尺度因子;垂直加速度;
    水平加速度改正;交叉祸合改正;重力扰动矢量;大地水准面;GPS
    第ii页
In this dissertation the theories and methods for the airborne gravimetry are investigated in detail with the emphasis on four aspects, on the basis of three groups of real data from Hanzhong, Datong and Harbin tests using the first Chinese Airborne Gravimetry System (CHAGS). They are the data filtering, airborne gravimeter observation processing, the precise determination of the vertical acceleration and the estimation of the airborne gravity disturbance vector. Furthermore, we also focus on the precise determination of the local geoid by using airborne gravity data. The main works and contributions are summarized as follows.1. On the basis of the Newton's second law of motion, the gravity equations relevant to the stabilized systems and the strapdown systems for the airborne vector gravimetry and those related to the stabilized systems, the rotation invariant system and the strapdown systems for the airborne scalar gravimetry are established.2. For the local coordination of the airborne gravimeter and the GPS antenna phase center, the lever arm corrections with respect to the GPS position, velocity and acceleration are formulated. The test results indicate that only the lever arm corrections for the free-air corrections and the vertical accelerations are required to be taken into account in reality.3. In view of the dependence of the accuracy and resolution for the airborne gravimetry, one new concept to determine the cutoff frequency of the lowpass filter that based on the spectral windows for the airborne gravimetry and the internal accuracy (e.g. crossover errors) under different filter length is advanced.4. Instead of using the traditional filters in airborne gravimetry, viz. the 6x20s resistor-capacitor (RC) filter and the 300s Gaussian filter, we design the Finite Impulse Response (FIR) filter and the cascaded Butterworth filter that can be suited for various operation conditions. Aiming to reduce the length of the FIR filter, a technique involved in a cascaded FIR filter is suggested to filter the raw airborne gravity.5. The spectral properties of the stabilized platform tilt angle and the horizontal acceleration correction are investigated and analyzed. The amount of the pre-filtering of the horizontal acceleration correction is derived, which matches the platform period. With this amount the potentially systemic biases due to the imperfection of the horizontal acceleration correction can be reduced significantly.6. The dependence of the beam scale factor (K-factor) on the amount of the filtering applied to the data is discussed. Four methods for calibrating the K-factor are developed, and the results show that the accuracy of the airborne gravity anomalies is improved about 0.2~0.4mGal by using of the new K-factor.7. The cross-coupling corrections for the L&R gravimeter are computed as a linear combination of 5 so-called cross-coupling monitors, the weight factors (coefficients) determined from marine data by factory may not be optimal for airborne application. In this paper, these coefficients are recalibrated to minimize the difference between airborne data and upward continued surface data (external calibration) and to minimize the errors at line crossings (internal calibration) respectively. An integrating method to simultaneously recalibrate the above mentioned coefficients and the K-factor is also presented. Numerical results show that the systemic errors in the airborne gravity anomalies can be greatly reduced using any of the recalibrated coefficients.
    
    The systemic error is reduced from 4mGal to 1mGal in Datong test. Since the internal calibration requires only the survey to be well structured, with a large and well-distributed number of line crossings, and it doesn't require any of external information, it will be useful and valuable.8. The main factors that impact on the precise determination of the vertical acceleration using GPS are the residual atmospheric and orbit errors, multipath errors, measurement noise and the errors due to changes in the satellite cons
引文
1. Abdelmoula (1999). Design of an Open-Loop gust alleviation control system for airborne gravimetry [J]. Aerospace Science and Technology, 6: 379-389.
    2. Abdelmoula (2001). New Concepts for airborne gravity measurement [J]. Aerospace Science and Technology, 5: 413-424.
    3. Alberts B, R Klees (2004). A comparision of methods for the inversion of airborne gravity data [J]. Journal of Geodesy, 78(1/2): 55-65.
    4. Argeseanu V (1995). Upward Continuation of Surface Gravity Anomaly Data [A]. In Proceedings IAG Symposium G4 Airborne Gravity Field Determination, XXI General Assembly of the IUGG[C]. Boulder Colorado, July 2-14, 1995:95-102.
    5. Argyle M, S Ferguson, et al. (2000). AIRGrav results: a comparison of airborne gravity data with GSC test site data [J]. The Leading Edge, No.10: 1134-1138.
    6. Barker F S, M Chalona, L Kormondy, et al. (1991). Airborne gravity measurements over the Kelvin Seamount [A]. IAG Symposia 110: From Mars to Greenland: Charting gravity with Space and Airborne Instruments [C]. 215-224.
    7. Bastos L, S Cunha, R Forsberg, A V Olesen, A Gidskehaug, et al. (1997). An airborne geoid mapping system for regional sea-surface topography: application to the Skagerrak and Azores areas [A]. In Forsberg et al. (Eds.): geodesy on the Move, IAG Symposia 119 [C]. Springer Verlag, 30-36.
    8. Bastos L, P Tome, S Cunha, J Fernandes (2000). Gravity Anomalies from Airborne Measurements Experiments Using a Low Cost IMU [A]. In Proceedings of IAG International Symposium on Gravity, Geoid and Geodynamics 2000 [C]. Banff, Canada. July 31-August 4 2000.
    9. Bayoud F A, M G Sideris (2001). Geoid Determination from Airborne Gravity Data Using Different Filtering Frequencies and DTM Resolutions [A]. In Proceedings of IAG Scientific Assembly [C], Sept. 2-7, Budapest, Hungary.
    10. Bayoud F A (2001). Some Investigation on Local Geoid Determination from Airborne Gravity Data [D]. Calgary: Department of Geomatics Engineering at University of Calgary.
    11. Bell R E (1989). High Resolution Marine and Airborne Gravity Surveys: Applications to Rifted Margins [D]. Columbia: Columbia University.
    12. Bell R E, B J Coakley, R W Stemp (1991). Airborne gravimetry from a small twin engine aircraft over the Long Island Sound [J]. Geophysics, 56(9): 1486-1493.
    13. Bell R E, V A Childers, R A Arko (1999). Airborne gravity and precise positioning for geologic applications [J]. JGR, 104(B7): 15281-15292.
