纳米金属铜与镍的形貌控制制备及其摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有很多异乎寻常的特性,有着极为广泛的应用前景,是当前材料科学的研究前沿。纳米金属优异的性能赋予其潜在应用价值,其研究引起国内外普遍重视,是目前材料、化工研究的新方向,受到材料学界、物理学界、化学界和产业界的普遍关注和重视。
     本论文综合分析近年来国内外纳米金属的制备方法,以设备简单、反应条件温和、易于工业化的化学还原法为制备工艺路线,以当前纳米金属的研究热点—粒度、形貌、结构可控纳米金属的制备为研究内容,以广阔应用在高效催化剂、固体润滑剂等方面的国内外新颖功能材料纳米铜(Cu)、镍(Ni)为研究对象,探索反应体系、母体和还原剂的种类、反应时间和反应温度等制备技术、工艺参数等因素的影响作用,获得成熟而稳定的粒径、形貌可控纳米金属Cu、Ni的制备技术。修饰剂的选择是制备粒径、形貌可控纳米金属的关键,因此本论文重点研究不同种类修饰剂对纳米金属Cu、Ni粒径、形貌影响的规律性及其作用机理。本研究首次采用吐温系列(Tweens)和聚乙二醇系列(PEGs)单独或与十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠(SDBS)复配作为修饰剂使用,以化学还原法,在低温、常压下分别以维生素c(Vc)、水合肼和1,2丙二醇为还原剂,还原硫酸铜、硫酸镍和醋酸镍母体,制备出粒径、形貌可控的纳米金属Cu、Ni。分别用x-射线衍射(XRD)、X-射线光电子能谱(XPS)、透射电镜(TEM)、选区电子衍射(SEAD)对产物的粒径、形貌和晶型结构进行表征,利用傅里叶变换红外光谱仪(FTIR)和差热—失重分析仪(TG-DSC)研究不同修饰剂单一或复配使用时对纳米金属Cu、Ni粒径、形貌及分散抗团聚、抗氧化能力的影响及其作用机理。纳米金属用做润滑油添加剂可优化润滑油的润滑性能。本论文将制备的纳米金属Cu、Ni产物分别添加到不同种类的润滑油中,利用UNT-Ⅱ摩擦磨损试验机和M-2000型环/块式摩擦磨损试验机检测该润滑油的润滑特性,以研究不同尺寸、形貌的纳米金属Cu、Ni对摩擦表面的减摩、抗磨和修复机理的影响规律。取得了如下结果:
     1)在单一修饰剂中,PEG-2000的采用利于获得小尺寸、粒径分布狭窄的球形纳米Cu(平均粒径2.5nm,粒径范围0.5-3nm);PEG-6000利于获得较大尺寸、粒径分布较宽的球形纳米Cu(平均粒径17.0nm,粒径范围5-25nm)。在复配修饰剂中,SDBS+PEG-2000诱导生成了单晶二维纳米Cu带;SDBS+PEG-6000形成较大尺寸、粒径分布较宽且随粒径增加从球形到不规则形状的纳米Cu(平均粒径21.8nm,粒径范围5-35nm)。
     2)水体系中,单一修饰剂的使用利于获得球形或类球形纳米Ni,复配修饰剂的使用利于获得雪花状或针刺状纳米Ni。PEG-2000、Tween-80的使用利于获得小尺寸、粒径分布狭窄的球形或类球形纳米Ni(平均粒径53nm和36nm,粒径范围24-106nm和25-52nm),PEG-6000利于获得较大尺寸、粒径分布较宽的类球形纳米Ni(平均粒径167nm,粒径范围76-310nm)。SDS和PEG-600的复配利于减小产物的尺寸(平均粒径33nm,粒径范围16-78nm),SDS和Tween-80的复配则明显增加产物的尺寸(平均粒径230nm,粒径范围124-480nm)。分析水体系中Cu、Ni产物的粒径、形貌,说明在相同体系中利用化学还原法制备不同纳米金属Cu、Ni时,PEGs系列、Tweens系列及它们与SDS等复配修饰时具有类似的修饰效果,对纳米金属的晶体生长产生相同的协同作用。
     3)以液相还原法制备纳米Ni为基础,在反应体系中引入微波辅助加热,获得长度和直径在一定范围内变化的针状纳米Ni。
     4)醇体系中,SDS易于形成粒径较小的雪花状和十二面体纳米Ni,PEG-200与PEG-600易于分别形成大、小雪花状体纳米Ni,PEG-2000易于形成十二面体纳米Ni,PEG-6000易于形成三角形薄片纳米Ni,Tween-20易于形成粒径较小的以十二面体和三角形薄片为主的各种规则纳米Ni,Tween-80易于形成粒径较大的雪花状纳米Ni。PEG-600、PEG-6000与SDS复配后,易于形成粒径较大的雪花状纳米Ni,Tween-40和SDS复配后易于形成粒径较大的十二面体和八面体纳米Ni。分析水、醇体系中Ni产物的粒径、形貌,说明在水、醇体系化学还原法制备相同纳米金属Ni时,同一系列修饰剂对产物的分散、修饰作用正好相反。
     5)分别用FTIR、TG-DSC分析修饰剂对纳米金属Cu、Ni的作用机理,发现修饰剂与所生成的纳米晶体发生了化学键合作用,利用空间位阻效应及静电效应有效减小了颗粒的团聚和避免了产物的氧化,前者为主导因素,后者为辅助因素。
     6)探讨不同尺寸、形貌的纳米金属Cu、Ni对摩擦表面减摩、抗磨和自修复的影响和作用机理,初步获得纳米金属Cu、Ni的尺寸、形貌与润滑油润滑性能的改性效果的关系。
Nanomatedals,often referred as research forward field of materials science,have widely potential applications because of their special physicochemical properties. Nanostructured metals have recently attracted increasing interests because of their novel properties and potential applications.The research has been a new subject of material science and chemical engineering,and attracted considerable interests in the fields such as materials,physics,chemistry,and industry.
