用户名: 密码: 验证码:
黑龙江省大豆田稗草对精喹禾灵的抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江省是我国大豆主产区,也是我国最早使用除草剂的地区之一,稗草是大豆田主要的禾本科杂草,芳氧苯氧基丙酸酯类(APP)和环己烯酮类(CHD)除草剂在该地区广泛应用,尤其是APP类除草剂精喹禾灵在某些农场使用年限达到10年以上,在一些农场的大豆田由于精喹禾灵的累年连续使用,稗草产生了抗药性。为探究黑龙江省几个主要农场抗性稗草的发生情况,从11个农场大豆田采集稗草种子,通过整株生物测定法和种子生物测定法测定稗草对精喹禾灵的抗性水平;为探明抗药性机理,采用分子生物学和酶学等方法对抗性稗草的靶标酶基因、靶标酶活性和几类非靶标酶活性进行分析。主要结果如下:
     (1)种子生物测定法测定结果:格球山农场R型稗草的GR50值为2847.0 mg L-1,S型GR50值为22.7 mg L-1,相对抗性指数RI值为125.5;853农场R型稗草GR50值为63.6 mg L-1,S型GR50值为22.8 mg L-1,相对抗性指数为2.8;红星R型稗草的相对抗性指数为2.6;其他R型稗草的GR50值为26.5-50.1 mg L-1,S型的GR50值为21.3-32.1 mgL-1,相对抗性指数小于2.0。
     (2)整株生物测定法测定结果:格球山农场R型稗草的抗性水平仍为最高,GR50值为1066.4 g ai ha-1,S型GR50值为12.2 g ai ha-1,抗性指数为87.3倍;853农场R型稗草GR50值为92.5 g ai ha-1,S型GR50值为15.3 g ai ha-1,相对抗性指数为6.0;其他采集地R型生物型的GR50值为29.5-61.2 g ai ha-1,S型生物型的GR50值为13.5-20.8 g aiha-1,相对抗性指数在1.5-3.6之间。结合种子生物测定法测定结果表明格球山农场R型稗草为高抗生物型,其他十个农场的稗草抗性水平较低。
     (3)选取格球山农场R型稗草,853农场R型稗草,五大连池农场R型稗草分别作为不同抗性水平的抗性生物型研究对象,分别测定三种生物型在喷药60 g ai ha-1的精喹禾灵0d,2d,4d,6d,8d后的SOD,POD,CAT,GSTs的活性变化趋势,结果表明853农场R型稗草和五大连池农场R型稗草的GSTs在施药后较同期对照活性大大增加,格球山农场R型稗草GSTs活性几乎无变化,三种保护酶中高水平抗性和低水平抗性生物型酶活差异最大的是POD酶。结果表明两种低水平抗性与GSTs的活性增强相关,高抗生物型的POD酶活性被大大激活。
     (4)利用HPLC测定出精喹禾灵对高抗生物型格球山农场R型稗草(RR)和敏感对照格球山农场S(SS)型稗草质体型ACCase的IC50,结果表明精喹禾灵对RR型稗草的IC50为145.38μM,SS的IC50为0.69μM,相对抗性指数为210.7倍。结果表明高抗生物型的靶标酶较敏感对照对精喹禾灵的敏感性大大降低。
     (5)扩增出格球山农场R型稗草(RR)和格球山农场S(SS)型稗草质体型ACCasecDNA全长各约7527 bp,开放性阅读框(ORF)6951bp,5’非翻译区(UTR)193 bp,3’非翻译区(UTR)383bp,各编码2316个氨基酸,相对分子量256 KD,PI=5.97。经BLAST、系统进化树分析和转导肽序列分析证明扩增得到的序列为稗草质体型ACCase cDNA序列,此二序列已在GenBank上注册,登录号为HQ395759和HQ395758。经比对RR和SS型稗草的质体型ACCase cDNA全长序列,发现相对于大穗看麦娘核苷酸位置5341位A突变为T,相应的1781位的氨基酸Ile突变为Leu,分析表明该点突变与格球山农场R型稗草对精喹禾灵的高抗性相关。
     (6)通过SYBR Green I实时荧光定量PCR试验,分别测定高抗生物型RR和敏感生物型SS在喷洒60 g ai ha-1的精喹禾灵后,质体型ACCase基因的表达情况,结果表明在喷药0d,2d,4d,6d,8d后RR型稗草的质体型ACCase基因表达先被抑制然后逐渐恢复,SS的趋势相同。结果表明高抗生物型的靶标酶基因表达与抗性机理无关。
     综上所述,在被检测的十一个农场中仅格球山农场出现高抗生物型,其他农场抗性水平较低。抗药性机理研究结果表明稗草对精喹禾灵的高水平抗性与靶标酶基因突变相关,低水平抗性与解毒酶GSTs的活性增强相关。
Heilongjiang Province is the important soybean production in China and one of the earliestherbicide application regions. Echinochloa crusgalli (L.) Beauv. (barnyardgrass) is a maingrass weed in soybean fields. For controlling this grass weed, APP and CHD herbicides werewidely used in the region. Especially, quizalofop-p-ethyl was used more than 10 years onsome farms. Because of the continuous use of this herbicide for years, barnyardgrass evolvedresistance to this herbicide. In order to determine the popularization of the resistance,barnyardgrass seeds were collected from 11 farms where quizalofop-p-ethyl was used formany years and the resistance level was determined using whole-plant bioassay and seedbioassay. In order to clarify the mechanism of resistance, the resistance mechanism wasstudied using molecular biologymethods and enzymologymethods. Main results as follows:
     (1) Seeds bioassay results: GR50 of Geqiushan R was 2847.0 mg L-1, GR50 of S was 22.7mg L-1, RI was 125.5; GR50 of 853 R was 63.6 mg L-1, GR50 of S was 22.8 mg L-1, RI was 2.8;RI of Hongxing R was 2.6; GR50 of other Rs were 26.5-50.1 mg L-1, GR50 of Ss were21.3-32.1 mg L-1, RI <2.8.