    14. Bellanger M (1984). Digital Processing of Signals [M]. New York: Wiley&Sons.
    15. Blaha T, M Hirsch, W Keller, M Scheinert (1996). Application of a spherical approach in airborne gravimetry [J]. Journal of Geodesy, 70: 663-672.
    16. Boedecker G (1997). Airborne strapdown gravimetry-Study of the dynamic environment [A]. Proc. International Symposium on Kinematic System in geodesy, geomatics and Navigation[C]. Banff, Canada, 597-604.
    17. Boedecker G (1998). Configuration Optimization of Accelerometers for Strapdown Airborne Gravimeters [A]. Presented at International Workshop on Airborne Gravity and the Polar Gravity Field [C]. Kangerlussuaq, Greenland.
    
    18. Brown J M, E Klingele, T M Niebauer (2000). Towards an Airborne Absolute Gravity System [A]. In Proceedings of IAG International Symposium on Gravity, Geoid and Geodynamics 2000 [C]. Banff, Canada.
    19. Brozena J M (1984). A preliminary analysis of the NRL airborne gravimetry system [J]. Geophysics, 49(7): 1060-1069.
    20. Brozena J M, M F Peters (1988). Airborne gravity study of eastern North Carolina [J]. Geophysics, 53(2): 245-253.
    21. Brozena J M, Mader G L, Peters M F (1989). Interferometric Global Positioning System: Three-Dimensional Positioning Source for Airborne Gravimetry [J]. JGR, 94(B9): 12153-12162.
    22. Brozena J M (1990). GPS and Airborne Gravimetry: Recent Progress and Future Plans [A]. IAG Symposia 107: Kinematics Systems in Geodesy, Surveying and Remote Sensing [C]. Springer Verlag, 488-497.
    23. Brozena J M (1992). The Greenland Aerogeophysics Project: Airborne Gravity, Topographic and Magnetic Mapping of an Entire Continent [A]. In Proc. IAG Symposium G3: Determination of the Gravity Field by Space and Airborne Methods [C]. Springer Verlag.
    24. Brozena J M, M F Peters (1994). State-of-the-art airborne gravimetry [A]. IAG Symposia 113 [C]. Springer Verlag, 187-197.
    25. Brozena J M, M F Peters, R Salman (1997). Arctic Airborne Gravity Measurement Program [A]. IAG Symposia 117: Gravity, Geoid and Marine Geodesy [C]. Springer Verlag, 131-138.
    26. Brozena J M, V A Childers, J Blaha (2000). Applications of Airborne Gravity and Sea-Surface Topography to Coastal Oceanography [A]. In Proceedings of IAG International Symposium on Gravity, Geoid and Geodynamies 2000 [C]. Banff, Canada.
    27. Brozena J M, V A Childers (2000). The NRL Airborne Geophysics Program [A]. IAG Symposia 121, Schwarz(ed): Geodesy Beyond 2000-The Challenges of the First Decade [C]. Springer Verlag, 126-130.
    28. Bruton A M, K P Schwarz (1997). Airborne Gravity Estimation using Adaptive Filters [C]. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS97) [C]. Calgary: Department of Geomatics Engineering at University of Calgary, 605-612.
    29. Bruton A M (1997). Reduction of GPS Receiver Noise Using Adaptive Filters and Multiple DGPS Receiver Configurations [A]. IAG Symposia 118 [C], Springer Verlag, 325-330.
    30. Bruton A M, C L Glennie, K P Schwarz (1999). Differentiation for High-Precision GPS Velocity and Acceleration Determination [J]. GPS Solutions, 2(4).
    31. Bruton A M (2001). Improving the Accuracy and Resolution of SINS/GPS Airborne Gravimetry [D]. Calgary: Department of Geomatics Engineering at University of Calgary.
    32. Childers V A, R E Bell, J M Brozena (1999). Airborne Gravimetry: An Investigation of Filtering [J]. Geophysics, 64(1): 61-69.
    33. Childers V A, M F Peters, J M Brozena (1997). Error analysis of the NRL airborne gravimetry system [A]. Proc. International Symposium on Kinematic System in geodesy, geomatics and Navigation[C]. Banff, Canada, 625-632.
    34. Colombo O L (1990). Charting the gravity field with GPS receivers in moving vehicles [A]. Proceedings of second internatinal Symposium on Precise Positioning with GPS [C], 1138-1154.
    35. Czompo J (1991). Acceleration Determination using Kinematic GPS Measurements [A]. In Proceedings of the 4th International Technical Meeting of the Satellite Division of the Institute ofNavigation (ION GPS 91) [C].
    
    36. Czompo J (1994). Airborne Scalar Gravimetry Systems in the Spectral Domain [D]. Calgary: Department of Geomatics Engineering at the University of Calgary.
    37. Czompo J (1994). Testing the Rotation Invariant Gravimeter Concept [A]. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation [C]. Banff, Canada, 483-494.
    38. Czompo J (1995). Design considerations for a new scalar gravity meter for airborne surveys [A]. In Proceedings IAG Symposium G4, Airborne Gravity Field Determination, XXI General Assembly of the IUGG [C]. Boulder Colorado, 13-21.
    39. Dwaik F (1998). INS, GPS and Photogrammetry Integration for Vector Gravity Estimation [D]. Columbus: The Ohio State University.
    40. Eissfeller B, Spietz P (1989). Shaping filter design for the anomalous gravity field by means of spectral factorization [J]. Manuscripta Geodaetica, 14: 183-192.
    41. Emmanuel C F, Barrie W J (2003). Digital Signal Processing: A Practical Approach (Second Edition)[M]. 影印版,北京;电子工业出版社。
    42. Femandes M J, L Bastos, R Forsberg, A Oleson, F Leite (2000). Geoid Modeling in Coastal Regions Using Airborne and Satellite Data: Case Study in the Azores [A]. IAG Symposia 121, Schwarz (ed.): Geodesy Beyond 2000 -The Challenges of the First Decade [C]. Springer Verlag, 112-117.
    43. Fenton P, B Townsend (1994). NovAtel Communications Ltd. - What's New? [A]. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS94) [C]. Banff, Canada, 25-29.
    44. Ferguson S, Y Hammada (2000). Experiences with AIRGrav: Results from a New Airborne Gravimeter [A]. In Proceedings of IAG International Symposium on Gravity, Geoid and Geodynamics 2000 [C]. Banff, Canada.