     A number of methods have been developed to prepare nanostructured metals up to date.Chemical reduction synthesis method was most extensively used and researched because of its simple apparatus,mild reaction condition and easy to production in a large scale.Nano-copper and nano-nickel are extensively concerned functional materials because of their applications span over catalysis,solid lubricantion,and so on. To obtain mature and stable size- and shape-controlled preparation technology of nano-Cu and nano-Ni,more works must be done on researching the effects of operation parameters such as reaction system,precursor,reductant,reaction time and temperature, and so on.The disciplinarian and the effects of different modifiers on the product sizes and morphologies are emphasized researches as being due to that selecting an appropriate modifier is crucial to preparation of size- and shape-controlled nanostructured metal.Size- and morphology-controlled preparations of nano-Cu and nano-Ni have been carded out at low temperature and atmospheric pressure starting from copper sulfate pentahydrate,nickel sulfate pentahydrate or nickel acetate tetrahydrate with ascorbic acid,hydrazine hydrate or 1,2 -propanediol as a reductant in the presence of modifiers such as eco-friendly polyoxyethylene sorbitan monooils (Tweens),polyethylene glycols(PEGs),sodium dodecyl benzene sulfonate(SDBS),and sodium dodecyl sulfate(SDS).The morphologies,size distributions,average particle sizes,and crystalline structures of the as-prepared nano-Cu and nano-Ni samples were characterized by powder X-ray diffraction(XRD),X-ray photoelectron spectrometry (XPS),transmission electron microscopy(TEM),selected area electron diffraction (SAED).The modifying and stabilizing effects of modifiers on the samples were analyzed by thermogravimetric analysis differential scanning calorimetry(TG-DSC), and Fourier transform infraredspectroscopy(FTIR).
     In order to investigate the promoting effects of nanostructured metals on oil tribological property,the as-prepared nano-Cu and nano-Ni samples were added into different kinds of oils.The experiments were carried out on a UNT-Ⅱfriction-abrasion tester and a M-2000 ring-piece friction-abrasion tester to investigate the effects of the nanostructured metal size and shape on the anti-wear and friction reducing performances as well as the repair-self mechanism of tribopairs.
     Some significant results are summarized as follows:
     1)In water system,among the single modifiers,PEG-2000 was beneficial to fabricating smaller sized nano-Cu spheres with an average particle size of 2.5 nm and a size distribution ranging from 0.5 to 3 nm,PEG-6000 beneficial to preparing bigger sized nano-Cu spheres with an average particle size of 17.0 nm and a size distribution ranging from 5 to 25 nm.Among the mixtures of two modifiers,the co-presence of SDBS and PEG-2000 was beneficial to fabricating abundant monocrystal nano-Cu strips.The co-presence of SDS and PEG-6000 favored the formation of big-sized irregular nano-Cu with an average particle size of 21.8 um and a size distribution in a range of 5-35 nm.
     2)In water system,single modifier was beneficial to fabricating sphere or sphere-like nano-Ni crystals,composite modifiers were in favor of forming snowflake-like and needle-like Ni crystals.Tween-80 was beneficial to fabricating small sphere or sphere-like nano-Ni with an average particle size of 36 nm and a size distribution in a range of 25-52 nm,as well as PEG-2000 did with an average particle size of 53 nm and a size distribution in a range of 24-106 nm.PEG-6000 was beneficial to fabricating bigger sphere or sphere-like Ni crystals with an average particle size of 167 nm and a size distribution between 76 and 310 nm.The co-presence of SDS and PEG-600 were beneficial to decreasing the sizes of nano-Ni with an average particle size of 33 nm and a size distribution 16-78 nm.However,the coexisting of SDS and Tween-80 was in favor of increasing the sizes of nano-Ni with an average particle size of 230 nm and size distribution in arrange of 120-480 um.By analyzing the size and shape of nano-Cu and nano-Ni,it can be concluded that the modifiers,Tweens,PEGs, SDBS,and SDS have the same modification effect on crystal growth during the preparation of nanostructured metals with chemical reduction synthesis method in the water system.
     3)Needle-like Ni nanocrystals with different lengths and diameters were formed under microwave irradiation in water system using nickel acetate tetrahydrate as a precursor,hydrazine hydrate as a reductant,and sodium hydroxide as a pH adjusting reagent.
     4)In 1,2-propanediol system,SDS was beneficial to fabricating irregular snowflake-like and dodecahedra Ni crystals with a small average particle size;PEG-200 and PEG-600 beneficial to forming bigger or smaller irregular snowflake-like Ni crystals;PEG-2000 beneficial to fabricating dodecahedra Ni crystals;PEG-6000 beneficial to fabricating triangular Ni crystals;Tween-20 beneficial to forming regular crystals such as dodecahedra and triangular crystals with small particle sizes;Tween-80 beneficial to obtaining irregular snowflake-like Ni crystals with a big average particle size.The co-presence of SDS and PEG-600 was beneficial to forming bigger irregular snowflake-like Ni crystals,as well as coexisting of SDS and PEG-6000 did.The co-presence of SDS and Tween-40 was beneficial to obtaining dodecahedra and octahedral Ni crystals with a bigger average particle size.By analyzing the size and shape of nano-Ni in water or 1,2-propanediol system,it can be concluded that the modifiers Tweens and PEGs have the contrast modification effects on crystal growth during the preparation of nanostructured Ni with chemical reduction synthesis method in water or 1,2-propanediol system.
     5)The disciplinarian and the modification mechanism of modifiers on the samples were analyzed by TG-DSC,and FTIR.It was found that there were chemical bonds between oxygen atoms present in modifiers and the surface of the as-prepared nanocrystals.Space block and electrostatic effects efficiently reduced grain aggregation and avoided the sample oxidation,in which the former is the priority factor and the latter assisted.
     6)The effects of the sizes and shapes of nanostructured metals on the anti-wear and friction reducing performances as well as repairing-self mechanism on tribopairs was investigated.It was found that the size and shape of nanostructured metals affected oil tribological property.
引文
[1]严东升.纳米材料的合成与制备[J].中国科学院院刊.1993(5).10(1):1-6.
    [2]Andrievski R A,Glezer A M.Size effects in properties of nanomaterials[J].Scripta Materialia,2001,44:1621-1642.
    [3]Gleiter H,Marquaret P.Nanocrycltalline structures—an approach to new Materials [J].Zeitachrift fur Metllkrnde,1984,75(4);263-267.
    [4]徐敬标.方兴未艾的纳米材料[J].技术物理教学,2004,12(2):47-48.
    [5]石力航.纳米金属材料[J].湖南冶金,2000,6,43-46.
    [6]李星国.纳米材料的研究及应用[J].纺织科学研究,2004,2,33-38,51.
    [7]Bica I.Nanoparticle production by plasma[J].Materials Science and Engineering B,1999,68:5-9.
    [8]江炎兰,张金春,王杰,等.纳米材料的性能与应用—金属及其合金[J].兵器材料科学与工程,2001,24(6):64-66,68.
    [9]Edelstein A S,Murday J S,Rath B B.Challenges in nanomaterials design[J].Progress in Materials Science,1997,42:5-21.
    [10]Hu C K,Lee KY,Lee K L,et al.Electromigration drift velocity in Al-alloy and Cu-alloy lines[J].Journal of the Electrochemical Society,1996,143(3):1001-1006.
    [11]Sanders P G,Weertman JR,Barker JG Structure of nanocrystalline palladium and copper studied by small angle neutron scattering[J].Journal of Materials Research,1996,11(12):3110-3120.
