机械装配结构组织性研究及其在概念设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械产品的智能设计是设计者追求的理想境界,是社会努力的目标。概念设计是机械设计中连接抽象和具体的桥梁,其具有强烈的复杂性、经验性、模糊性和对环境的依赖性,目前在这个阶段还只能依赖设计人员的设计经验,而没有可靠的计算机软件的辅助。随着机械产品模块化、标准化的大力推行,如何将此类可量化的信息和设计人员的经验信息进行融合,成为了目前迫切需要解决的问题。因此,本文提出了“以本体知识库为基础,以自组织理论为推理机制,实现具有一定智能的计算机辅助概念设计系统”的构想。基于此构想,综合运用复杂网络技术、本体论、XML技术、自组织理论等方法,深入研究了机械产品概念设计的智能化实现方法,为提高设计自动化提供了相应的理论和技术支持。
     本论文的主要研究工作如下:
     1.机械产品在零件粒度下的静态特性和动态特性分析
     在分析了若干典型机械装配结构网络的基础上,创新性的提出装配网络的概念,并通过对其特性的分析,发现其具有小世界网络特性和部分无标度网络特性,以及其它6个显著的特点,证明了机械产品在零件粒度下是一个具有高度组织性的系统;通过对装配网络静态特性和动态特性的分析,发现虽然机械零件本身并不具有自主性,但其与其它个体具有自主性的系统一样,其形成的复杂网络具有明显的一些共性。本研究成果为机械装配结构的自组织性研究奠定了理论基础。
     2.基于本体论的机械装配结构知识本体模型构建
     功能是通过装配来实现的,根据机械结构能实现的功能类型,提出机械装配结构的概念,并对其进行分类,归纳各自的结构特性;提出了一种将本体的构建和描述过程分成五步来实现的知识本体构建方法——MFSO法;利用“框架表示法+XML"的方法对机械装配结构知识本体进行形式化的描述。为机械装配结构自组织概念设计系统提供了技术基础。
     3.机械产品在机械装配结构粒度下的组织性分析
     首先从结构、周期和进化3个方面对比机械装配结构粒度下的机械产品和生物体的相似性,从表面上验证其具有组织性;对机械装配结构网络的特性进行分析,总结出它们3个方面的主要特性,即机械装配结构网络图的组成结构、输入输出的数量和输入输出之间的路径;利用组织论相关的知识,定义了机械装配结构组织,并对影响其组织性的选择不确定性、特征不确定性和配合不确定性进行了分析;最后利用信息论中的熵理论,对机械装配结构的不确定性提出了一个度量方法。
     4.机械装配结构的自组织演化模型构建
     创新性的将自组织理论应用在机械产品的概念设计中。首先分别从系统开放性、远离平衡态特性、非线性作用和涨落特性4个方面验证了机械装配结构粒度下机械产品具有自组织发生的环境和条件;其次对机械装配结构之间的竞争和协同的特点和机制进行了研究,分析了机械装配结构粒度下机械产品的自组织动力学特性。建立了机械装配结构的自组织演化模型,为实现机械产品的自动化概念设计提供了有效方法。
     5.多维沙堆空间的知识库存储机制和改进ACT框架的知识库构建研究
     针对知识管理中的知识表示和推理问题,特别是具有不确定性的经验知识,创新性的提出了基于多维沙堆空间的知识存储机制,避免了知识库臃肿,并能及时纠正和更新知识库,有效的提高了知识库的智能性;将Anderson的ACT理论进行了扩展,并构建了基于改进ACT框架的知识库,用于对可量化的程序性知识和不可量化的模糊知识的综合管理。为机械装配结构自组织概念设计系统提供了有效辅助手段。
     最后,分别开发机械零件网络生成系统AGMPNS、机械装配结构知识本体建模系统KOMASS和机械装配结构自组织概念设计系统SOBCACDS,来对本文的研究成果进行了验证。
Intelligence design of mechanical product is the ideal state pursued by designers and the target for community's efforts. Conceptual design is the conncetion between the abstract requirement and the concrete structure. This is why conceptual design has strong complexity, experience, fuzziness and dependence to environment. At present we can only depend on designers'experience during the stage of conceptual design without the aid of a reliable computer software. With the wide spread of modularization and standardization of mechanical products, how to integrate the quantized information and designers'experience information is increasingly becoming an urgent question. Thus, the idea of realizing intelligent computer-aided conceptual design system based on ontology knowledge base and self-organization reasoning mechanism is put forward. Based on this idea, complex network, ontology, XML and self-organization are adopted as key technologies to realize intelligent conceptual design of mechanical products. This method may offer theory and technology sustenance to improve design automatization.