    45. Forsberg R (1992). The Greenland Airborne Gravity Project-Comparison of Airborne and Terrestrial Gravity Data [A]. 7th Int. Symp. Geodesy and Physicis of the Earth [C]. Potsdam, 171-175.
    46. Forsberg R (1994). Evaluation and downward continuation of airborne gravity data-the Greenland example [A]. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation [C]. Banff, Canada, 531-538.
    47. Forsberg R., S Kenyon (1995). Downward Continuation of Airborne Gravity Data [A]. In Proceedings IAG Symposium G4 Airborne Gravity Field Determination, XXI General Assembly of the IUGG [C]. Boulder Colorado, 73-80.
    48. Forsberg R (1997). Airborne Geoid Measurements in the Arctic Ocean [A]. IAG Symposia 117, Segawa et al. (eds), Gravity, Geoid and Marine Geodesy [C]. SpringerVerlag.
    49. Foreberg R, L Bastos, A Giskehaug (1997). Development of an airborne geoid mapping system for coastal oceanography (AGMASCO) [A]. IAG Symposia 117, Segawa et al. (eds), Gravity, Geoid and Marine Geodesy [C]. SpringerVerlag. 163-170.
    50. Forsberg R, A V Oleson, K Keller (1999). Airborne Gravity Survey of the North Greenland Shelf 1998 [R]. Technical Report 10, Denmark: Danish National Survey and Cadastre.
    51. Forsberg R, Olesen A, Bastos A, etc. (2000). Airborne geoid determination [J]. Earth Planets Space, 52:863-866.
    52. Forsberg R., A V Olesen, el al. (2001). Airborne gravity and geoid surveys in the Arctic and Baltic seas [A]. In Proceedings of IAG International Symposium on Gravity, Geoid and Geodynamics 2001[C].Banff, Canada, 586-592.
    
    53. Forsberg R, Solheim D (1999). Geoid of the Nordic/Baltic region from surface/airborne gravimetry and GPS draping. Private Communication.
    54. Freeden W, Schneider F (1998). Regularization Wavelets and Mulitresolution [J]. Inverse Problem, 14(3): 225-243.
    55. Georgiadou Y, Kleusberg A (1988). On carrier signal multipath effects in relative GPS positioning [J]. Manuscripta Geodaetica, 13: 172-179.
    56. Glennie C (1999). An Analysis of Airborne Gravity by Strapdown INS/DGPS [D]. Calgary: Department of Geomatics Engineering at the University of Calgary.
    57. Glennie C, K P Schwarz (1997). Airborne Gravity by Strapdown INS/DGPS in a 100 km by 100km Area of the Rovky Mountains [A]. In: Proc. Int. Symp. On Kinematic Systems in Geodesy, Geomatics and Navigation (KIS-97) [C]. Dept. of Geomatica Engineering, University of Calgary, 619-624.
    58. Glennie C, K P Schwarz (1999). A Comparison and Analysis of Airborne Gravimetry Results from Two Strapdown Inertial/DGPS Systems [J]. Journal of Geodesy, 73(6): 311-321.
    59. Glennie C, K P Schwarz, A M Bruton, etc. (2000). Comparison of Stable Platform and Strapdown Airborne Gravity [J]. Journal of Geodesy, 74(5): 383-389.
    60. Gumert W R (1995). Third Generation Aerogravity System [A]. In Proceedings IAG Symposium G4, Airborne Gravity Field Determination, XXI General Assembly of the IUGG [C]. Boulder Colorado, 153-159
    61. Gumert W R (1998). An historical review of airborne gravity [J]. The Leading Edge, No.l.
    62. Gumert W R (2000). Advanced helicopter aerogravity surveying system [J]. The Leading Edge, 11: 1252-1254.
    63. Guterman M M, Z H Nitecki (1991). Differential Equations: A First Course [M]. 3rd Edition, Saunders College Publishing, US.
    64. Halpenny J F (1995). Airborne gravity tests over Lake Ontario [J]. Geophysics, 60(1): 61-65.
    65. Halpenny J F, G Y Zhang (1994). Optimized Processing of the Global Positioning System for Airborne Gravity [A]. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation [C]. Banff, Canada, Aug. 30-Sep. 2, 463-472.
    66. Hammada Y (1996). A Comparison of Filtering Techniques for Airborne Gravimetry [D]. Calgary: Department of Geomatics Engineering at the University of Calgary.
    67. Hammada Y (1997). Airborne Gravimetry Model-Based versus Frequency-Domain Filtering Approaches [A]. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS97) [C]. Banff, Canada, 581-595.
    68. Hammada Y (1997). Optimal Versus Non-Optimal Low-pass Filtering in Airborne Gravimetry [A]. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS97) [C]. Banff, Canada, 633-640.
    69. Hammer S (1983). Airborne gravity is here! [J]. Geophysics, 48(2): 213-223.
    70. Han S, C Rizos, R Abbot (1998). Flight Testing and Data Analysis of Airborne GPS LADS Survey [A]. In Proceedings of the 11th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 98) [C]. 1211-1221.
    71. Han S, C Jekeli, J H Kwon (2000). Precision Absolute GPS Positioning and its Use to Obtain Kinematic Acceleration [A]. In Proceedings of IAG International Symposium on Gravity, Geoid and Geodynamics 2000 [C]. Banff, Canada.
    
    72. Harrison J C, J D MacQueen, A C Rauhut, J Y Cruz (1995). The LCT Airborne Gravity System [A]. In Proceedings IAG Symposium G4 Airborne Gravity Field Determination, XXI General Assembly of the IUGG [C]. Boulder Colorado, 163-168.
    73. Hartinger H, F Brunner (1999). Variances of GPS Phase Observations: The Sigma-Model [J]. GPS Solutions, 2(4): 35-43.
    74. Hansen P C, Olearg V Y (1993) . The use of the L-curve in the regularization of discrete ill-posed problem [J]. SIAM J Sci. Comput. 14: 1487-1503.
    75. Hehl K (1992). Bestimmung von Beschleunigungen auf einem bewegten Trager durch GPS und Digitale Filterung [D]. Munchen: Universitat der Bundeswehr Munchen.