    [12]Rodriguez J A,Chaturvedi S,Mark K.A comparison of the reaction of S_2 with metallic copper.Cu_2O and Cu/ZnO:electronic properties and reactivity of copper[J].Surface Science,1998,415:L1065-L1073.
    [13]杜芳林,崔作林,张志馄,等.负载型纳米非贵金属催化剂上CO的氧化行为:纳米铜的制备、结构及催化性能[J].催化学报,1997,18(2):102-105.
    [14]Vook R W.Electrical control of surface electromigration damage[J].Thin Solid Film,1997,305:286-291.
    [15]刘谦,徐滨士,许一,等.纳米Cu添加剂润滑摩擦表面分析[J].材料工程,2005,2:13-16.
    [16]Takimoto M,Nakamura Y,Kimura K,et al.Highly Enantioselective Catalytic Carbon Dioxide Incorporation Reaction:Nickel-Catalyzed Asymmetric Carboxylative Cyclization of Bis-1,3-dienes[J].Journal of the American Chemical Society,2004,126:5956-5957.
    [17]Bradley J S,Tesche B,Busser W,et al.Surface Spectroscopic Study of the Stabilization Mechanism for Shape-Selectively Synthesized Nanostructured Transition Metal Colloids. [J].Journal of the American Chemical Society,2000,122,4631-4636.
    [18]Yin H,Wada Y,Yamamoto T,et al.Chemstry & Organic Materials T1A Oral,3rd World Congress on Microwave RF Applications,Sydney,Australia,2002,September.
    [19]Yamamoto T,Yin H,Wada Y,et al.Morphology-Control in Microwave-Assisted Synthesis of Silver Particles in Aqueous Solutions,[J].Bulletin of the Chemical Society,2004,77,757-761.
    [20]Yin H,Wada Y,Yamamoto T,et al.Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation[J].Materials Chemistry and Physics 2004,83(1):66-70.
    [21]余迎涛,张钦辉,徐柏庆.溶液体系中纳米金属粒子形状控制合成[J].化学进展,2004,16(4):520-527.
    [22]Yen M Y,Chiu C W,Chen F R,et al.Convergent Electron Beam Induced Growth of Copper Nanostructures:Evidence of the Importance of a Soft Template.[J].Langmuir,2004,20(2):279-281.
    [23]Wang F,Zhang,Z C;Chang,Z Q.Effects of magnetic field on the morphology of nickel nanocrystals prepared by gamma-irradiation in aqueous solutions[J].Materials Letters,2002,55(1-2):27-29.
    [24]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社 2001.
    [25]Goh C F,Yu H,Yong S S,et al,Synthesis and cure kinetics of isotropic conductive adhesives comprising sub-micrometer sized nickel particles[J].Material science and engineering B,2005,117:153-158.
    [26]左东华,张志琨,崔作林,等.纳米镍稀土薄壳式粒子在硝基苯加氢中的催化性能[J].催化学报,1996,17(2):166-169.
    [27]Braos G P,Mairelles T P,Rodriguez C E,et al.Gas-phase hydrogenation of acetonitrile on zirconium-doped mesoporous silica-supported nickel catalysts[J].Journal of the Molecular Catalysis A:Chemical,2003,193:185-181.
    [28]陈新兵,安忠维.新颖的纳米镍催化芳基硼酸与芳基溴的偶联反应[J].化学通报,2002,1:36-40.
    [29]Tomiyama S,Takahashi R,Sato S,et al.Preparation of Ni/SiO_2 catalyst with high thermal stability for CO_2-reforming of CH_4[J].Applied Catalysis A,2003,241(1-2):349-361.
    [30]江治,李疏芬,李凯,等.含纳米金属粉的推进剂点火实验及燃烧性能研究[J].固体火箭技术,2004,27(2):117-120.
    [31]杜艳,陈洪龄,陈日志,等.高活性纳米镍催化剂的制备及其催化性能研究[J].高校化学工程学报,2004,18(4):515-518.
    [32]孔景临.镍纳米线电极对乙醇的电催化氧化动力学参数的测定[J].物理化学学报,2002,18(3):268-271.
    [33]于立岩,郝春成,隋丽娜,等.纳米粒子改善润滑油摩擦磨损性能的研究[J].材料科学与工程学报,2004,22(6):901-905.
    [34]王立平,高燕,薛群基,等.电沉积镍纳米晶材料制备及性能[J].电镀与涂饰,2004,23(3):1-2,5.
    [35]吴人杰.复合材料[M].天津:天津大学出版社,2000.
    [36]Mitsubishi Heavy Ind Ltd(JP).Method for producing and recovering ultrafine particle [P].EP:62112711,1987-05-23.
    [37]Kashu S,Fuchita E,Manabe T,Hayashi C.Deposition of ultra free particles using a gas jet [J].Japanese Journal of Applied Physics,Part 2(Letters),1984,23(12):L910-912.
    [38]Hayashi C.Ultrafine particles[J].Physisc Today,1987,40(12):44-51.
    [39]李发伸,杨文平,薛德胜.纳米Fe微粒的制备及研究[J].兰州大学学报(自然科学版),1994,30(1):144-146.
    [40]张立德.纳米材料[M].第三版.北京:化学工业出版社,2000.
    [41]张立德.超微粉体制备与应用技术[M].第一版.北京:中国石化出版社,2001.
    [42]蒋惠亮,徐光年,方云,等.纳米技术与纳米材料(Ⅶ)—无机纳米材料的制备、性能及表征[J].日用化学工业,2004,20(12):57-61.
    [43]陈立宝,贺跃辉,邓意达.镍钴粉末生产的现状及发展趋势[J].粉末冶金技术,2004,22(3):173-177.
    [44]Lifshitz E,Dag I,Litvin I,et al.Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods[J].Chemistry and Physical Letters,1998,288(2-4):188-196.
    [45]魏智强,温贤伦,吴现成,等.直流电弧等离子体法制备镍纳米粉[J].兰州大学学报(自然科学版),2003,39(5):38-40.
    [46]魏智强,温贤伦,王君,等.阳极弧等离子体制备镍纳米粉[J].中国有色金属学报,2003,13(5):1136-1139.
    [47]魏智强,乔宏霞,温贤伦,等.镍纳米粉的比表面积和孔结构研究[J].中国粉体技术,2004,1:15-18.
    [48]魏智强,温贤伦,王君,等.工艺参数对阳极弧放电等离子体制备镍纳米粉的影响[J].稀有金属材料与工程,2004,33(3):305-308.
    [49]左东华,张志琨,崔作林,等.纳米镍在硝基苯加氢中催化性能的研究[J].分子催化,1995,9(4):298-302.
    [50]李忠平,俞宏英,孙冬柏,等.制备条件对纳米镍粉电化学性能的影响[J].中国有色金属学报,2006,16(7):1288-1294.