     (2) Whole plant bioassay results: The resistance level of Geqiushan R was the highest.GR50 of Geqiushan R was 1066.4 g ai ha-1, GR50 of S was 12.2 g ai ha-1; RI was 87.3; GR50 of853 R was 92.5 g ai ha-1, GR50 of S was 15.3 g ai ha-1, RI was 6.0; GR50 of other Rs were29.5-61.2 g ai ha-1, GR50 of Ss were 13.5-20.8 g ai ha-1, RI were 1.5-3.6. Combined the dataof seeds bioassay, Geqiushan R was defined as the high resistance population, the resistancelevel of other Rs was low.
     (3) Geqiushan R, 853 R and Wudalianchi R were chosen as the study objects and theactivities tendency of SOD, POD, CAT, GSTs after spraying quizalofop-p-ethyl 60 g ai ha-1from 0d to 8d were determined. Results showed that: the activities of GSTs in 853 R andWudalianchi R increased and reached the peak at the eighth day. The activity of GSTs inGeqiushan R changed little compared the control. Among the three protective enzymes thevariation tendency of POD has significant difference between the high resistant biotype andthe low resistant biotypes. The results showed that the resistance mechanism of 853 R andWudalianchi R related to the enhanced detoxication of GSTs. POD activities inhigh-resistance biotype were significantly activated.
     (4) Using HPLC, the activities of plastid ACCase in Geqiushan R (RR) and Geqiushan S(SS) at series quizalofop-p-ethyl concentrations were determined. The quizalofop-p-ethylconcentration that inhibited the activity of plastid ACCase in RR and SS by 50% (IC50) wasdetermined. The results showed that IC50 of RR was 145.38μM, IC50 of SS was 0.69μM, RIwas 210.7. Results showed that sensitiveness of high-resistance biotype to quizalofop-p-ethylreduced greatly compared to the sensitive biotype.
     (5) Full-length cDNAs of barnyardgrass plastid ACCase in RR and SS were clonedsuccessfully. The plastid ACCase cDNA of RR is about 7 kb, includes an ORF of 6951bp,193 nucleotides of 5' untranslated sequence (UTR) and 383 nucleotides of 3' UTR. This geneis deduced to encode a protein of 2316 amino acids with a pI of 5.97 and molecular weight ca.256 KD. According to the results of BLAST, phylogenetic tree analysis and transit peptideanalysis, the cloned cDNA sequences were barnyardgrass plastid ACCase. The accessionnumbers in GenBank were HQ395758 and HQ395759 respectively. After compared thefull-length cDNA of barnyardgrass ACCase in RR and SS, one non-synonymous mutationoccurred at nucleotide position 5341, with codon 1781 (standardized to blackgrass), causingan ATA codon (isoleucine) to be changed into a TTA codon (leucine). After compared thesetwo sequences and other ACCase sequences which were resistant or sensitive toACCase-inhibiting herbicides, this point mutation was considered as an important reason ofthe resistance of plastid ACCase in RR to quizalofop-p-ethyl.
     (6) Using SYBR Green I Real-time PCR test, the expression of plastid ACCase gene in RRand SS was determined after spraying the quizalofop-p-ethyl at the dosage of 60 g ai ha-1.Theexpression of plastid ACCase gene in RR was inhibited at the beginning and then recovered;the tendency of SS was similar. So the expression of target gene was not the reason of thehigh resistance.
     To sum up, high resistant biotype only appeared in Geqiushan Farm and the resistancelevels in other ten farms were low. The resistance of RR to quizalofop-p-ethyl was induced bythe reduced sensitiveness of plastid ACCase. From the results of sequence analyse and geneexpression analyse, one point mutation was found compared the sensitive biotype. Theexpression of target gene was similar in RR and SS. So the reduced sensitiveness of plastidACCase in RR was induced mainly by this point mutation. In this study an enhanceddetoxication enzyme (GSTs) was considered as the main reason of the resistance in 853 R andWudalianchi R.
引文
崔海兰.播娘蒿(Descurainia sophia)对苯磺隆的抗药性研究[D].中国农业科学院, 2009.
    黄炳球,林韶湘.我国稻区稗草对禾草丹的抗药性现状[J].华南农业大学学报, 1995, 16(3):17-21.
    黄炳球,林韶湘.我国稻田稗草对丁草胺的抗药性研究[J].华南农业大学学报, 1993, 14(1):103-108.
    李宜慰,等.麦田茼草和日本看麦娘对氯磺隆的抗性研究[J].江苏农业学报.1996,12(2):34-38.
    李拥兵,吴志华,陈萱,刘洪斌,黄炳球.我国南方稻区稗草对二氯喹啉酸的抗药性测定[J].农药学学报, 2003, 5:89-92.
    刘亮.中国植物志[M].科学出版社, 2002,第九卷.
    孙健,王金信等.抗苯磺隆猪殃殃乙酰乳酸合成酶的突变研究[J].中国农业科学, 2010,43(5):972-977.
    熊静.乙酰辅酶A羧化酶的分离和纯化[D].华中师范大学, 2009.
    杨彩宏,董立尧,李俊,等.油菜田日本看麦娘对高效氟吡甲禾灵抗药性的研究[J].中国农业科学, 2007, 40(12):2759-2765.
    于颦,姜海澄.黑龙江省北部地区重茬大豆田杂草化学防除技术[J].作物杂志, 2004,4:33-34.
    张朝贤,倪汉文,魏守辉,黄红娟,刘延,崔海兰.杂草抗药性研究进展[J].中国农业科学, 2009, 42(4):1274-1289.
    Adler M., Wacker R., and Niemeyer C M. A real-time immuno-PCR assay for routineultrasensitive quantification of proteins. Biochem. Biophys. Res. Commun. 2003,308:240-250.
    Aebi H. Catalase in vitro. Methods. Enzymol. 1984, 105:121-126.
    Alcocer R M., Thill D C., Shafii B. Seed biology of sulfonylurea-resistant and susceptiblebiotypes of pricklylettuce (Lactuca serriola). Weed Technology, 1992, 6(4):858-864.
    Alscher R G., Erturk N., Heath L S. Role of superoxide dismutases (SODs) in controllingoxidative stress in plants. J. Exp. Bot., 2002, 53: 1331-1341.