    76. Hehl K, G W Hein, H Landau, M Ertel, J Fritsch, P Kewitsch (1990). An Integrated Precise Airborne Navigation and Gravity Recovery System-Verification of GPS-Determined Vertical Disturbing Acceleration [A], In Proceedings of International Symposium in Geodesy, Surveying and Remote Sensing (KIS90) [C]. Banff, Canada, 477-487.
    77. Hehl K, L Bastos, S Cunha, et al. (1997). Concepts and first results of the AGMASCO project [A]. Proc. International Symposium on Kinematic System in geodesy, geomatics and Navigation[C]. Banff, Canada, 557-563.
    78. Hehl K, G Xu (1995). Nutzung von GPS fur die Fluggravimetrie am GFZ [J]. ZFV, 9: 460-468.
    79. Hein G W (1995). Progress in Airborne Gravimetry: Solved, Open and Critical Problems [A]. In Proceedings IAG Symposium G4, Airborne Gravity Field Determination, XXI General Assembly of the IUGG [C]. Boulder Colorado, 3-11.
    80. Hein G W, K Hehl, H Landau, M Ertel (1990). Experiments for an Integrated Precise Airborne Navigation and Gravity Recovery System [A]. Proceedings of IEEE PLANS 1990 [C]. 279-285.
    81. Heiskanen W A, Moritz Z H (1967). Physical Geodesy [M], San Francisco.
    82. Hoffmann-Wellenhof B, H Lichtenegger, J Collins (1994). GPS Theory and Practice [M], 3rd Edition, New York: Springer-Verlag.
    83. Jekeli C (1987) The downward continuation of aerial gravimetric data without density hypothesis [J]. Bull. Geod., 61:319-329.
    84. Jekeli C (1995). Airborne vector Gravimetry Using Precise, Position-Aided Inertial measurement Units [J]. Bulletin Geodesique, 69(2): 1-11.
    85. Jekeli C, R Garcia (1997). GPS Phase Acceleration for Moving-Base Vector Gravimetry [J]. Journal of Geodesy, 71:630-639.
    86. Jekeli C, J H Kwon (1999). Results of Airborne Vector (3-D) Gravimetry [J], Geophysical Research Letters, 26(23): 3533- 3536.
    87. Jekeli C (2001). Inertial Navigation Systems with Geodetic Applications [M]. New York: Walter De Gruyter.
    88. Jekeli C, J H Kwon (2002). Geoid profile determination by direct integration of GPS/INS vector gravimetry [J], JGR, 107(B10).
    89. Johannes B, Radboud K (1998). Stabilization of Global Gravity Field Solution by Combining Satellite Gradiometry and Airborne Gravimetry [R]. DEOS Report 1998, 1: 43 -55.
    90. Jones P, A Johnson (1995). Airborne Gravity Survey in Southern Palmer Land, Antarctica [A], In Proceedings IAG Symposium G4, Airborne Gravity Field Determination, XXI General Assembly of the IUGG [C]. Boulder Colorado, 117-123.
    
    91. Kearsley AHW, R Forsberg, A V Olesen, L Bastos, K Hehl, et al. (1998). Airborne gravimetry used in precise geoid computations by ring integration [J]. Journal of Geodesy, 72: 600-605.
    92. Keller W, Hirsch M (1992). Downward continuation versus free-air reduction in airborne gravimetry [A]. 1AG Symposium 112: "Geodesy and Physics of the Earth" [C]. Springer Verlag, 266-270.
    93. Keller W (1995). Harmonic downward continuation of airborne gravity data using a wavelets frame [A]. In Proceedings IAG Symposium G4, Airborne Gravity Field Determination, XXI General Assembly of the IUGG [C]. Boulder Colorado.
    94. Kennedy S L (2002). Acceleration Estimation from GPS Carrier Phase for Airborne Gravimetry [D]. Calgary: Department of Geomatics Engineering at the University of Calgary.
    95. Kern M (2003). An analysis of the combination and downward continuation of satellite, airborne and terrestrial gravity data [D]. Calgary: Department of Geomatics Engineering at the University of Calgary.
    96. Kindel W (1992). Flight Mechanical Aspects of Airborne Gravimetry [A]. IAG Symposium 112: "Geodesy and Physics of the Earth" [C], 167-170.
    97. Kleusberg A (1989). On the Use of GPS for Airborne Gravimetry [A]. Proceedings of the 5th International Geodetic Symposia on Satellite positioning [C]. Las cruces, NM, Vol.2, 977-986.
    98. Kleusberg A (1989). Separation of Inertia and Gravitation in Airborne Gravimetry with GPS [R]. Lecture Notes in Earth Sciences Vol.29: Development in Four-Dimensional Geodesy: 47-63.
    99. Kleusberg A, D Peyton, D Wells (1990). Airborne Gravity and the Global Positioning System [A]. In Proceeding of IEEE PLANS 90 [C], 394-401.
    100. Klingele EE,M Cocard, M E Halliday, H G Kahle (1995). The Airborne Gravimetric Survey of Switzerland [R]. Contribution to the Geology of Switzerland Series, Swiss Geophysical Commission, Report No.31.
    101. Klingele E E, M Cocard, M E Halliday (1997). Kinematic GPS as a source for airborne gravity reduction in the airborne gravity survey of Switzerland [J]. JGR, 102(B4): 7705-7715.
    102. Klobuchar J A (1996). Ionospheric Effects in GPS [A]. In Global Positioning System: Theory and Applications [C]. American Institute of Aeronautics and Astronautics, Inc., Vol. I: 485-515.
    103. Knickmeyer E T (1990). Vector Gravimetry by Combination of Inertial and GPS satellite measurement [D]. Calgary: Dept. of Surveying Eng. at the University of Calgary.
    104. Knickmeyer E T, W Kindel (1992). The Influence of Turbulence on Airborne Gravimeter [A]. Proceedings of the 6th Internatinal Geodetic Symposium on Satellite Positioning [C]. 2: 1060-1070.
    105. Kusche J Koch H R (2002). Regularization of Geopotential Determination from Satellite Data by Variance Components [J]. Journal of Geodesy, 76: 259-268.