    [51]蒋渝,赖庆贵,杨彦明,等.自由弧熔融氢方法制备MLC用纳米金属镍粉[J].电子元件与材料,2003,22(12):13-15.
    [52]蒋渝,赖庆贵,杨彦明,等.纳米镍粉制备中影响产率的关键因素[J].电子元件与材料,2004,23(1):16-19.
    [53]张燕红,邱向东,赵谢群,等.超细颗粒材料的制备[J].稀有金属,1997,21(6):451-453.
    [54]陈存敬,郭志猛,高峰,等.纳米镍粉的粒度分析[J].粉末冶金材料,2004,22(2):71-75.
    [55]孙伟民·金寿日,杨贺.合金法制备镍超微粉[J].沈阳工业大学学报,1997,19(6):55-56,60.
    [56]Cui Z L,Zhang Z K.Ce-Ni nanoparticles with shell structure for hydrogen storage [J].Nanostruct Materials,1996,7(3):355-361.
    [57]Lim J W,Mimura K.,Preparation of high-purity Cu film by non-mass separated ion beam deposition[J].Nuclear Instruments and Methods in Physics Research B 2003,206:371-376.
    [58]潘成福,侯登录,张民.纳米Fe微粒的溅射制备及粒度计算[J].磁记录材料,1999,2:8-9,17.
    [59]Teng M H,Host J J,Hwang,J H,et al.Nanophase Ni particles produced by a blown arc method[J].Journal of Materials Research,1995,10(2):233-236.
    [60]林罡,王海千,王晓平.,Ni纳米颗粒膜输运性质的尺寸效应[J].中国科学技术大学学报,2003,33(2):171-176.
    [61]耿树江,朱圣龙,王福会.纯Ni及其溅射纳米晶的高温氧化行为[J].中国腐蚀与防护学报,2003,23(6):335-339.
    [62]Xu B S,Tanaka S I.Phase transformation and bonding of ceramic nanoparticles in the TEM [J].Nanostructured Materials,1995(6):727-730.
    [63]Xu B S,Tanaka S I.Control of nano-scale inter phase boundaries by an electron beam [J].Materials Science Forum,1996(207-209):137-140.
    [64]Herzer G.Magnetization process in nanocrystalline ferro magnets[J].Materials Science Engineer,1991(A133):125-130.
    [65]Tepper F.Nanosize powders produced by electro-explosion of wire and their potential applications[J].Power Metallurgy,2000,43(4):320-322.
    [66]王炳根.国内外羰基镍粉的发展、生产及应用[J].四川有色金属,1997,(4):6-10,33.
    [67]屈子梅.羰基法生产纳米镍粉[J].粉末冶金工业,2003,13(5):16-19.
    [68]柳学全,徐教仁,刘思林,等.纳米级金属铁颗粒的制取[J].粉末冶金技术,1996,14(1):26-29.
    [69]刘思林,滕荣厚,徐教仁,等.热分解法制备纳米级铁粉[J].粉末冶金技术,1999,9(2):28-30.
    [70]高晓云,陈伟雄,王伟杰,等.激光热解制备链状纯铁磁粉的成核机理和工艺参量优化 [J].中国激光,1993,10:48-54.
    [71]高晓云,李谨,杨福明,等.纯铁微粉的激光法制备及其磁性[J].磁记录材料,1994,1:9-11.
    [72]Zhao X Q,Zheng F,Liang Y,et al.Preparation and characterization of single phase γ-Fe nanopowder from cw CO_2 laser induced pyrolysis of iron pentacarbonyl[J].Materials Letters,1994,21(3-4):285-288.
    [73]Kumar R V,Koltypin Y,Cohen Y S,et al.Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation[J].Journal of Materials Chemistry,2000,10:1125-1129.
    [74]林金谷,邹炳锁,王菊,等.用超声化学方法产生超细非晶态铁微粒[J].科学通报,1995,40(15):1370-1373.
    [75]Cao X,Koltypin Y,Kataby G,et al.Controlling the particle size of amorphous iron nanoparticles[J].Journal of Materials Research,1995,10(11):2952-2957.
    [76]曹茂盛,邓启刚,鞠刚,等.α-Fe纳米粉末制备及其表征[J].化学通报,2000,2:42-43.
    [77]Daroczi L,Beck M T,Beke D L,et al.Production of Fe and Cu nanocrystalline particles by thermal decomposition of ferro- and copper-cyanides[J].Materials Science Forum.,1998,269-272(1):319-324.
    [78]俞建群,贾殿赠,郑毓峰,等.纳米氧化镍、氧化锌的合成新方法[J].无机化学学报,1999,15(1):95-98.
    [79]徐菊,喻克宁,梁焕珍,等.用Ni(OH)_2浆化氢还原法制备纳米金属镍粉[J].材料研究学报,2002,16(2):158-163.
    [80]Chen D W,Wu S H.Synthesis of nickel nanoparticees in water-in-oil micro emulsions [J].Chemical Materials,2000,12(5):1354-1360.
    [81]刘志杰,赵斌,张宗涛.以甲醛作还原剂制备超细铜粉[J].化学通报,1996,11:25-26.
    [82]张志梅,韩喜江,孙淼鑫.纳米级铜粉的制备[J].精细化工,2000,17(2):69-71.
    [83]张敬畅,朱分梅,曹维良.超临界流体干燥法(SCFD)制备纳米级铜粉[J].中国有色金属学报,2004,14(10):1741-1746.
    [84]Zhao B,Liu Z J,Zhang Z T.Improvement of oxidation resistance of ultrfine copper powders by phosphating treatment[J].Journal of solid chemistry,1997,30(1):157-160.
    [85]Suryanara R,Frey C A.Mechanical poperties of nanocraystalline copper produced by solution phase synthesis[J].Materials Research,1996,11(2):429-448.
    [86]黄钧声,任山.纳米铜粉研制进展[J].材料科学与工程,2001,19(2):76-79.
    [87]张虹,白书欣,赵询.化学还原法制备纳米铜粉[J].机械工程材料 1998,22(3):33-37.
    [88]林荣会,方亮,郗英欣,等.化学还原法制备纳米铜[J].化学学报,2004,62(23):2365-2369.
    [89]王翠英,陈祖耀,程彬,等.金属铁纳米粒子的液相制备、表面修饰及其结构表征[J].化学物理学报,1999,12(6):670-674.
    [90]Gibson C P,Putzer KJ.Synthesis and characterization of anisometric cobalt nanoclusters[J].Science,1995,267:1338-1340.
    [91]夏纲,徐琴,胡效亚,郭荣,AuCl_4~-离子存在下纳米铜胶的制备[J].扬州大学学报(自然科学版),2002.5(4):27-31.
    [92]Sano K,Ehara A.Manufacture of copper with narrow particle size distribution and the copper powder their form[P].JP:2001240904 A.2001-09-24.