    Amanda C B., Stephen R M., Zoe A W., and Linda M F. An isoleucine to leucine substitutionin the ACCase of Alopecurus myosuroides (black-grass) is associated with resistance tothe herbicide sethoxydim. Pesticide Biochemistry and Physiology, 2002 72:160-168.
    Ambion. Real-time relative RT-PCR: how it’s done. 2007. www.ambion.com/techlib/tn/85/857.html.
    Anderson M P and Gronwald J W. Atrazine resistance in a velvetleaf (Abutilon theophrasti)biotype due to enhangced glutathione S-transferase activity. Plant Physiol, 1991,96:104-109.
    Asada A. Ascorbate peroxidases-A hydrogenperoxide scavenging enzyme in plants. Physiol.Plant., 1992, 85:235–241.
    Ashigh J., Tardif F J. An Ala 205 Val substitution in acetohydroxyacid synthase of easternblack nightshade (Solanum ptychanthum) reduces sensitivity to herbicides and feedbackinhibition. Weed Science, 2007, 55:558-565.
    Babczinski P., Fischer R. Inhibition of acetyl-coenzyme a carboxylase by the novelgrass-selective herbicide 3-(2,4-dichlorophenyl)-perhydroind-olizine-2,4-dione. Pestic.Sci., 1991, 33:455-466.
    Baldwin F L., Talbert R E., Carey III V F., Kitt M J., Helms R S., Black H L., Smith R J. Ahistorical review of propanil-resistant barnyardgrass in Arkansas and field advice for itsmanagement in dry-seeded rice. Reserch Series Arkansas Agricultural ExperimentStation, 1996, 453:1-8.
    Bao X M., Focke M., Pollard M., Ohlrogge J. Understanding in vivo carbon precursor supplyfor fattyacid synthesis in leaf tissue. Plant. J., 2000, 22:39-50.
    Bao X., Shorrosh B S., and Ohlrogge J B. Isolation and characterization of an Arabidopsisbiotin carboxylase gene and its promoter. Plant. Mol. Biol., 1997, 35:539-550.
    Bartling D., Radzio R., Steiner U and Weiler E W. A glutathione S-transferase withglutathione-peroxidase activity from Arabidopsis thaliana. Molecular cloning andfunctional characterization. Eur. J. Biochem. 1993, 216:579-586.
    Beckie H, Stephenson G R., Dykstra M D., Mclaren R D., Hamill A S. Agronomic practicesinfluencing triazine-resistant weed distribution in Ontario. Weed Technol, 1990,4:199-207.
    Bravin F, Zanin G and Preston C. Resistance to diclofop-methyl in two Lolium spppopulations from Italy: studies on the mechanism of resistance. Weed Research, 2001,41:461-473.
    Brown A C., Moss S R., Wilson Z A., Field L M. An isoleucine to leucine substitution in theACCase of black-grass (Alopecurus myosuioides) is associated with resistance to theherbicide sethoxydim. Pesticide Biochemistryand Physiology, 2002. 72:160-168.
    Bucciarelli T., Sacchetta P., Pennelli A., Cornelio L., Romagnoli R., Melino S., Petruzelli R.and DiIlio C. Characterisation of toad glutathione transferase. Biochim. Biophys. Acta.1999, 1431:189–198.
    Budiani A, Santoso D, Aswidinnoor H and Suwanto A. ACCase activityof oil palm mesocarpand cloning of gene fragment encoding biotin carboxylase subunit of ACCase.Indonesian Journal of Agriculture, 2008, 1(1):44-50.
    Burke I C., Burton J D., York A C., Cranmer J., Wilcut J W. Mechanism of resistance toclethodim in a johnsongrass (Sorghum halepense) biotype. Weed Science, 2006,54:401-406.
    Bustin S A. Absolute quantification of mRNA using real-time reverse transcriptionpolymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25:169-193.
    Bustin S A., Benes V., Nolan T., and Pfaffl M W. Quantitative real-time RT-PCRaperspective. J. Mol. Endocrinol. 2005, 34:597-601.
    Caffrey J J., Choi J K., Wurtele E S., Nikolau B J. Tissue distribution of acetyl-CoAcarboxylase in leaves of leek (Allium porrum L.). J Plant Physiol, 1998, 153:265-269.
    Caretto S., Giardina M C., Nicolodi C., and Mariotti D. Chlorsulfuron resistance in Daucuscarota cell lines and plants: involvement of gene ampli?cation. Theor. Appl. Genet., 1994, 88:520-524.
    Christoffers M J and Pederson S N. Response of wild oat (Avena fatua) acetyl-coAcarboxylase mutants to pinoxaden. Weed. Sci. Soc. Am. Abstr., 2007, No. 256.Christoffers M J. Genetic aspects of herbicide-resistant weed management. Weed Technology,1999, 13: 647-652.
    Cocker K M, Moss S R, Coleman J O D. Multiple mechanisms of resistance tofenoxaprop-p-ethyl in United Kingdom and other European populations ofherbicide-resistant Alopecurus myosuroides (Black-Grass). Pest. Biochem. Physiol, 1999,65:169-180.
    Cocker K M, Northcroft D S, Coleman J O D, Moss S R. Resistance to ACCase-inhibitingherbicides and isoproturon in UK populations of Lolium multiflorum: mechanisms ofresistance and implications forcontrol. Pest. Manag. Sci., 2001, 57: 587-597.
    Cocker K M., Coleman J O D., Blair A M., Clarke J H., Moss S R. Biochemical mechanismof cross-resistance to aryxyphenoxypropionate and cyclohexanedione herbicides inpopulations of Avena spp. Weed Research, 2000, 40:323-334.
    Cui H L., Zhang C X., Zhang H J. Confirmation of flixweed (Descurainia sophia) resistanceto tribenuron in China. Weed Science, 2008, 56:775-779.
    Cummins I., Cole D J., Edwards R. Purification of multiple glutathione transferases involvedin herbicide detoxification from wheat (Triticum aestivum L.) treated with the safenerfenchlorazole-ethyl. Pestic. Biochem. Physiol., 1997, 59:35-49.
    Davis M S., Solbiati J., Cronan J E. Overproduction of acetyl-CoA carboxylase activityincreases the rate of fatty acid biosynthesis in Escherichia coli. J. Biol. Chem., 2000, 275:28593-28598.