     The main research works and achievements in this paper are as follows:
     1. Analysis of Static Characteristics and Dynamic Characteristics of Mechanical Products with Part Granularity
     On the basis of extensive analyses of typical mechanical assembly structure network, we innovatively proposed a new concept called assembly network which is high level of clustering and partially consistent with the scale-free network, and has other6obvious characteristics. These results prove that mechanical products with part granularity are system of high organization. By the analysis on static characteristics and dynamic characteristics of assembly network, we find that although mechanical parts themselves do not have the ability of self-determination, they have some common characteristics in comparison with the system of self-determination.
     2. Ontology-based Knowledge Model of Mechanical Assembly Structure
     Function is realized by assembly. According to the types of functions, we proposed a concept called mechanical assembly structure, categorized them and analyzed their structural features. We proposed a method to construct knowledge ontology called MFSO, which divided the process of construction and description of ontology into5stages. We used a formalizing description based on Frame Representation and XML to represent knowledge ontology of mechanical assembly structure.
     3. Analysis of Organization of Mechanical Products with Mechanical Assembly Strucuture Granularity
     Firstly, a contrast is made between mechanical products with mechanical assembly structure and biology focusing on structure, life cycle and evolution to prove that mechanical products are system with organization. Secondly, we analyzed and found3characteristics of mechanical assembly structure network. Thirdly, we made a definition to mechanical assembly structure organization, and analyzed3factors, choice uncertainty, feature uncertainty and fit uncertainty, which may affect its organization. At last, we proposed a measure method to calculate the uncertainty of mechanical assembly structure using the Entropy Theory.
     4. Construction of Self-Organization Evolutionary Model of Mechanical Assembly Structure
     Firstly, mechanical products with mechanical assembly structure granularity having the necessary condition and environment of self-organization has been proved in four aspects:system openness, conditions far from equilibrium, non-linear interaction and fluctuation. At last, competition and cooperation mechanism of mechanical assembly structure is analyzed to find their self-organization dynamic characteristics.
     5. Knowledge Application and Improvement Based on Multi-Dimension Sandpile Space and Improved ACT Framework
     Multi-dimension sandpile space is put forward to represent and reason experience knowledge which is characteristic of fuzziness. Knowledge base using multi-dimension sandpile space can not only deal with uncertain experience knowledge, but also keep knowledge base in an acceptable size when learning new knowledge. And it has an efficient self-correcting mechanism to update knowledge in system. Anderson's ACT theory is improved to construct knowledge base, which can manage both procedural or production knowledge and experience.
     At last, three prototype systems, Analysis and Generation of Mechanical Parts Network System (AGMPNS), Knowledge Ontology of Mechanical Assembly Structure System (KOMASS) and Self-Organization Based Computer Aided Concept Design System (SOBCACDS) were developed to prove the method and mechanism proposed in this paper.
引文
[1]戴汝为.复杂巨系统科学——一门21世纪的科学.自然杂志,1998,19(4):187-192.
    [2]哈肯.信息与自组织:复杂系统的宏观方法.成都:四川教育出版社,1988.
    [3]Pierre Massotte. Self-Organization:A New Approach to Improve the Reactivity of the Production System. Proceedings of IEEE Iternational Conference on Emerging Technologies and Factory Automation,1995,10(1):23-32.
    [4]中国科学院先进制造领域战略研究组.中国至2050年先进制造科技发展路线图.北京:科学出版社,2009.
    [5]Tiemeng Li, Wenjun Hou. Self-Organizing Assembly Principle and Data Management for Per-vasive Environment. Proceedings of IEEE International Conference on Pervasive Computing and Applications,2008,2:816-819.
    [6]C. E. Shonnon, W. Weaver. The mathematical theory of communication. Urbana: University of Illinois Press,1949.
    [7]G. J. Chaitin. Algorithmic information theory. Cambridge:Cambridge University Press,1987.
    [8](美)N. P. Suh著,谢友柏等译.公理设计:发展与应用.北京:机械工业出版社,2004.
    [9]哈肯.高等协同学[M].北京:科学出版社,2009.
    [10]吴彤.自组织方法论研究[M].北京:清华大学出版社,2001.