    [93]Ayyappan S,Rao C N R.A simple method of hydrogen insertion in transition metal oxides to obtain bronzes[J].Materials Research Bulletin,1995,30(8):947-951.
    [94]Lisicecki I,Billioidet F,Pilermi M P.Synthesis of copper nanoparticles in gelified micromulsion and in reverse micelles[J].Jourral of Mol Liq,1997,72(1):251-261.
    [95]李志伟,陶小军,周静芳,等.表面修饰金属Ni纳米微粒的合成与表征[J].河南大学学报(自然科学版)2000,30(4):39-41.
    [96]阎玺庆,吴志申,周静芳,等.油溶性金属Ni纳米微粒的制备与表征[J].无机化学学报,2002,18:193-196.
    [97]Gao J Z,Guan F,Zhao Y C,et al.Preparation of ultrafine nickel powder and its catalytic dehydrogenation activity[J].Materials Chemistry and Physics,2001,71:215-219.
    [98]李炎,俞宏英,孙冬柏,等.超声场辅助增强化学还原法制备纳米铜粉及影响因素[J].中国有色金属学报,2004,1(14):1946-1952.
    [99]Fievet F,Lagier J P.Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles[J].Solid State Ionics,1989,32/33:98-103.
    [100]Ayyappan S,Subbanna G N,Gopalan R,et al.Nanoparticles of nickel and silver produced by the polyol reduction of the metal salts intercalated in montmorillonite[J].Solid State Ionics,1996,84(3/4):271-281.
    [101]Hegde M S,Laicher D.Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders[J].Solid State Ionics,1997,93:33-50.
    [102]秦振平,郭红霞,李东升,等.缩聚多元醇液相还原法制纳米镍粉及其表征[J].功能材料与器件学报,2004,10(1):95-97.
    [103]李鹏,官建国,张清杰,等.1,2-丙二醇液相还原法制备纳米镍粉的研究[J].材料科学与工艺,2001,9(3):259-262.
    [104]张锡凤,殷恒波,程晓农,等,纳米Ni的现代制备方法及在催化领域的应用[J].化学与生物工程,2005,10:8-10.
    [105]Zhu J,Liu S,Palchik O,Koltypin Y and Gedanken A.Shaped-Controlled Synthesis of Silver Nanoparticlcs by Pulse Sonoelectrochemical Method[J].Langmuir,2000,16:6396-6398.
    [106]Schlecht S,Koenle L.Mild Solvothermal Synthesis and TEM Investigation of Unprotected Nanoparticles of Tin Sulfide[J].Inorgnic Chemistry,2001,40(22):5719-5721.
    [107]Grocholl L,Wang J J,Gillan E G..Solvothermal azide decomposition route to GaN nanoparticles,nanorods,and faceted crystallites[J].Chemical Materials,2001,13(11):4290-4296.
    [108]王笃金,吴瑾光.反胶团或微乳液法制备超细颗粒的研究进展[J].化学通报,1995(9):125-128.
    [109]高保娇,高建峰,周加其,等.超微镍粉的微乳液法制备的研究[J].无机化学学报,2001,17(4):491-494.
    [110]Wang Y,Herron N.Nanometer-sized semiconductor clusters:materials synthesis,quantum size effects,and photophysical properties[J].Journal of Chemical Physics,1991,95(2):525-532.
    [111]Rivas J,Quintela M A L.Production and characterization of FeB amorphous particles [J].Journal of Magnetism and Magnetic Materials,1993,122(1-3):1-5.
    [112]张朝平,邓伟,胡宗超,等.微乳液法制备超细包裹型铁粉[J].应用化学,2000,17(3):248-251.
    [113]Chatterjee A,Chakravorty D.Preparation of nickel nanoparticles by metalorganic route [J].Applied Physics Letters,1992,60(1):138-143.
    [114]陈祖耀,陈畋,朱英杰,等.γ-射线辐照从水溶液环境中制得金属镍超细粉的晶粒度和磁学性质[J].化学物理学报,1997,10(1):26-30.
    [115]殷亚东,徐相凌,葛学武,等.纤维状纳米镍粉的γ射线辐射合成[J].辐射研究与辐射工艺学报,1999,17(1):19-23.
    [116]李宇农,何建军,龙小军.纳米金属粉末研究进展[J].粉末冶金工业,2004.14(1):34-39.
    [117]Kapoor S,Salunke H G.,Tripathi A K,et al.Mittal Radiolytic preparation and catalytic properties of nanophase nickel metal particles[J].Materials Research Bulletin,2000,35:143-148.
    [118]Chen Z Y,Chen B,Qian Y T.Prepration of ulltrafine metal partectes by combined method-tay tadoation by drorhermal crystal-lization[J].Aeta Metallargica Sinca,1992,(5):407-410.
    [119]Wang L P,Gao Y,Xua T,et al.A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure[J].Materials Chemistry and Physics 2006,99:96-103.
    [120]朱英杰,钱逸泰,张曼维,等.γ射线辐照—水热处理法制备纳米金属粉末[J].金属学 报,1994,30(6):259-263.
    [121]Xia B,Lenggoro I W,Okuyama K.Preparation of nickel powders by spray pyrolysis of nickel formate[J].Journal of the American Ceramic Society,2001,84(7):1425-1432.
    [122]Xia B,Lenggoro I W,Okuyama K.Preparation of Ni particles by ultrasonic spray pyrolysis of NiCl_2·6H_2O precursor containing ammonia[J].Materials Science Reports,2001,30:1701-1705.
    [123]邬建辉,张传福.纤维状纳米级镍粉制备的前驱体热分解[J].有色金属,2003,55(4):24-27.
    [124]Gen E.Reaction of silanes with unsaturated olefmic compounds[P].US:3296291,1967-01-03.
    [125]李莉,魏子栋,李兰兰.电沉积纳米材料研究现状电镀与精饰[J].2004,26(3):9-15.
    [126]江山,潘勇,唐甜,等.喷射电沉积纳米晶镍镀层的制备与表征[J].湘潭大学自然科学学报,2004,26(3):61-65.
    [127]杨建明,朱荻,雷卫宁.电沉积法制备纳米晶材料的研究进展[J].材料保护,2003,36(4):1-4.
    [128]Mishra R S,Valiev R Z,Mcfadden S X,et al.Severe plastic deformation processing and high strain rate superplasticity in an aluminum matrix composite[J].Scripta Materialia,1999,40(10):1151-1155.
    [129]何峰,张正义,肖耀福,等.制备超细金属粉末的新型电解法[J].金属学报,2000,36(6):659-661.
    [130]何峰,汪武祥,韩雅芳,等.制备超细金属粉末的新型电解法[J].粉末冶金技术,2001,19(2):80-82.