    106. Kwon J H (2000). Airborne Vector Gravimetry Using GPS/INS [D]. Columbus Ohio: Dept. of Geodetic Science and Surveying, The Ohio state university.
    107. Lachapelle G (1998). GPS Theory and Applications [R]. ENGO 625 Lecture Notes, Department of Geomatics Engineering, The University of Calgary.
    108. LaCoste L, J B, J Ford, R Bowles, K Archer (1982). Gravity Measurements in an Airplane Using State-of-the-Art Navigation and Altimetry [J]. Geophysics, 47(5): 832-838.
    109. LaCoste &Romberg LLC (1998). Instruction Manual of L&R Model "S" AIR-SEA Dynamic Gravity Meter with "Airsea 3.0" Digital Control System [M].
    110. Langley R (1998). GPS Receivers and the Observables, In GPS for Geodesy [M]. Lecture Notes in Earth Sciences, 2nd Edition, Teunissen and Kleusberg (Eds.), Springer Verlag, 151-185.
    
    111. Lawrence A (1998). Modern Inertial Technology [M]. New York: Springer Verlag.
    112. Marchenko A N, Barthelmes F, Meyer U, etc. (2001). Regional geoid determination: An application to airborne gravity data in the Skagerrak [R], Scientific Technical Report STROl/07, Potsdam, Germany.
    113. Mendes V B (1998). Modeling the Neutral Atmosphere Propagation Delay in Radiometric Space Techniques [D]. New Brunswick: Department of Geodesy and Geomatics Engineering, University of New Brunswick.
    114. Moritz H (1978). Least-square Collocation as a Gravitational Inverse Problem [R], USO report, No.277.
    115. Moritz H (1980). Advanced Physical Geodesy [M]. England: Abacus Press.
    116. Nettleon L L, L J LaCoste, J C Harrison (1960). Tests of an Airborne Gravity Meter [J]. Geophysics, 25(1): 181-202.
    117. Neumeyer J, K Hehl (1994). State-of-the-art and future sensor technology for airborne gravimetry [A]. IAG Symposia 113 [C]. Springer Verlag, 151-160.
    118. Neyman Y (1992). Spectral and Filtering methods in Geodesy [R]. Lecture Note in WTOSU.
    119. Novak P., M Kern, K P Schwarz (2000a). Continuation of Airborne Gravity, Unpublished internal report. Department of Geomatics Engineering. University of Calgary, Calgary, Canada.
    120. Novak P., M Kern, K P Schwarz (2000b). On the Determination of the Relative Geoid from Airborne Gravimetry [A]. In Proceedings of IAG International Symposium on-Gravity, Geoid and Geodynamics 2000 [C]. Banff, Canada.
    121. Novak P Heck B (2002). Downward continuation and geoid determination based on band-limited airborne gravity data [J]. Journal of geodesy, 76: 269-278.
    122. Novak P Kern M, Schwarz K P, etc. (2003a). On geoid determination from airborne gravity [J]. Journal of geodesy, 76: 510-522.
    123. Novak P Kern M Schwarz K P, etc. (2003b). Evaluation of band-limited topographical effects in airborne gravimetry [J]. Journal of geodesy, 76: 597-604.
    124. NRC (National Research Council) (1995). Airborne Geophysics and Precise Positioning: Scientific Issues and Future Direction [A]. Proceedings of the Workshop on Airborne Geophysics [C]. Washington: National Academy Press.
    125. Olesen A V (2002). Improved airborne scalar gravimetry for regional gravity field mapping and geoid determination [D]. Copenhagen: University of Copenhagen.
    126. Olesen A V, R Forsberg, A Gidskehaug (1997). Airborne Gravimetry using the LaCoste&Romberg Gravimeter-an Error Analysis [A]. In: Proc. Int. Symp. On Kinematic Systems in Geodesy, Geomatics and Navigation (KIS-97) [C]. Dept. of Geomatica Engineering, University of Calgary, 613-618.
    127. Olesen A V, R Forsberg, H Kearsley (2001). Great Barrier Reef Airborne Gravity Survey (Braggs'99)-A Gravity Survey Piggybacked on an Airborne Bathymetry Mission [A]. IAG Symposium 121: Gravity, Geoid and geodynamics 2000 [C]. Springer Verlag, 247-251.
    128. Olsen A V, R Forsberg, K Keller (2002). Error sources in airborne gravimetry employing a springtype gravimeter [A]. IAG Symposium 125: Vistas for Geodesy in the New Millennium [C]. Springer Verlag, 205-210.
    129. Oppenheim A V, R W Schafer (1999). Discrete-Time Signal Processing [M]. Prentice Hall Signal Processing Series, Prentice Hall, New Jersey, US.
    130. Peters M F, Brozena J M (1988). Short Note: Constraint criteria for adjustment of potential field surveys [J]. Geophysicis, 53(12): 1601-1604.
    
    131. Peters M F, Brozena J M (1991). Multiple zero-length baseline kinematic GPS positioning techniques for airborne gravity measurement [A]. IAG Symposium 110: From Mars to Greenland: Charting Gravity with Space and Airborne Instuments [C]. 251-260.
    132. Peters M F, Brozena J M (1995). Methods to Improve Existing Shipboard Gravimeters for Airborne Gravimetry [A]. Presented at IAG Symposium on Airborne Gravity Field Determination [C]. Boulder, Colorado, USA, 39-45.
    133. Rabiner L R, Gold B (1975). Theory and Application of digital signal processing [M]. Prentice-Hall, Inc.
    134. Rapp R H, N K Pavlis (1990). The Development and Analysis of Geopotential Coefficient Models to Spherical Harmonic Degree 360 [J]. JGR, 95(B13): 21885-21911.
    135. Raquet J (1998). Development of a Method for Kinematic GPS Carrier-Phase Ambiguity Resolution Using Multiple Reference Receivers [D]. Calgary: The University of Calgary.
    136. Rogers R M (2000). Applied Mathematics in Integrated Navigation System [M]. American Institute of Aeronautics and Astronantics, Inc.
    137. Salychev O S (1995). Airborne gravimetry with high precision resolution [R]. Technical Report, Calgary: Department of Geomatics Engineering, The University of Calgary.