    [11]Prigogine, Strengers,沈小峰等译.从混沌到有序(Order out of Chaos) [M].上海译文出版社,2005:105-206.
    [12]Prigogine,沈小峰等译.从存在到演化(From Being to Becoming) [M].北京大学出版社,2007:47-88.
    [13]王文旭.复杂网络的演化动力学及网络上的动力学过程研究[D].合肥:中国科学技术大学博士学位论文,2007(4).
    [14]Albert R, Albert I, Nakarado G L. Structural vulnerability of the North American power grid. Physical Review E,2004,69:025103(R).
    [15]Kinney R, Crucitti P, Albert R, et al. Modeling cascading failures in the North American power grid. The European Physical Journal B,2005,46:101-107.
    [16]Guimera R, Mossa S, Turtschi A, et al. The worldwide air transportation network: Anomalous centrality, community structure, and cities'global roles. Proc. Natl. Acad. Sci. USA,2005,102(22):7794-7799.
    [17]Guimera R, Amaral LAN. Modeling the world-wide airport network. The European Physical Journal B,2004,38:381-385.
    [18]Newman M E J, Forrest S, Balthrop J. Email networks and the spread of computer viruses. Physical Review E,2002,66:035101(R).
    [19]Wang Juan, Wilde P D. Properties of evolving e-mail networks. Physical Review E,2004,70:066121.
    [20]Roopnarine P D. Extinction cascades and catastrophe in ancient food webs. Paleobiology,2006,32(1):1-19.
    [21]Berlow E L, Neutel A M, Cohen J E, et al. Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology,2004,73(3):585-598.
    [22]Meyers L A, Pourbohloul, Newman M E J, et al. Network theory and SARS: predicting outbreak diversity. Journal of Theoretical Biology,2005,232:71-81.
    [23]Keeling M J, Eames K T D. Networks and epidemic models. Journal of the royal society interface,2005,2(4):295-307.
    [24]Colizza V, Barrat A, Barthelemy M, et al. The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. USA,2006,103(7):2015-2010.
    [25]Zanette D H. Dynamics of rumor propagation on small-world networks. Physical Review E,2002,65:041908.
    [26]Moreno Y, Nekovee M. Pacheco A F. Dynamics of rumor spreading in complex networks. Physical Review E,2009,69:066130.
    [27]Latora V, Marchiori. How the science of complex networks can help developing strategies against terrorism. Chaos, Solitons and Fractals,2004,20:69-75.
    [28]Porter M A, Mucha P J, Newman M E J, et al. A network analysis of committees in the U.S. House of Representatives. Proc. Natl. Acad. Sci. USA,2005,102(20): 7057-7062.
    [29]Schneider JJ, Hirtreiter C. The impact of election results on the member numbers of the large parties in Bavaria and Germany. International Journal of Modern Physics C,2005,16(8):1165-1215.
    [30]Sznajd-Weron K, Sznajd J. Opinion evolution in closed community. International Journal of Modern Physics C,2000,11(6):1157-1165.
    [31]Barabasi A-L, Bonabeau E. Scale-Free Networks. Scientific American,2003,288: 60-69.
    [32]Huang Li, Park K, Lai Y-C. Information propagation on modular networks. Physical Review E,2006,73:035103(R).
    [33]Luding S. Granular media:Information propagation. Nature,2005,435:159-160.
    [34]Dodds P S, Watts D J, Sabel C F. Information exchange and the robustness of organizational networks. Proc. Natl. Acad. Sci. USA,2003,100(21): 12516-12521.
    [35]Verspagen B, Duysters G. The small worlds of strategic technology alliances. Technovation,2004,24:563-571.
    [36]Park J, Newman M E J. A network-based ranking system for US college football. Journal of Statistical Mechanics:Theory and Experiment,2005:P10014.
    [37]Elgazzar A S. Applications of small-world networks to some socio-economic systems. Physica A,2003,324:402-407.
    [38]Sznajd-Weron K, Weron R. A Simple model for price formation. International Journal of Modern Physics C,2002,13(1):115-123.
    [39]M. E. J. Newman, The structure and function of complex networks. SIAM Review 45,2003:167-256.
    [40]D. J. Watts, S. H. Strogatz. Collective dynamics of 'small-world' networks. Nature,1998,393:440-442.
    [41]A. L. Barabasi, R. Albert. Emergence of scaling in random networks. Science, 1999,286:509-512.