    Dawson J H and Bruns V F. Longevity of barnyardgrass, green foxtail and yellow foxtailseeds in soil. Weed Science, 1975, 23:437-440.
    De Prado J L., Osuna M D., Heredia A and De Prado R. Lolium rigidum, a pool of resistancemechanisms to ACCase inhibitor herbicides. J. Agic. Food. Chem., 2005, 53:2185-2191.
    De Prado R., Gonzalez-Gutierrez J., Menendez J., Gasquez J., Gronwald J W.,Gimenez-Espinosa R. Resistance to acetyl CoA carboxylase-inhibiting herbicides inLolium multiflorum. Weed Science, 2000, 48:311-318.
    De Prado R., Osuna M D., Fischer A J. Resistance to ACCase inhibitor herbicides in a greenfoxtail (Setaria viridis) biotype in Europe. Weed Science, 2004, 52:506-512.
    Delye C., Matejicek A., Gasquez J. PCR-based detection of resistance in black-grass(Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest ManagementScience, 2002. 58: 474-478
    Devine M. D. Mechanisms of resistance to acetyl-coenzyme a carboxylase inhibitors: areview. Pesticide Science, 1997, 51: 259-264.
    Dewaele E., Forlani G., Degrande D., Nielsen E., and Rambour S. Biochemicalcharacterization of chlorsulfuron resistance in Cichorium intybus L. var. Witloof. J. PlantPhysiol., 1997, 151:109-114.
    Dinelli G., Bonetti A., Marotti I., Minelli M., Catizone P. Possible involvement of herbicidesequestration in the resistance to diclofop-methyl in Italian biotypes of Lolium spp.Pesticide Biochemistryand Physiology, 2005, 81:1-12.
    Donn G., Tischer E., Smith J A., and Goodman H M. Herbicide-resistant alfalfa cells: anexample of gene ampli?cation in plants.J. Mol. Appl. Genet. 1984, 2: 621-635.
    Eastmond P J and Rawsthorne S. Coordinate changes in carbon partitioning and plastidialmetabolism during the development of oilseed rape embryo. Plant. Physiol., 2000, 122:767-774.
    Edwards R. and Cole D. J. Glutathione transferases in wheat (Triticum) species with activitytoward fenoxaprop-ethyl and other herbicides. Pestic. Biochem. Physiol., 1996, 54:96-104.
    Egli M A et al. Characterization of maize acetyl-coenzyme A carboxylase. Plant. Physiol.,1993, 101: 499-506.
    Elborouga K M., Winz R., Deka R K et al. Biotin carboxyl carrier protein andcarboxyltransferase subunits of the multi-subunit form of acetyl-CoA carboxylase fromBrassion napus: cloning and analysis of expression during oilseed rape embryogenesis.Biochem. J., 1996, 315:103-112.
    Eleni K S., Giannopolitis C N., Vassiliou G. Propanil tolerance in Echinochloa crusgalli.Tropical Pest Management, 1982, 35(1):6-7.
    Felger R S. 1990. Non-native plants of Organ Pipe Cactus National Monument, Arizona.Technical Report No. 31. U. S. Geological Survey, Cooperative Park Studies Unit, TheUniversity of Arizona and National Park Service, Organ Pipe Cactus NationalMonument. 93 pp.
    Felger R S. 2000. Flora of the Gran Desierto and Rio Colorado of northwestern Mexico. TheUniversityof Arizona Press. Tucson, Arizona. 673 pp.
    Fischer A J., Ateh C M., Bayer D E., Hill J E. Herbicide-resistant Echinochloa oryzoides andE. phyllopogon in California Oryza sativa fields. Weed Science, 2000, 48:225-230
    Foder S P A et al. Light-directed, spatially addressable parallel chemical synthesis. Science,1991, 251:767-773.
    Gadamski G., Ciarka D., Gawronski S W. Molecular survey of Polish resistant biotype ofseeds. Second International Weed Control Congress, Cophenhagen, 1996.Gaines T A, Preston C, Leach J E, Chisholm S T, Shaner D L. Gene amplification is a
    mechanism for glyphosate resistance evolution. Proc. Natl. Acad. Sci. USA, 2010,107:1029-1034.
    Gengenbach B G., Somers D A., Gronwald J W., Egli M A., Lutz S M. Transgenic plantsexpressing maize acetyl CoA carboxylase gene and method of altering oil content.United States Patent, 6222099, 2001-4-24.
    Gimenez-Espinosa R., Plaisance K L., Plank D W., Gronwald J W and De Prado Rafael.Propaquizafop absorption, translloction, metabolism, and effect on acetyl-CoAcarboxylase isoforms in chickpea (Cicer arietinum L). Pesticide Biochemistry andPhysiology, 1999, 65:140-150.
    Glaser P., Frangeul L., Buchrieser C. Comparative genomics of listeria species. Science, 2001,249:849-852.
    Gornicki P and Haselkorn R. Wheat acetyl-CoA carboxylase. Plant. Mol. Biol., 1993,22:547-552.
    Gornicki P, Faris J, King I et al. Plastid-localized acetyl-CoA carboxylase of breadwheat isencoded by a single gene on each of the three ancestral chromosome sets. Proc Natl AcadSci USA, 1997, 94: 14179-14184.
    Gould F W. 1951. Grasses of the southwestern United States. The Universityof Arizona Press.Tucson, AZ. 352 pp.
    Gronwald J W. Resistance to photosystem II inhibiting herbicides. In: Powles S E., Holtum JA M. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL. CRCPress, Inc., 1994: 27-60.
    Gronwald J W., Eberlein C V., Betts K J., Baerg R J., Ehlke N J and Wyse D L. Mechanismof diclofop resistance in an Italian ryegrass (Lolium multi?orum Lam.) biotype. Pestic.Biochem. Physiol., 1992, 44:126-139.
    Guchhai R B., Polakis S E et al. Acetyl Coenzyme A Carboxylase System of Escherichia coli.J. Biol. Chem., 1974, 249:6633-6645.
    Hall L M., Moss S R. and Powles S B. Mechanisms of resistance toaryloxyphenoxypropionate herbicides in two resistant biotypes of Alopecurusmyosuroides (black-grass): herbicide metabolism as a cross-resistance mechanism.Pesticide Biochemistryand Physiology, 1997, 57: 87-98.