    138. Salychev O S, A V Bykovsky, A V Voronov, et al. (1994). Determination of Gravity and Deflections of the Vertical for Geophysical Applications Using the ITC-2 Platform [A]. In Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation [C]. Banff, Canada, 521-529.
    139. Salychev O S, K P Schwarz (1995). Airborne Gravimetric Results from ITC-2 Inertial Platform System [A]. In Proceedings IAG Symposium G4, Airborne Gravity Field Determination, XXI General Assembly of the IUGG [C]. Boulder Colorado, 125-141.
    140. Sanjit K M (2001). Digiltal Signal Processing-A Computer-Based Approach [M]. Second Edtion, Santa Barbara: Department of Electrical and Compute Engineering, University of California.
    141. Schwarz K P (1984). Data Types and Their Spectral Properties [A]. In Proceedings of Local Gravity Field Approximation [C]. Beijing International Summer School, Beijing, China, 1-66.
    142. Schwarz K P (1987). Approaches to Kinematic Geodesy [R]. In: Geodetic Theory and Methodology, Publish, No.60006, Dept. of Surveying Eng., University of Calgary, Alberta Canada.
    143. Schwarz K P, Cannon M E, Wong RVC (1989). A comparison of GPS kinematic models for determination of position and velocity along a trajectory [J]. Manuscripta Geodaetica, 345-353.
    144. Schwarz K P, C Glennie (1997). Improving accuracy and reliability of airborne gravimetry by multiple sensor configurations [A]. IAG Symposia 119: Geodesy on the Move [C]. Springer Verlag, 11-17.
    145. Schwarz K P, O Colombo, G Hein, Knickmeyer E T (1991). Requirements for Airborne Vector Gravimetry [A]. IAG Symposium 110: From Mars to Greenland: Charting with Space and Airborne Instruments [C]. New York: Springer Verlag, 273-283.
    146. Schwarz K P, Li Y, Wei M (1994). The Spectral Window for Airborne Gravity and Geoid determination [A]. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation [C]. Banff, Canada, Aug. 30-Sep. 2, 445-456.
    147. Schwarz K P, M Wei (1994). Some Unsolved Problems in Airborne Gravimetry [A]. IAG Symposium 113 [C]. Springer Verlag, 131-150.
    148. Schwarz K P, Y C Li (1996a). An Introduction to Airborne Gravimetry and its Boundary Value Problems [R]. Lecture Notes, IAG International Summer School, Como Italy, May 26-June 7.
    
    149. Schwarz K P, Y C Li (1996b). What can airborne gravimetry contribute to geoid determination? [J]. JGR, 101(B8):13878-17881.
    150. Schwarz K P, Y C Li (2000). Accuracy and Resolution of the Local Geoid Determined from Airborne Gravity Data [A]. In Proceedings of IAG International Symposium on Gravity, Geoid and Geodynamics 2000 [C]. Banff, Canada.
    151. Schwarz K P, M Kern, S M Nassar (2001). Estimatiing the gravity disturbance vector from airborne gravimetry [A]. In Proceedings of IAG Scientific Assembly [C], Sept. 2-7, Budapest, Hungary.
    152. Seeber G (1993). Satellite Geodesy Foundations, Methods and Applications [M]. New York: Walter de Gruyter, 159-161.
    153. Serpas J G (2003). Local and regional geoid determination from vector airborne gravimetry [D]. Columbus: The Ohio University.
    154. Sidefis M G, M Wei, M E Cannon, K P Schwarz (1992). Airborne Gravimetry and Gravity Gradiometry for Geophysical Prospecting [A]. In Proc. of the International Workshop on Global Positioning Systems in Geosciences [C]. Chania, Greece, June 8-10, 327-346.
    155. Sideris M G (1993). The Gravity Field in Surveying and Geodesy [R], ENGO 527 Lecture Notes, Department of Geomatics Engineering, The University of Calgary.
    156. Sideris M G (1997). Geoid Determination by FFT Techniques [R]. Lecture Notes in the IAG International School for the Determination and Use of the Geoid, Rio de Janeiro, September 10-16, 1997.
    157. Skaloud J, B Merminod (2000). DGPS-Calibrated Accelerometric System for Dynamic Sports Events [A]. In Proceedings of the 13th International Technical Meeting oftheSatellite Division of the Institute of Navigation (ION GPS 2000) [C].
    158. Skaloud J, K P Schwarz (1998). Accurate Orientation for Airborne Mapping Systems [A]. ISPRS Commission II, Symposium on Data Integration: Systems and Techniques [C]. Cambridge, UK, July 13-17,283-290.
    159. Swain C J (1996). Short Note: Horizontal acceration corrections in airborne gravimetry [J]. Geophysics, 61(1): 273-276.
    160. Teunissen P J G (1998). GPS Carrier Phase Ambiguity Fixing Concepts [A]. In GPS for Geodesy, Lecture Notes in Earth Sciences, 2na Edition[C]. Springer Verlag, 319-388.
    161. Thompson LGD, LJB LaCoste (1960). Aerial Gravity Measurements [J]. JGR, 65(1): 305-322.
    162. Tiemeyer B, M E Cannon, G Lachapelle, G Schanzer (1994). High Precision Aircraft Navigation with Emphasis on Atmospheric Effects [A]. Proceedings of IEEE PLANS 94 [C]. New York, 394-401.
    163. Tikhonov A N, et al (1977) . Solution of Ill-Posed Problem [M]. New York: John Wiley & Arsenin.
    164. Timmen L, L Bastos, R Forsberg, A Giskehaug, U Meyer (2000). Airborne Gravity Field Surveying for Oceanography, Geology and Geodesy - The Experiences from AGMASCO [A]. IAG Symposia 121, Schwarz (ed.): Geodesy Beyond 2000 - The Challenges of the First Decade [C]. Heidelburg: Springer Verlag, 118-123.
    165. Timmen L, G Boedecher, U Meyer (1998). Flugzeuggestuetzte Vermessung des Erdschwerefeldes [J]. ZFV, 11:378-384.
    166. Torge W (1989). Gravimertry[M]. New York: Walter de Gruyter.
    167. Tscherning C C, F Rubek, R Forsberg (1997). Combining Airborne and Ground Gravity Using Collocation [A]. IAG Symposia 119: Geodesy on the move [C]. Springer Verlag, 18-23.