    [42]S. Milgram. The small world problem [J]. Psychology Today,1967,1(1):60-67.
    [43]R. Albert, A.-L. Barabasi. Statistical mechanics of complex networks, Rev. Mod. Phys.74,2002,47.
    [44]Newman M E J, Watts D J. Renormalization group analysis of the small-world network model. Physics. Letters. A,1999,263:341-346.
    [45]Newman M E J, Watts D J. Scaling and percolation in the small-world network model. Physical Review E,1999,60:7332-7342.
    [46]Kasturirangan R. Multiple Scales in Small-World Graphs. Arxiv preprint cond-mat/9904055,1999.
    [47]Dorogovtsev S N, Mendes J F F. Exactly solvable small-world network. Europhys. Letters,2000,50:1-7.
    [48]Kleinberg J, Navigation in a small world. Nature,2000,406:845-845.
    [49]杨波,陈忠,段文奇.基于个体选择的小世界网络结构演化.系统工程,2004,22(12): 1-5.
    [50]Ozik J, Hunt B-R, Ott E, Growing networks with geographical attachment preference:Emergence of small world. Physical Review E,2004,69:026108.
    [51]刘强,方锦清,李永,梁勇.探索小世界特性产生的一种新方法.复杂系统与复杂性科学,2005,2(2):13-19.
    [52]Fronczak A, et al. Higher order clustering coefficients in Barabasi-Albert networks, Physical A,2002,316:688-694.
    [53]Fronczak A, Fronczak P, Holyst J. A. Mean-field theory for clustering coefficients in Barabasi-Albert networks, Physical Review E,2003,68(4): 046126.
    [54]车宏安,顾基发.无标度网络及其系统科学意义[J].系统工程理论与实践,2004,24:11-16.
    [55]吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24:18-46.
    [56]Barabasi A L, Bonabeau E. Scale_free networks[J]. Scientific American, May 2003:50-59.
    [57]NEWMAN M E J. Detecting community structure in networks. The European Physical Journal B-Condensed Matter,2004,38(2):321-330.
    [58]JIN E M, GIRVAN M, NEWMAN M E J. Structure of growing social networks. Physical Review E 64,2001:046132.
    [59]HOLME P, KIM B J. Growing scale-free networks with tunable clustering. Physical Review E 65,2002:026107.
    [60]NOH J D, JEONG H C, AHH Y Y, et al. Growing network model for community with group structure. Physical Review E 71,2005:036131.
    [61]XUAN Qi, LI Yanjun, WU Tiejun. Growth model for complex networks with hierarchical and modular structures [J]. Physical Review E 73,2006:036105.
    [62]G. Nicolis, I.Prigogine,徐锡申等译.非平衡系统的自组织(Self-Organization in.Nonequilibrium System).科学出版社,1986:475-524.
    [63]张杰.基于自组织理论的区域系统演化发展研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2007(7).
    [64]Igor Matutinovic. The aspects and the role of diversity in socioeconomics system: an evolutionary perspective. Ecological Economics.2001.39(4):239-256.
    [65]Robert W. Rycroft. Self-organization networks:implications for globalation. Technovation.2004.24(7):187-197.
    [66]Martin Rinne. Technology Roadmaps:Infrastructure for innovation. Technological Forecasting Social Change.2004.71(8):67-80.
    [67]Ulrich Wit. Self-organization and economics- what is new? Structural Change and Economics Dynamics.1997.11(8):489-507.
    [68]徐涛松.从自组织角度重新定位城市规划.中华建设,2008,4:31-32.
    [69]孙佳音,高献忠.虚拟社区的自组织特征及其规则生成问题.学术交流,2008,7.
    [70]姜克锦,张殿业,刘帆.城市交通系统自组织与他组织复合演化过程.西南交通大学学报,2008,43(5):605-609.
    [71]David Levinson. Self-Organization of Surface Transportation Networks. TRANSPORTATION SCIENCE,2006,40(2):179-188.
    [72]Levinson, D Feng Xie, Shanjiang Zhu. The Co-Evolution of Land Use and Road Networks. Canada:Presented at the 53rd North American Conference of Regional Science Association International in Toronto,2006.
    [73]刘泷,李晗.自组织P2P的设计与实现.电信快报,2008,11:31-33.
    [74]段亚军,武昌,石磊,李成恩.一种有效的空中自组织网络路由算法.计算机应用研究,2008,25(7):2118-2120.