    Hawke J C., Leech R A Acetyl-CoA-carboxylase activity in normally developing wheatleaves. Planta, 1987, 171:489-495.
    Heap I, Knight R. A population of ryegrass tolerant to the herbicide diclofop-methyl. J. Aust.Inst. Agric. Sci., 1982, 48:156-157.
    Heap I. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org2011.
    Heap I. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org2001.Heap I. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org2003.
    Heap I. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org2006.
    Heap I. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org2008.
    Heid C A., Stevens J., Livak K J., and Williams P M. Real-time quantitative PCR. GenomeRes, 1996, 6: 986-994.
    Herbert D, Sasaki Y. Compartmentalization of two forms of acetyl-CoA carboxylase in plantsand the origin of their tolerance toward herbicides. Proceedings of the National Academyof Sciences of the USA, 1994, 91: 3598-3601.
    Herbert D., Price L J., Alban C. Kinetic studies on two isoforms of acetyl-CoA carboxylasefrom maize leaves. Biochem. J., 1996, 318: 997-1006.
    Herbert D., Walker K A., Price L J. Acetyl-CoA carboxylase-a graminicide target site. Pestic.Sci., 1997, 50: 67-71.
    Hickman J C. 1993. The Jepson manual: higher plants of California. University of CaliforniaPress. Berkeley and Los Angeles, CA. 1400 pp.
    Hidayat I and Preston C. Enhanced metabolism of ?uazifop acid in a biotype of Digitariasanguinalis resistant to the herbicide ?uazifop-P-butyl. Pestic. Biochem. Physiol., 1997,57: 137–146.
    Higuchi R et al. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions.Biotechnology, 1993, 11:1026–1030.
    Higuchi R., Fockler C., Dollinger G., and Watson R. Kinetic PCR analysis: real-timemonitoring of DNA amplification reactions. Biotechnology, 1993, 11:1026-1030.
    Hitchcock A S and Chase A. 1951. Manual of the grasses of the United States. United StatesDepartment of Agriculture, Misc. Publ. No. 200. Division of Plant Exploration andIntroduction, Bureau of Plant Industry, Soils, and Agricultural Engineering. AgriculturalResearch Administration. Government Printing Office, Washington, D C. 1051 pp.
    Hochberg O, Sibony M, Rubin B. The response of ACCase-resistant Phalaris paradoxapopulations involves two different target site mutations. Weed. Res., 2009, 49:37-46.Holt G S and Radosevich S R. Herbicide resistance in weeds (Biotypes, genetic component).Proceedings California Weed Conference, 1982, 34: 152-155.
    Holtum J A M., Matthews J M., Hausler R E., Liljegren D R and Powles S B.Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). III. On themechanism of resistance to diclofop-methyl. Plant. Physiol., 1991, 97:1026-1034.http://www.chinagrain.cn/http://www.chinapesticide.gov.cn/http://www.weeds.cas.psu.edu/psuweeds/barnyardgrass.pdf.
    Huggett J., Dheda K., Bustin S and Zumla A. Real-time RT-PCR normalization; strategiesand considerations. Genes. Immun., 2005, 6:279-284.
    Hunter S C and Ohlrogge J B. Regulation of spinach chloroplast acetyl-CoA carboxylase.Archives of Biochemistry and Biophysics, 1998, 359(2): 170-178.Incledon B J, Christopher H J. Inhhibition of ACCase220 and ACCase240 Isozymes from
    Sethoxydim-Resistant and -Susceptible Maize Hybrids. J. Agric. Food. Chem., 1997, 47:299-304.
    Jacques G, Prado D R., Menendez J. Management of herbicide-resistant grass weeds inEurope. In Second International Weed Control Congress Copenhagen, 1996, pp:393-398.
    John J D., Goldsbrough P B., Weller S C. Stability and expression of amplified EPSPS genesin glyphosate resistant tobacco cells and plantlets. Plant. Cell. Rep., 1996, 15: 431-436.
    Kaundun S S. An aspartate to glycine change in the carboxyl transferase domain of acetylCoA carboxylase is in part associated with resistance to ACCase inhibitor herbicides in aLolium multi?orum population. Planta., 2010, In press
    Kaundun S S., Cleere S M., Stanger C P., Burbidge J M., Windass J D. Real-time quantitativePCR assays for quantification of L1781 ACCase inhibitor resistance allele in leaf andseed pools of Lolium populations. Pest Management Science, 2006, 62: 1082-1091.
    Ke J S, Wen T N, Nikolau B J et al. Coordinate regulation of the nuclear and plastidic genescoding for the subunits of the heteromeric acetyl-coenzyme A carboxylase. PlantPhysiology, 2000, 122:1057-1071.
    Ke J., Behal R H., Back S L., Nikolau B J., Wurtele E S., Oliver D J. The role of pyruvatedehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developingArabidopsis seeds. Plant Physiol., 2000, 123:497-508.
    Ke J., Choi J K., Smith M., Horner H T., Nikolau B J., Wurtele E S. Structure of the CAC1gene and in situ characterization of its expression. Plant. Physiol., 1997, 113: 357-365.Kearney T H and Peebles R H. 1960. Arizona flora. University of California Press, Berkeleyand Los Angeles, California. 1085 pp.
    Kevin et al. The mechanism of resistance to aryloxyphenoxypropionate andcyclohexanedione herbicides in a johnsongrass biotype. Weed Science, 2001,49:477-484
    Kim K H. Regulation of mammalian acetyl-coenzyme A carboxylase. Annu. Rev. Nutr., 1997,17:77-99.
    Kolkman J M., Slabaugh M B., Bruniard J M., Berry S., Bushman B S., Olungu C., Maes N.,Abratti G., Zambelli A., Miller J F., Leon A., Knapp S J. Acetohydroxyacid synthasemutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower.Theoretical and Applied Genetics, 2004, 109 (6): 1147-1159.
    Kozaki A., Kamada K., Nagano Y., Iguchi H., Sasaki Y. Recombinant carboxyltransferaseresponsive to redox of pea plastidic acetyl-CoA carboxylase. The Journal of BiologicalChemistry, 2000, 275 (14): 10702-10708.