    [131]王菊香,赵询.超声电解法制备超细金属粉的研究[J].材料科学与工程,2000,18(4):70-74.
    [132]龚竹青,邓姝皓,陈文汨.电沉积纳米晶体镍[J].中南工业大学学报,2002,33(3):281-284.
    [133]Wang N,Wang Z,Aust K.T,et al.Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique[J].Materials Science and Engineering A,1997,237(2):150-158.
    [134]Natter H,Schmelzer M,Leffler M S,et al.Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time X-ray diffraction[J].Journal of Physics and Chemistry B,2000,104(11):2467-2476.
    [135]Hayashi,C.Deposition of ultra-fine particles using a gas jet[J].Oyo Buturi,1985,54(7):687-93.
    [136]陈宏,旷亚非,周海晖,等.化学镀方法制备纳米级铜粉及镍-磷粉[J].电镀与精饰, 2002,24(3):1-4.
    [137]袁孝友.废化学镀镍液合成Ni纳米粉[J].电镀与环保,1999,19(5):31-33.
    [138]Baburaj E G,Hubert K T,Fores F H S.Preparation of Ni powder by mechanochemical process[J].Journal of Alloy Compd,1997,257:146-149.
    [139]Eckert J,Holzer J C,et al.Synthesis and characterization of ball- milled nanccrystalline fcc metals[J].Materials Research Society Symp Proc,1992,238:745-749.
    [140]韦钦,刘雄飞,曹建,等.纳米Ni的制备与微观结构[J].中南工业大学学报(自然科学版),1994,25(1):137-140.
    [141]陈洪,徐祖雄,翟少岩,等.机械球磨制备Fe纳米晶及其Mossbauer效应[J].金属学报,1995,31(2):73-76.
    [142]Del B L,Herando A,Navarro E,et al.Structural configuration and magnetic effects in as-milled and annealed nanocrystalline iro[J].Journal De Physique,1998,8(2):107-110.
    [143]Malow T R,Koch C C,Miraglia P Q,et al..[J].Materials Science Engineering,1998,252A(1):36-43.
    [144]米远祝,刘应亮,张静娴,等.燃烧一还原法制备镍纳米微粒[J].化学与生物工程,2004,4:23-24.
    [145]曾京辉,郑化桂,曾恒兴.纳米α-Fe金属粉合成[J].磁记录材料,1998,4:14-17.
    [146]曾京辉,郑化桂,曾恒兴,等.纳米α-Fe金属磁粉制备及其磁性能研究[J].中国科学技术大学学报,1999,29(5):595-599.
    [147]Sharad G D,Anand R M,Santosh K H,some aspects of the role of surfactants in the formation of nanoparticles[J].Colloids and Surfaces,1998,133:69-75.
    [148]Zhu H Y,Gao X P,Song D Y et al,Growth of boehmite nanofibers by assembling nanoparticles with surfactant micelles[J].Journal of Physical Chemistry B,2004,108:4245-4247.
    [149]Zhu H Y,Gao X P,Song D Y et al,Growth of boehmite nanofibers by assembling nanoparticles with surfactant micelles[J].Journal of Physical Chemistry B,2004,108:4245-4247.
    [150]牛明勤,吴介达.超细镍粉的制备进展[J].精细化工,2003,20(12):715-717.
    [151]顾大明,高农,等.次磷酸盐液相还原法快速制备纳米银粉[J].精细化工,2002,19(11):634-635,674.
    [152]李德刚,陈慎豪,等.相转移方法制备银纳米粒子单层膜[J].化学学报,2002,60(3):408-412.
    [153]张庆敏,李彦,等.聚氧乙烯类表面活性剂体系中银纳米颗粒的合成[J].物理化学学报,2001,17(6):537-541.
    [154]姚素薇,刘恒权,张卫国,等.在线性壳聚糖膜内原位还原制备银纳米粒子及银单晶体 [J].物理化学学报,2003,19(5):464-458.
    [155]Han M H,Lin H F,Yuan Y H,et al.Pressure drop for two phase counter-current flow in a packed column with a novel internal[J].Chemical Engineering Journal,2003,94(3):171-260.
    [156]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [157]Stephen M H.Nano-lubrication:concept and design[J].Tribology International,2004,37(6):537-545.
    [158]欧忠文,徐滨十,丁培道,等.纳米润滑材料应用研究进展[J].材料导报,2000,14(8):28-31.
    [159]周静芳,张治军,王晓波,等.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J].摩擦学学报,2000,20(2):123-126.
    [160]Ghazali M J,Rainforth W M,Jones H.Dry sliding wear behaviour of some wrought,rapidly solidified powder metallurgy aluminium alloys[J].Wear,2005,259:490-500.
    [161]王晓波.博士论文,2004.
    [162]赵彦保,周静芳,张治军,等.油酸/PS/TiO_2复合纳米微球对液体石蜡抗磨性能的影响研究[J].摩擦学学报,2001,21(1):73-75.
    [163]张泽抚,刘维民,薛群基.含氮有机物修饰的纳米三氟化镧的摩擦学性能研究[J].摩擦学学报,2000,20(3):217-219.
    [164]Zhang Z J,Zhang J,Xue Q J.Synthesis and characterization of a molybdenum disulfide nanocluster[J].Journal of Physical Chemistry,1994,98(49):12973-12977.
    [165]Zhang Z J,Xue Q J,Zhang J.Synthesis,structure and lubricating properties of dialkyldithiophosphate-modified Mo-S compound nanoclusters[J].Wear,1997,209(1-2):8-12.
    [166]Xue Q J,Liu W M,Zhang Zh J.Friction and wear properties of a surface- modified TiO2nanoparticle as an additive in liquid paraffin[J].Wear,1997,213(1-2):29-32.
    [167]Xu L B,Tung L D,Spinu L,et al1.Synthesis and magnetic behavior of periodic nickel sphere arrays[J].Advanced Materials,2003,15(18):1562-1564.
    [168]Hisakado T,Tsukizoe T,Yoshikawa H.Lubrication Mechanism of solid lubricants in oils.[J].Journal of Lubrication Technology,Transactions ASME,1983,105:245-248.
    [169]Birringer R,Gleiter H,Klein H P,et al.Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?[J].Physics Letters A,1984,A 102(8):365-369.
    [170]Mishina H.Surface deformation and formation of original element of wea r particles in sliding friction[J].Wear,1998,215:10-17.
    [171]豆立新,龚华栋,吕振坚,等.分散在润滑剂中的柔性金属微粒的摩擦学行为的实验研究[J].润滑与密封,2002,5:23-25.
    [172]党鸿辛,赵彦保,张治军.铋纳米微粒添加剂的摩擦学性能研究[J].摩擦学学报,2004,24(2):185-187.
    [173]Gao Y J,Sun R,Zhang Z J,et al.Tribological properties of oleic acid—modified TiO2nanoparticle in water[J].Materials Science and Engineering A,2000,286(1):149-151.