    168. Tziavos I N, M G Sideris, R Forsberg, K P Schwarz (1988). The effect of the terrain on airborne gravity and gradiometry [J]. JGR, 93: 9173-9186.
    
    169. Valliant H D (1991). The LaCoste and Romberg Air/Sea Gravity Meter: An Overview [M]. CRC Handbook of Geophysical Exploration at Sea, 2nd edition.
    170. Van Dierendonck, M E Cannon, M Wei, K P Schwarz (1994). Error Sources in GPS-Determined Acceleration for Airborne Gravimetry [A]. In Proceedings of the ION National Technical Meeting [C]. San Diego, CA, January 24-26.
    171. Verdun J, R Bayer, E Klingele et al. (1999). The Alpine Swiss French Airborne Gravimetry Project (ASFAG Project) [J]. Bollettiino di Geofisica Teorica ed Applicata, 40(3/4): 273-276.
    172. Verdun J, R Bayer, E Klingele et al. (2002). Airborne gravity measurements over mountainous areas by using a LaCoste&Romberg air-sea gravity meter [J]. Geophysics, 67(3): 807-816.
    173. Verdun J, E Klingele, R Bayer, et al. (2003). The Alpine Swiss-French Airborne Gravity Survey [J]. Geophys. J. Int., 152: 8-19.
    174. Wang Y M (1987). The Gradiometer-Gravimeter Equation in Various Coordinate Systems [J]. Bull. Geod., 61: 125-144.
    175. Wang Y M (1990). The effect of topography on the determination of the geoid using analytical downward continuation [J]. Bull. Geod., 64: 231-246.
    176. Wei M (1999). From Airborne Gravimetry to Airborne Geoid Mapping [R]. Report of SGG 3.164 for IUGG General Assembly.
    177. Wei M, S Ferguson, K P Schwarz (1991). Accuracy of GPS-Derived Acceleration from Moving Platform Tests [A]. IAG Symposium 110, From Mars to Greenland: Charting with Space and Airborne Instruments [C]. New York: Springer Verlag, 235-249.
    178. Wei M, K P Schwarz (1994). An Error Analysis of Airborne Vector Gravimetry [A]. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation [C]. Banff, Canada, Aug. 30-Sep. 2, 509-520.
    179. Wei M, K P Schwarz (1995). Analysis of GPS-Derived Acceleration from Airborne Tests [A]. Proceedings of the IAG Symposium on Airborne Gravity Field Determination at the IUGG General Assembly [C]. Boulder, Colorado, USA.
    180. Wei M, K P Schwarz (1998). Flight Test Results from a Strapdown Airborne Gravity System [J]. Journal of Geodesy, 72:323-332.
    181. Wei M, K.Tennant (2000). STAR-3i Airborne Gravity and Geoid Mapping System [A]. In Proceedings of IAG International Symposium on Gravity, Geoid and Geodynamics 2000 [C]. July 31-August 4 2000, Banff, Canada.
    182. Williams S, J D MacQueen (2001). Development of a versatile, commercially proven, and cost-effective airborne gravity system [J]. The Leading Edge, 6: 651-654.
    183. Wu L, M G Sideris (1997). Accuracy improvement of airborne vector gravimetry with and without noise PSDs [A]. IAG symposia 117: Gravity, Geoid and Marine geodesy [C]. Springer Verlag, 147-154.
    184. Yang Y, He H, Xu G (2001). Adaptively robust filtering for kinematic geodetic positioning [J]. Journal of Geodesy, 75(2/3): 109-116.
    185. Zhang J Q (1995). Development of a GPS-Aided Inertial Platform for an airborne Scalar gravity System [D]. Calgary: Department of Geomatics Engineering, The University of Calgary.
    186. Zhang J Q, K P Schwarz, Salychev O S (1995). Accuracy of Inertial Platform Stabilization by GPS Velocity [A]. Presented at IAG Symposium on Airborne Gravity Field Determination, IUGG General Assembly [C]. Boulder, Colorado, USA, 29-37.
    18
    
    187.陈俊勇,李建成,晁定波(1995).用T/P测高数据确定中国海域及其邻海的海面高及海面地形[J].武汉测绘科技大学学报,20(4).
    188.陈俊勇,魏子卿,胡建国等(2000).即将迈入新千年的大地测量学(上)[J].测绘学报,29(1):1-11.
    189.陈俊勇,魏子卿,胡建国等(2000).即将迈入新千年的大地测量学(下)[J].测绘学报,29(2):95-101.
    190.董绪荣(1994).SINS与GPS组合系统的理论设计及其在动态大地测量中的应用研究[D].武汉:武汉测绘科技大学.
    191.何海波(2002).高精度GPS动态测量及质量控制[D].郑州:解放军信息工程大学.
    192.何海波,杨元喜,孙中苗(2002).几种GPS测速方法的比较分析[J].测绘学报,31(3):217-221.
    193.何海波,杨元喜,孙中苗等(2003).GPS多普勒频移测量速度模型与误差分析[J].测绘学院学报,20(2):79-82.
    194.胡广书(2003).数字信号处理:理论,算法与实现(第二版)[M].北京:清华大学出版社.
    195.黄谟涛,管铮,翟国君等(1997).海洋重力测量理论方法及其应用[M].天津:海潮出版社.
    196.黄文梅,熊桂林,杨勇(1999).信号分析与处理—MATLAB语言及应用[M].长沙:国防科技大学出版社.
    197.李海,孙中苗,肖云(2002).航空重力测量测线交叉点的搜索方法研究[J].军事测绘,1:28-29.
    198.柳林涛(2004).航空重力测量数据的小波滤波处理[J].地球物理学报,2004,47(2).
    199.楼顺天,李博菡(1998).基于MATLAB的系统分析与设计—信号处理[M].西安:电子科技大学出版社.
    200.宁津生(2001).跟踪世界发展动态,致力地球重力场研究[J].武汉大学学报.信息科学版,26(6):471-474.
    201.沈云中(2000).应用CHAMP卫星星历精化地球重力场模型的研究[D].武汉:中科院测地所.