    Kubista M., Andrade J M., and Bengtsson M. The real-time polymerase chain reaction. Mol.Aspects. Med, 2006, 27: 95-125.
    Kuk Y I., Burgos N R., Talbert R E. Cross- and multiple resistance of diclofop-resistantLolium spp. Weed Science, 2000, 48:412-419.
    Kuk Y., Wu J., Derr J F and Hatzios K K. Mechanism of fenoxaprop resistance in anaccession of smooth crabgrass (Digitaria ischaemum). Pestic. Biochem. Physiol., 1999,64:112-123.
    Leach G E., Devine M D., Kirkwood R C and Marshall G. Target enzyme-based resistance toacetyl-coenzyme A carboxylase inhibitors in Eleusine indica. Pestic. Biochem. Physiol.,1995, 51:129-136.
    Liu W J., Harrison D K., Chalupska D., Gornicki P., O’Donnell C C. Single-site mutations inthe carboxyl transferase domain of plastid acetyl-CoA carboxylase confer resistance tograss-speci?c herbicides. Proc. Natl. Acad. Sci. USA, 2007, 104: 3627-3632.
    Livak K J and Schmittgen T D. Analysis of relative gene expression data using real-timequantitative PCR and the 2-△△CTmethod. Methods, 2001, 25: 402-408.
    Malik R K. Herbicide resistant weed problems in developing world and methods to overcomethem. Second International Weed Control Congress Copenhagen, 1996, 665-673.
    Maneechote C., Holtum J A M., Preston C., Powles S B. Resistant acetyl-CoA carboxylase isa mechanism of herbicide resistance in a biotype of Avena sterilis ssp. ludoviciana. Plant.Cell. Physiol., 1994, 35:627-635.
    Maneechote C., Preston C., and Powles S B. A diclofop-methyl resistant Avena sterilisbiotype with a herbicide-resistant acetyl-coenzyme A carboxylase and enhancedmetabolism of diclofop-methyl. Pestic. Sci., 1997, 28: 105-114.
    Manidool C. 1992b. Echinochloa crusgalli (L.) P. Beauv. In: t' Mannetje, L., and R M Jones(eds.) Plant resources of south-east Asia. No.4. Forages. Pudoc Scientific Publishers,Wageningen, the Netherlands. 303 pp.
    Mannervik B. and Danielson U H. Glutathione transferase Structure and catalytic activity.CRC Crit Rev Biochem. 1988, 23:283-337.
    Marles M A S., Devine M D and Hall J C. Herbicide resistance in green foxtail (Setariaviridis (L.) Beauv.) and johnsongrass (Sorghum halepense (L.) Pers.) biotypes conferredby an insensitive form of acetyl coenzyme-A carboxylase. Weed Sci. Soc. Am. Abstr.,1993b, 33:62.
    Marles M A S., Devine M D and Hall J C. Herbicide resistance in Setaria viridis conferred bya less sensitive form of acetyl coenzyme A carboxylase. Pestic. Biochem. Physiol.,1993a, 46:7-14.
    Matthews J M., Holtum J A M., Liljegren D R., Furness B and Powles S B. Cross-resistanceto Herbicides in Annual Ryegrass. Plant Physiol., 1990, 94:1180-1186.
    McDougall W B. 1973. Seed plants of northern Arizona. The Museum of Northern Arizona.Flagstaff. 594 pp.
    Menendez J and De Prado R. Diclofop-methyl cross-resistance in a chlortoluron resistantbiotype of Alopecurus myosuroides. Pestic. Biochem. Physiol., 1996, 56:123-133.
    Mittler R. Oxidative stress antioxidants and stress tolerance. Trends. Plant. Sci., 2002, 7:405-410.
    Morrison T B., Weis J J., and Wittwer C T. Quantification of low-copy transcripts bycontinuous SYBR Green I monitoring during amplification. Bio. Techniques., 1998, 24:954-962.
    Munday M R and Hemingway C J. The regulation of acetyl-CoA carboxylase: a potentialtarget for the action of hypolipidemic agents. Adv. Enzyme. Regul., 2001, 39:205-234
    Munz P A. 1974. A flora of southern California. University of California Press, Berkeley, LosAngeles. 1086 pp.
    Nakkaew A., Chotigeat W., Eksomtramage T., Phongdara A. Cloning and expression of aplastid-encoded subunit, beta-carboxyltransferase gene (accD) and a nuclear-encodedsubunit, biotin carboxylase of acetyl-CoA carboxylase from oil palm (Elaeis guineensisJacp.). Plant Science, 2008, 175: 497-504.
    Neve P and Powles S. High survival frequencies at low herbicide use rates in populations ofLolium rigidum result in rapid evolution of herbicide resistance. Heredity, 2005,95:485-492.
    Nikolaos S K., Eleftherohorinos I G. Identification of a johnsongrass (sorghum halepense)biotype resistant to ACCase-inhibiting herbicides in Northern Greede. Weed. Tech.,2009, 23:470-476.
    O’Hara P., Slabas A R., Fawcett T. Fatty acid and lipid biosynthetic genes are expressed atconstant molar ratios but different absolute levels during embryogenesis. Plant. Physiol.,2002, 129:310-320.
    Ohlrogge J B and Jaworski J G. Regulation of fatty acid synthesis. Annu. Rev. Plant. Physiol.Mol. Biol., 1997, 48:109-136.
    Ohlrogge. Methods of increasing oil content of seeds. United States Patent, 5, 925, 805.1999-7-20.
    Page R A., Okada S., Harwood J L. Acetyl-CoA carboxylase exerts strong flux control overlipid synthesis in plants. Biochim. Biophys. Acta., 1994, 1210 (3): 369-372.
    Pascal S, Debrauwer L, Ferte M P, Anglade P, Rouimi P, Scalla R. Analysis andcharacterization of glutathione S-transferase subunits from wheat (Triticum aestivum L.).Plant. Sci., 1998, 134: 217-226.
    Passardi F, Penel C, Dunand C. Performing the paradoxical: How plant peroxidases modifythe cell wall. Trend. Plant. Sci., 2004, 9:534-540.