    [174]Tarasov S,Kolubaev A,Belyaev S,et al.Study of friction reduction by nanocopper additives to motor oil[J].Wear,2002,252:63-69.
    [175]Yao J B,Dong J X.Tribocatalysis reaction in boundary lubrication - an antiwear synergism between borates and copper oleate[J].Lubrication Engineering,1995,51(3):231-233.
    [176]Wan Y,Xue Q J,Liu W M.Tribological behavior of lubricating oil additives in lubricated aluminum-on-steel contact[J].Wear,1996,196:87-91.
    [177]Iglesias P,Berinlldez M D,Carrion F J,et al.Friction and wear of aluminium -steel contacts lubricated with ordered fluids-neutral and ionic liquid crystals as oil additives[J].Wear,2004,256:386-392.
    [178]姚彬,杜达昌,陈理公.含硼、铜润滑油添加剂的摩擦学性能[J].润滑与密封,2000,1:22-24.
    [179]马剑奇,王晓波,付兴国,等.油溶性Cu纳米微粒作为15W/40柴油机油添加剂的摩擦学性能研究[J].摩擦学学报,2004,2:134-137.
    [180]于鹤龙,许一,刘谦,等.油润滑条件下有机物修饰纳米铜颗粒改善铁基摩擦副摩擦磨损的研究[J].润滑与密封,2005,4:59-61,64.
    [181]伏喜胜,张明,王晓波,等.油溶性纳米Cu作为润滑油添加剂在钢-铜摩擦体系中的摩擦学性能[J].石油学报,2005,3:91-95.
    [182]夏延秋,丁津原,马先贵,等纳米级金属粉改善润滑油的摩擦磨损性能实验研究[J].润滑油,1998,13(6):37-40.
    [183]龚海燕,孙磊,张治军,等.Ni纳米微粒制备、表征与摩擦学性能研究[J].润滑与密封,2005,3:44-46.
    [184]张志梅.纳米级金属粉改善润滑袖摩擦性能的研究[J].润滑与密封,2000,2:40-44.
    [185]邵艳群,唐电,雄惟皓.凝聚和离散-制备纳米材料的两人思路[J].稀有金属材料与工程,2004,33(4):343-348.
    [186]Dragieva I D,Stoynov Z B,Klabunde K J.Synthesis of nanoparticles by borohydride reduction and their applications[J].Scripta Materialia,2001,44:2187-2191.
    [187]Rao R S,Walters A B,Vannice M A.Influence of Crystallite Size on Acetone Hydrogenation over Copper Catalysts[J].Journal of Physics and Chemistry B,2005,109:2086-2092.
    [188]夏延秋,金寿日,孙维明,等.纳米金属粉对润滑油摩擦磨损性能的影响[J].润滑与密封,1999,3:33-35.
    [189]欧忠义,徐滨士,丁培道.纳米润滑材料应用研究进展[J].材料导报,2000,14(8):28-30.
    [190]张志梅,韩喜江,孙淼鑫.纳米级铜粉制备[J].精细化工,2000,18(2):69-71.
    [191]黄钧卢,任山,谢成文.化学还原法制备纳米铜粉的研究[J].材料科学与工程,2003,21(1):57-59.
    [192]Ding J,Tsuzuki T,McCormick P G.et al.Ultraf'me Cu particles prepared by mechanochemical process[J].Journal of Alloys and compounds,1996,234:L1-L3.
    [193]Zhou X J,Harmer A J,Heinig N F,et al.Parametric study on electrochemical deposition of copper nanoparticles on an ultrathin polypyrrole f'dm deposited on a gold film electrode[J].Langmuir,2004,20:5109-5113.
    [194]Cason J P,Miller M E,Thompson J B,et al.Solvent Effects on Copper Nanoparticle Growth Behavior in AOT Reverse Micelle Systems[J].Journal of Physics and Chemistry B,2001,105:2297-2302.
    [195]Wu S H,Chen D H.Synthesis of high- concentration Cu nanoparticles in aqueous CTAB solutions[J].Journal of Colloid and Interface Science,2004,273:165-169.
    [196]Tu W,Liu H.Continuous Synthesis of Colloidal Metal Nanoclusters by Microwave Irradiation[J].Chemical Materials,2000,12(2):564-567.
    [197]Ziegler K J,Dory R C,Johnston K P,et al.Synthesis of Organic Monolayer-Stabilized Copper Nanocrystals in Supereritical Water[J].Journal of American Chemical Society,2001,123:7797-7803.
    [198]Shingo I,Kensuke A,Hidemi N,et al.Formation and Growth of Copper Nanopartieles from Ion-Doped Precursor Polyirnide Layers[J].Journal of Physics and Chemistry B,2004,108:15599-15607.
    [199]Yen M Y,Chiu C W,Chen F R,et al.Convergent Electron Beam Induced Growth of Copper:Nanostructures:Evidence of the Importance of a Soft Template[J].Bulletin Materials Sciences,2000,23(3):165-168.
    [200]周全法,蒋萍萍,朱雯,等.抗氧化纳米铜粉的制备及表征[J].稀有金属材料与工程,2004,33(2):179-182.
    [201]Oin y,Li H,Zhang Z K,et al.Symmetric and Helical Growth of Polyacetylene Fibers over a Single Copper Crystal Derived from Copper Tartrate Decomposition[J].Organic Letters,2002,4(15):3123-3125.
    [202]Zhou J F,Yang J J,Zhang Z J,et al.Study on the structure and tribologlcal properties of surface-modified Cu nanoparticles[J].Materials Research Bulletin,1999,34(9):1361-1367.
    [203]Chen S W,M J F,Sommers.Alkanethiolate-Protected Copper Nanoparticles:Spectroscopy,Electrochemistry,and Solid-State Morphological Evolution[J].Journal of Physics and Chemistry B,2001,105:8816-8820.
    [204]Hiroyuki O,Fred H,Chien M W.Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercdtical-Carbon Dioxide Microemulsion[J].Chemical.Materials,2001,13:4130-4135.
    [205]Pekka H,Eero R.Dislocation initiation in copper-A moleculer dynamics study[J].Nanostructured Materials.1999,11(5):587-592.
    [206]Daniel E,Mark Y,Trevor D.Photocatalytic Synthesis of Copper Colloids from cu(Ⅱ)by the Ferrihydrite Core of Ferritin[J].Inorg.Chem.2004,43:3441-3446.
    [207]Mauro E,Cinzia G.Liberato M.A novel synthesis of CdSe nanocrystals[J].Materials Letters,2004,19:2429-2432.
    [208]Schroter M K,Khodeir L,Hambrock J,et al.Redox Chemistry of Cu Colloids Probed by Adsorbed CO:An in Situ Attenuated Total Reflection Fourier Transform Infrared Study[J].langmuir,2004,20:9453-9455.