    [75]David Alderson, Walter Willinger. A Contrasting Look at Self-Organization in the Internet and Next-Generation Communication Networks. IEEE Communications Magazine,2005:94-100.
    [76]Aditya Karnik, Anurag Kumar. Distributed Optimal Self-Organization in Ad Hoc Wireless Sensor Networks. IEEE/ACM TRANSACTIONS ON NETWORKING, 2007,15(5):1035-1045.
    [77]Kamal Premaratne, Jinsong Zhang, Murat Dogruel. Location Information-Aided Task-Oriented Self-Organization of Ad-Hoc Sensor Systems. IEEE SENSORS JOURNAL,2004,4(1):85-95.
    [78]E.拉兹洛著,闵家胤译.进化——广义综合理论.北京:社会科学文献出版社,1998:34.
    [79]Rachel C, Andrew B W. Requirements capture:theory and practice. Technovation,1998,18(8/9):497-511.
    [80]Wynne H. Current research in the conceptual design of mechanical products. CAD.1998,30(5):377-381.
    [81]Redfield R C, Krishnan S. Towards Automated Conceptual Design of Physical Dynamic Systems, J. of Engineering Design.1993,3.
    [82]邓家禔,韩晓建,曾硝等.产品概念设计——理论、方法与技术.北京:机械工业出版社,2002.
    [83]赵继云,高剑锋,钟延修,周济.现代机械工程设计的特点及CAD技术的 走向浅析.机械设计,1998(5):30-35.
    [84]Pahl G, Beitz W. Engineering Design[M]. The Design Council,1984:1-15.
    [85]邹慧君,汪利,王石刚,等.机械产品概念设计及其方法综述.机械设计与研究,1998,(2):9-12.
    [86]Yoshikawa H. Design philosophy:the state of the art. Annals of the CIRP,1989, 38(2):579-586.
    [87]张建明,魏小鹏,张德珍.产品概念设计的研究现状及其发展方向.计算机集成制造系统,2003,9(8):613-618.
    [88]舒慧林,刘继红,钟毅芳.计算机辅助机械产品概念设计研究综述.计算机辅助设计与图形学学报,2000,12(12):947-954.
    [89]Sturges R H, Shaughnessy K, Kilani M J. Computational model for conceptual design based on extended function logic. Artificial Intelligence in Engineering Design, Analysis and Manufacturing,1996,10(4):255-274.
    [90]Gorti S R, Sriram R D. From Symbol to Form:A Framework for Conceptual Design, Computer-Aided Design,1996,28(11):853-870.
    [91]檀润华,谢英俊.基于功率键图的概念设计.机械设计,1997,14(7):1-3.
    [92]霍志璞,黄克正,刘刚等.基于功能表面分解重构的产品信息模型.机械科学与技术,2002,21(5):836-839.
    [93]Wang Z. Knowledge-based system methodology for conceptual design of mechanical system. In:Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition. New York, ASME,1996:1-12.
    [94]谢进,陈永.概念设计及功能“粒化”问题.机械设计,1998,15(3):45-46.
    [95]冯培恩,徐国荣.基于设计目录的原理方案及其求解过程的特征建模.机械工程学报,1998,34(2):79-86.
    [96]戴跃洪,曾励.系统化的机械产品计算机辅助设计(SCAD)方法的研究.重庆大学学报,1996,19(3):98-104.
    [97]蔡逆水,邹慧君,王石刚,等.机械产品概念设计——智能CAD中的关键技术.机械设计,1997,6:1-3.
    [98]Sridhar Kota, et al. Function, structures and constraints in Conceptual Design. Design Theory and Methodology-DTM'90, edited by J. Rinderle, ASME,1990.
    [99]Pahl G, Beitz W. Engineering Design-A Systematic Approach(2nd Edition). London:Springer,1996.
    [100]Sun N P. The principle of design. USA:Oxford University Press,1990.
    [101]韩晓建,邓家禔.机械产品设计的过程建模.北京航空航天大学学报,2000, 26(5):604-607.
    [102]黄洪钟,赵正佳,关立文,等.基于遗传算法的方案智能优化设计.计算机辅助设计与图形学学报,2002,14(5):437-441.
    [103]Gero J. Knowledge Engineering in CAD. North-Holland, Amsterdam,1985.
    [104]H. Shinno, et al. Computer aided concept design for structural configuration of machine tools:Variant Design Using Directed Graph, ASME Journal of Mechanical Design,1987,109:371-376.