    Peixoto F, Alves-Fernandes D, Santos D, Fontanhas-Fernandes A. Toxicological effects ofoxy?uorfen on oxidative stress enzymes in tilapia Oreochromis niloticus. PesticideBiochemistryand Physiology, 2006, 85: 91-96.
    Petit C, Bay G, Pernin F, Delye C. Prevalence of cross or multiple resistance to theacetylcoenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden inblack-grass (Alopecurus myosuroides Huds.) in France. Pest Manag. Sci., 2010, 66(2):168-177.
    Plank D W., Gengenbach B G and Gronwald J W. Effect of iron on activity of soybeanmulti-subunit acetyl-coenzyme A carboxylase. Physiologia Plantarum., 2001, 112:183-194.
    Potvin C. Temperature-induced variation in reproductive success: field and controlexperiments with the C4 grass Echinochloa crusgalli. Canadian Journal of Botany, 1991,69:1577-1582.
    Powles S B and Qiu Yu. Evolution in action: plants resistant to herbicides. Annu. Rev. PlantBiol., 2010, 61: 317-347.
    Powles S. B., Preston C., Bryan I. Herbicide resistance: impact and management advances inagronomy. Pesticide BiochemistryPhysiology, 1997, 58:57-93.
    Price L J., Herbert D., Moss S R., Cole J D and Harwood J L. Graminicide insensitivitycorrelates with herbicide-binding co-operativity on acetyl-CoA carboxylase isoforms.Biochem J., 2003a, 375: 415-423.
    Price L J., Moss S R., Cole D J and Harwood J L. Graminicide resistance in a blackgrass(Alopecurus myosuroides) population correlates with insensitivity of acetyl-CoAcarboxylase. Plant Cell and Environment, 2003b, 27:15-26
    Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Prog. Lipid. Res., 2002, 41:182-196.
    Reade J P H and Cobb A H. Puri?cation, characterization and comparison of glutathione S-transferases from black-grass (Alopecurus myosuroides Huds) biotypes. PesticideScience, 1999, 55: 993-999.
    Reverdatto S, Beilinson V, Nielsen N C et al. A multisubunit acetyl coenzyme A carboxylasefrom soybean. Plant Physiology, 1999, 961-978.
    Ritter R L, Menbere H. Distribution and management of triazine-resistant weeds in themid-Atlantic region of the U. S. A. 1997 Brighton crop protection conference: weeds.Proceedings of an international conference. Brighton, UK, 17-20 November 1997, 3:1147-1152.
    Roesler K R, Shorrosh B S, Ohlrogge J B et al. Structure and expression of an Arabidopsisacetyl-coenzymeAcarboxylase gene. Plant Physiol, 1994, 105: 611-617.
    Ryan G F. Resistance of common groundsel to simazine and atrazine. Weed. Sci., 1970, 18:614-616.
    Saiki R K et al. Enzymatic amplification of b-globin genomic sequences and restriction siteanalysis for diagnosis of sickle cell anemia. Science, 1985, 230:1350-1354.
    Sales M. A., Shivrain V. K., Burgos N. R. Amino acid substitutions in the acetolactatesynthase gene of red rice (Oryza sativa) confer resistance to imazethapyr. Weed Science,2008, 56: 485-489.
    Sambrook J et al. Molecular cloning-alaboratory manual. 1989. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory.
    Sasaki Y, Kozaki A, Ohmori A et al. Chloroplast RNA editing required for functionalacetyl-CoA carboryase in plants. The Journal of Biological Chemistry, 2001,276(6):3937-3940.
    Sasaki Y., Kozaki A., Hatano M. Link between light and fatty acid synthesis:thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proc. Natl.Acad. Sci. USA, 1997, 94: 11094-11101.
    Schena M D et al. Quantitative monitoring of gene expression patterns with a complementaryDNA microarray. Science 1995, 270:467-470.
    Schleiff E and Soll J. Travelling of proteins through membranes: translocation intochloroplasts. Planta, 2000, 211: 449-456.
    Schulte W., Topfer R., Stracke R. Multi-functional acetyl-CoA carboxylase from Brassicanapus encode by a multi-gene family: indication for plastidic calization of at least oneisoform. Proc. Natl. Acad. Sci. USA, 1997, 94: 3465-3470.
    Seefeldt S S., Fuerst E P., Gealy D R., Shukla A., Irzyk G P., Devine M D. Mechanisms ofresistance to diclofop of two wild oat (Avena fatua) biotypes from the Willamette Valleyof Oregon. Weed Sci, 1996 44: 776-781.
    Shah D M et al. Engineering herbicide tolerance in transgenic plants. 1986, Science, 233:478-481.
    Shintani D K and Ohlrogge J B. Feedback inhibition of fatty acid synthesis in tobaccosuspension cells. The Plant Journal, 1995, 7 (4):577-587
    Shreve F and Wiggins I L. 1964. Vegetation and Flora of the Sonoran Desert: Vols. I and II.Stanford UniversityPress. Stanford, California. 1740 pp.
    Shukla A., Dupont S and Devine M D. Resistance to ACCase-inhibitor herbicides in wild oat:evidence for target site-based resistance in two biotypes from Canada. Pestic. Biochem.Physiol., 1997a, 57:147-155.
    Shukla A., Leach G E., and Devine M D. High-level resistance to sethoxydim conferred by analteration in the targe enzyme, acetyl-CoA carboxylase, in Setaria faberi and Setariaviridis. Plant. Physiol. Biochem., 1997b, 35:803-807.
    Song N H., Yang Z M., Zhou L X., Wu X., Yang H. Effect of dissolved organic matter on thetoxicityof chlorotoluron to Triticum aestivum. Journal of Environment Science, 2006, 17:101-108.
    Takahashi A., Yamada S and Tanaka K. Mechanism of herbicidal activity of a newcyclohexane-1,3-dione, tepraloxydim to Poa annua L. Weed Biology and Management,2002, 2:84-91.
    Tal A, Rubin B. Molecular characterization and inheritance of resistance toACCase-inhibiting herbicides in Lolium rigidum. Pest Management Science, 2004. 60:1013-1018.