    [209]Yoshiteru M,Eiji T,Hiroshi O,et al.Preparation of platinum nanoparticles by sonochemical reduction of the Pt(Ⅳ)ions:role of surfactants[J].Ultrasonics Sonochemistry.2001,8:1-6.
    [210]Chen T Y,Chen S F,Sheu H S,et al.Reactivity of Laser-Prepared Copper Nanoparticles:Oxidation of Thiols to Disulfides[J].Journal of Physics and Chemistry B,2002,106,9717-9722.
    [211]Nikhil R J,Zhang LW,Tapan K S,et al.Seed-mediated method to prepare cubic copper nanoparticlcs[J].Current Science,2000,79(9):1367-1370.
    [212]Kensuke A,Shingo I,Hidemi N,et al.Surface Modification-Based Synthesis and Microstructural Tuning of Nanocomposite Layers:Monodispersed Copper Nanoparticles in Polyimide Resins[J].Chemical Materials,2003,15:2488-2491.
    [213]Cao L Y,Peng Diao,Tao Zhu,and Zhongfan Liu.Uniform Electrochemical Deposition of Copper onto Self-Assembled Gold Nanopartieles[J].Journal of Physics and Chemistry B,2004,108:3535-3539.
    [214]Chen S,Carrol D L.Sythesis and characterization Of truncated triangular Sliver Nanoplates [J].NanoLetter,.2002,2(9):1003-1007.
    [215]Wang Z L,Kong X Y,Wen X G.et al.In Situ Structure Evolution from Cu(OH)2 Nanobelts to Copper Nanowires[J].Journal of Physics and Chemistry B,2003,107:8275-8280.
    [216]Albert G N,Esko I K,David P B,et al.Nanoparticle Formation via Copper(Ⅱ)Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water[J].Journal of Physics and Chemistry B,2001,105:11067-11075.
    [217]Giovanni V,Maristella B,Sergio B,et al.Nanoscale Copper Particles Derived from Solvated Cu Atoms in the Activation of Molecular Oxygen[J].Chemical Materials,2002,14:1183-1186.
    [218]Salvatore G,Guglielmo G C,Lucia L C,et al.Photochemical Mechanism of the Formation of Nanometer-Sized Copper by UV Irradiation of Ethanol Bis(2,4-pentandionato)copper(Ⅱ)Solutions[J].Chemical Materials,2004,16:1260-1266.
    [219]Peter S,Frank C.Semiconductor and Metal Nanoparticle Formation on Polymer Spheres Coated with Weak Polyelectrolyte Multilayers[J].Chemical Materials,2004,16:3066-3073.
    [220]Cai S Z,Xia X P,Xie C S.Research on Cu~(2+)transformations of Cu and its oxides particles with di(?)erent sizes in the simulated uterine solution[J].Corrosion Science,2005,47:1039-1047.
    [221]李玲.表面活性剂与纳米技术[M].化学工业出版社.2004.
    [222]李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社.1990.
    [223]Lamber R,Wetjen S,Jaeger N I.Size dependence of the lattice parameter of small particles [J].Physical Review B 1995,51:10968-10971.
    [224]Solliard C,Flueli M.Surface stress and size effect on the lattice parameter in small particles of gold and platinum[J].Surface Science 1985,156:487-494.
    [225]Apai G,Hamilton J F,Stohr J.Extended X-ray-absorption fine structure of small Cu and Ni clusters:binding-energy and bond-length changes with cluster size[J].Physical Review Letters.1979,43:165-169.
    [226]Montano P A,Schulze W,Tesehe B.Extended x-ray-absorption fine-structure study of Ag particles isolated in solid argon[J].Physical Review B 1984,30:672-677.
    [227]Dasilva E Z,Antonelli A.Size dependence of lattice parameter for Pd clusters:A molecular-dynamics study[J].Physical Review B 1996,54:17057-17060.
    [228]黄再兴,郑泉水.表面能对纳米微粒的晶格收缩和固有频率的影响[J].力学学报,1998,30(2):247-250.
    [229]刘建路,张其春,林金辉.纳米粒子晶格畸变率的数量级研究[J].材料导报,2002,16(6):71-73.
    [230]Duan Y W,Li J G,Structure study of nickel nanoparticles[J].Material Chemistry and Physics,2004,87:452-454.
    [231]Wang H C,Sun S G,J W Yan,et al.In situ STM studies of electrochemical growth of nanostruetured Ni films and their anomalous IR properties[J].Journal of Physical Chemistry B,2005,109:4309-4316.
    [232]Puntes V F,Zanchet D,Erdonmez C K,et al.Synthesis of hop-Co nanodisks[J].Journal of the American Chemical Society,2002,124(43):12874-12880.
    [233]米远祝,但悠梦,桑秋章,等.溶剂热还原法制备的镍纳米颗粒[J].磁性材料及器件,2006,37(4):32-34.
    [234]黄家明,李维,黄劲松,等.预弥散强化镍粉—硬质合金的新型粘结剂[J].稀有金属与硬质合金,1999,(137):1-3.
    [235]李凤生,等.超细粉体技术[M].北京:国防工业出版社,2000.
    [236]Yoona M,Kima Y,Kima Y M,Volkova V,et al.Superparamagnetic properties of nickel nanoparticles in an ion-exchange polymer film[J].Materials Chemistry and Physics,2005,91:104-107.
    [237]Sun X C,Gutierrez A,Yacaman M J,et al.Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe,Co,Ni[J].Materials Science and EngineeringA,2000,286:157-160.
    [238]Zheng H G,Liang J H,Zeng J H,et al.Preparation of nickel nanopowders in ethanol-water system(EWS)[J].Materials Research Bulletin,2001,36(5-6):947-952.
    [239]Hou Y,Kondoh H,Ohta T,et al.Size-controlled synthesis of nickel nanoparticles[J].Applied Surface Science,2005,241:218-222.
    [240]张晟卯,张春丽,吴志申,等.室温离子液体介质中尺寸、结构可控Ni纳米微粒的制备及结构表征[J].化学学报,2004,62(15):1443-1446.
    [241]Palchik O,Avivi S,Pinkert D,et al.Preparation And Characterization Of Ni/Nio Composite Using Microwave Irradiation And Sonication[J].NanoStruct Materials,1999;11:415-420.
    [242]Gubin S P.Metal containing nano-particles within polymeric matrices:preparation,structure,and properties[J].Colloids and Surfaces A,2002,202(2/3):155-163.
    [243]Mullin J W.Crystallization[M].3rd ed.Oxford:Butterworth,1993.
    [244]张克从.近代晶体学基础[M].北京:科学出版社,1987.
    [245]钱逸泰.结晶化学[M].合肥:中国科学技术大学出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700