    202.石磐,孙中苗(1999).球内Dirichlet问题解及其应用[J].测绘学报,28(3):195-198.
    203.石磐,孙中苗,肖云(2001).航空重力测量中水平加速度改正的计算与频域分析[J].武汉大学学报.信息科学版,26(6):549-554.
    204.石磐,王兴涛(1995).空中测量地面平均重力异常的频域分析[J].测绘学报,24(4):301~308.
    205.石磐,王兴涛(1997).利用航空重力测量和DEM确定地面重力场[J].测绘学报,26(2):117~121.
    206.石磐,夏哲仁(1997).精化我国重力场的‘三五’工程[A].“九五”重力场规划研讨会[C].
    207.孙凤华,陈春旺,徐新强等(2003).我国陆海1′×1′似大地水准面和垂线偏差数字模型的建立及可靠性检验[A].地面网与空间网联合平差论文集(四)[C].北京:解放军出版社,203-210.
    208.孙中苗(1997).航空重力测量中滤波器的设计与应用[D].郑州:解放军测绘学院.
    209.孙中苗(1999).航空重力测量中厄特弗斯改正的计算与误差分析[J].解放军测绘学院学报,16(1):5-9
    210.孙中苗,夏哲仁(2000).FIR低通差分器的设计及其在航空重力测量中的应用[J].地球物理学报,43(6):850-855.
    211.孙中苗,石磐,夏哲仁,李迎春(2001).航空重力仪的动态检测[J].测绘通报,10:42-44.
    212.孙中苗,夏哲仁(2002),航空重力测量中低通滤波器参数的优选[J].测绘学院学报,19(1):11-14.
    213.孙中苗,柳政策,肖云(2002).GPS在航空重力测量中的应用[J].测绘通报,7:23-25.
    214.孙中苗,夏哲仁,李迎春(2002).L&R航空重力仪摆杆尺度因子的确定与分析[J].武汉大学学报.信息科学版,27(4):367-371.
    215.孙中苗,夏哲仁,肖云(2003).航空重力测量的偏心改正[J].武汉大学学报,信息科学版,28(特刊):65-68.
    216.孙中苗,夏哲仁,肖云(2004a).多采样率航空重力测量数据的处理与分析[J].测绘科学与工程,24(1):18-21.
    
    217.孙中苗,夏哲仁,石磐等(2004b).航空重力测量数据的滤波与处理[J].地球物理学进展,19(1):119-124.
    218.孙中苗,石磐,夏哲仁等(2004c).利用GPS和数字滤波技术确定航空重力测量的垂直加速度[J].测绘学报,33(2):110-115.
    219.孙中苗,夏哲仁(2004d).轻小型固定翼飞机的航空重力测量[A].大地测量与地球动力学进展(朱耀仲,孙和平主编)[C].武汉:湖北科学技术出版社,245-250.
    220.王海瑛(1999).中国近海卫星测高数据处理与应用研究[D].武汉:中科院测地所.
    221.王兴涛,石磐(2004a).航空重力测量数据向下延拓的正则化算法及其谱分解[J].测绘学报,33(1):33-38.
    222.王兴涛,夏哲仁,石磐,孙中苗(2004b).航空重力测量数据向下延拓方法比较[J].地球物理学报,47(4).
    223.魏子卿,葛茂荣(1998).GPS相对定位的数学模型[M].北京:测绘出版社.
    224.吴晓平,夏哲仁,孙和平(2001).中国地区重力场与大地水准面[M].北京:解放军出版社.
    225.夏哲仁(1997).空间重力测量技术[J].军事测绘,No.2.
    226.夏哲仁,石磐,孙中苗(2004).航空重力测量系统CHAGS[J].测绘学报,33(3):216-220.
    227.夏哲仁,孙中苗(2004).航空重力测量基本原理、数学模型和研究进展[A].大地测量与地球动力学进展(朱耀仲,孙和平主编)[C].武汉:湖北科学技术出版社,111-119.
    228.肖业伦,金长江(1993).大气扰动中的飞行原理[M].北京:国防工业出版社.
    229.肖云(2000).利用GPS确定航空重力测量载体运动状态的理论与方法[D].武汉:武汉测绘科技大学.
    230.肖云,孙中苗,程广义(2000).利用GPS多普勒观测值精确确定运动载体的速度[J].武汉测绘科技大学学报,25(2):113-118.
    231.肖云,夏哲仁(2003).航空重力测量中载体运动加速度的确定[J].地球物理学报,46(1):62~67.
    232.许厚泽,陆仲连等(1997).中国地球重力场与大地水准面[M].北京:解放军出版社.
    233.许厚泽(2001).卫星重力研究:21世纪大地测量研究的热点[J].测绘科学,26(3):1-3.
    234.许厚泽,沈云中(2002).利用CHAMP卫星星历恢复引力位模型的模拟研究[J].武汉大学学报.信息科学版,26(6):483-486.
    235.徐天河(2004).利用CHAMP卫星轨道和加速度计数据推求地球重力场模型[D].郑州:解放军信息工程大学.
    236.杨强文,吴晓平(1998).航空重力数据向下延拓的倒锥法[J].解放军测绘学院学报,15(3):169-172.
    237.杨元喜(2003).动态定位自适应解的性质[J].测绘学报,32(3):189-192.
    238.杨元喜(2003).多源传感器动、静态滤波融合导航[J].武汉大学学报.信息科学版,28(4):386-388.
    239.杨元喜、高为广(2004).基于方差分量估计的自适应融合导航[J].测绘学报,33(1):22-26.
    240.俞卞章,李志钧,金明录(1993).数字信号处理[M].西安:西北工业大学出版社.
    241.袁信,郑谔(1995).捷联式惯性导航原理[M].南京:南京航空学院印装厂.
    242.张传定(2000).卫星重力测量—基础、模型化方法与数据处理算法[D].郑州:解放军信息工程大学.
    243.张善言等(1991).测量与地球物理集刊[C].北京:科学出版社.
    244.周忠谟,易杰军,周琪(1992).GPS卫星测量原理与应用[M].北京:测绘出版社.
    245.祝永刚,徐正扬(1989).惯性测量系统的理论与应用[M].北京:测绘出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700