    Tal A., Zarka S and Rubin B. Fenoxaprop-P resistance in Phalaris minor conferred by aninsensitive acetyl-coenzyme A carboxylase. Pestic. Biochem. Physiol., 1996,56:134-140.
    Tao J et al. Molecular basis for resistance to tribenuron in shepherd's purse (Capsellabursa-pastoris (L.) Medik.). Pesticide Biochemistry and Physiology, 2011, in press.
    Tardif F J and Powles S B. Herbicide multiple-resistance in a Lolium rigidum biotype isendowed by multiple mechanisms: isolation of a subset with resistant acetyl-CoAcarboxylase. Physiol. Plant., 1994, 91: 488-494.
    Tardif F J, Rajcan I, Costea M. A mutation in the herbicide target site acetohydroxyacidsynthase produces morphological and structural alterations and reduces fitness inAmaranths powellii. New. Phytol., 2006, 169: 251-264.
    Tardif F J., Holtum J A M., and Powles S B. Occurrence of a herbicide resistantacetyl-coenzyme A carboxylase mutant in annual ryegrass (Lolium rigidum) selected bysethoxydim. Planta, 1993, 190:176-181.
    The Agrochemicals Handbook. 1991. The Royal Societyof Chemistry. Cambridge, England.The Farm Chemicals Handbook. 1992. Meister Publishing. Willoughby, OH.
    Thelen J J., Mekhedov S., Ohlrogge J B. Brassicaceae express multiple isoforms of biotincarboxyl carrier protein in a tissue-specific manner. Plant. Physiol., 2001,125:2016-2028
    Tosapon P., Parnuwat M., and Kenji Usui. The role of altered acetyl-CoA carboxylase inconferring resistance to fenoxaprop-P-ethyl in Chinese sprangletop (Leptochloachinensis (L.) Nees). Pest Mangement Science, 2006, 62:1109-1115.
    Valasek M A and Repa J J. The power of real-time PCR. Adv. Physiol. Educ., 2005, 29:151-159.
    Vandenbroucke I I., Vandesompele J., Paepe A D., and Messiaen L. Quantification of splicevariants using real-time PCR. Nucleic. Acids. Res., 2001, 29: 68.
    Veculescu V E et al. Serial analysis of gene expression. Science, 1995, 270:484-487.Volenberg D and Stoltenberg D. Altered acetyl-coenzyme A carboxylase confers resistance toclethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis. WeedResearch, 2002 42: 342-350.
    Wang S. H., Yang Z. M., Lu B., Li S. Q., Lu Y. P. Copper induced stress and antioxidativeresponses in roots of Brassica juncea L. Botanical Bulletin of Academia Sinica, 2004, 45:203–212.
    Wang Y S and Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidativestress in the roots of Cassia tora L. Plant Cell Physiology, 2005, 46: 1915-1923.
    White G M, Moss S R, Karp A. Differences in the molecular basis of resistance to thecyclohexanedione herbicide sethoxydim in Lolium multiflorum. Weed. Res., 2005, 45:440-448.
    Whitson T D., Editor L C., Burrill S A., Dewey D W., Cudney B E., Nelson R D., Lee RParker. 1992. Weeds of the West. The Western Society of Weed Science in cooperationwith the Western United States Land Grant Universities Cooperative Extension Servicesand the Universityof Wyoming. 630 pp.
    Widholm J M et al. Glyphosate selection of gene amplification in suspension cultures of 3plant species. Physiol. Plant., 2001, 112:540-545.
    Wong M L and Medrano J F. Real-time PCR form RNA quantitation. Bio. Techniques., 2005,39:75–85.
    Wu X. Y. and von Tiedemann A. Impact of fungicides on active oxygen species andantioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone.Environment. Pollution., 2002, 116: 37-47.
    Yang C H., Dong L Y., Li J., Stephen R M. Identification of Japanese foxtail (Alopecurusjaponicus) resistant to haloxyfop using three different assay techniques. Weed Science,2007, 55: 537-540.
    Ye B., Gressel J. Transient, oxidant-induced antioxidant transcript and enzyme levelscorrelate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta,2000, 211 (1): 50-61.
    Yu Q., Collavo A., Zheng M. Q., Owen M., Sattin M., and Powles S B. Diversity ofacetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluationusing clethodim. Plant. Physiol., 2007b, 145: 547-558.
    Yu Q., Shane Friesen L J., Zhang X Q and Powles S B. Tolerance to acetolactate synthase andacetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferredbytwo co-existing resistance mechanisms. Pesticide Biochemistry and Physiology, 2004,78:21-30.
    Yu Q., Zhang X Q., Hashem A., Walsh M J., Powles S B. ALS gene proline (197) mutationsconfer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum)populations. Weed. Sci., 2003, 51:831-838.
    Yu-Yau J S., Hepburn A G and Widholm J M. Glyphosate selected ampli?cation of the 5-enolpyruvylshikimate-3-phosphate synthase gene in cultured carrot cells. Mol. Gen.Genet., 1992, 232:377-382.
    Zagnitko O, Jelenska J, Tevzadze G, Haselkorn R, Gornicki P. An isoleucine/leucine residuein the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interactionwith aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proc. Natl. Acad. Sci.USA., 2001, 98: 6617-6622.
    Zhang H., Benjamin T and Tong L. Molecular basis for the inhibition of thecarboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop anddiclofop. PNAS, 2004, 101:5910-5915.
    Zhang H., Yang Z., Shen Y and Tong L. Crystal Structure of the Carboxyltransferase Domainof Acetyl-Coenzyme A Carboxylase. Science, 2003, 299, 2064-2067.
    Zhang J X and Kirham M B. Drought stress-induced changes in activities ofsuperoxidedismutase, catalase and peroxidase in wheat species. Plant. Cell. Physioogyl.,1994, 35:785-791.
    Zhang X Q and Devine M D. A possible point mutation of plastidic ACCase gene conferringresistance to sethoxydim in green foxtail (setaria viridis). Weed. Sci. Soc. Am. Abstr.,2000, No. 40.
    Zhang X Q and Powles S B. The molecular bases for resistance to acetyl coenzyme Acarboxylase (ACCase) inhibiting herbicides in two target-based resistant biotypes ofannual ryegrass (Lolium rigidum). Planta, 2006a, 223:550-557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700