    [105]Light R A. Modification of Geometric Models through variational geometry. CAD,1982.
    [106]Rinderle J. Grammatical approach to engineering design. Research in Engineering Design,1991,2:137-146.
    [107]Neville D, Joskowicz L. A representation language for mechanical behaviour. Presented at Design Theory and Methodology,1993.
    [108]Malmqvist J. Computer-aided conceptual design of energy transforming technical systems based on technical system theory and bond graphs. Presented at Lancaster International Workshop on Engineering Design. Lancaster University Engineering Design Center, Lanaster,1994.
    [109]Murthy S, Addanki S. PROMPT:an innovative design tool. In proceedings AAAI-87. MIT Press, Cambridge, MA,1987:637-642.
    [110]Kusiak A, Szczerbicki E. A formal approach to specifications in conceptual design. Journal of Mechanical Design,1992,114:659-666.
    [111]Martin J L, Roddis W M K. Integrating qualitative and quantitative reasoning in structural engineering. Computing in Civil and Building Engineering,1993,2: 1235-1242.
    [112]Yoshioka M, Nakamura M, Tomiyama T, Yoshikawa H. A design process model with multiple design object models. Presented at Design Theory and Methodology. American Society of Mechanical Engineers, New York,1993.
    [113]Kolb M A, Bailey M W. FRODO:constraint-based object-modeling for preliminary design, Presented at Advances in Design Automation, American Society of Mechanical Engineering, New York,1993.
    [114]Kusiak A, Szczerbicki E, Vujosevic R. An intelligent system for conceptual design. Expert Systems,1991,3:35-44.
    [115]Rao A V, Prakasa N S. BEAS:expert system for the preliminary design of bearings, Advances in Engineering Software,1992,14:163-166.
    [116]Tong C, Gomory A. A knowledge-based computer environment for the conceptual design of small electromechanical appliances. Computer,1993,26: 69-71.
    [117]Hsu W, Lim A, Lee C S G. Conceptual level design for assembly analysis using state transitional approach. In Proceedings of the IEEE International Conference of Robotics and Automation. IEEE Computer Society, Piscataway, NJ,1996: 3355-3361.
    [118]ZHANG W Y, TOR S B, BRITTON G A, et al. EFDEX:a knowledge-based expert system for functional design of engineering systems. Engineering with Computers,2001,17(4):339-353.
    [119]John S Gero. Computational models of innovative and creative design processes. Technological Forecasting and Social Change,2000,64:183-196.
    [120]Campbell M 1, Cagan J, Kotovsky K. Agent-based synthesis of electromechanical design configurations. Journal of Mechanical Design,2000, 122(1):61-69.
    [121]宋玉银,蔡复之,张伯鹏,等.基于实例推理的产品概念设计系统.清华大学学报,1998,38(8):5-8.
    [122]毛权,肖人彬,周济.CBR中基于实例特征的相似实例检索模型研究.计算机研究与发展,1997,34(4):257-263.
    [123]孔凡国,邹慧君.方案设计两级实例推理过程模型及系统结构的研究.机械设计与研究,1999,2:17-19.
    [124]邓家禔.产品设计的基本理论与技术.中国机械工程,2000,1-2期合刊:139-143.
    [125]陈洪武,黄克正,杨波.基于功能表面的产品结构设计自动化研究与实现.机械设计与研究,2004,20(3):24-27.
    [126]Holland J H. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor,1975.
    [127]顾新建,祁国宁,夏振华.产品信息基因模型.中国标准化,1996,7:3-6.
    [128]李洪杰,肖人彬.基于功能构造的复杂产品进化设计基因模型.机械工程学报,2003,39(5):41-48.
    [129]张向军,桂长林.智能设计中的基因模型.机械工程学报.2001,37(2):8-11.
    [130]王翔,高亮,邱浩波.进化设计及其相关技术研究.机械设计与制造,2006,(4): 32-33.
    [131]冯培恩,陈泳,张帅等.基于产品基因的概念设计.机械工程学报,2002,38(10): 1-6.
    [132]顾新建,祁国宁,王剑峰.产品信息标准化工程.中国标准化,1996,9:8-11.
    [133]李洪杰,肖人彬.基于功能构造的复杂产品进化设计基因模型.机械工程学报,2003,39(5):41-48.
    [134]张志伟,叶庆泰.设计系统的基因表达及应用研究.机械科学与技术,2000,19(1):46-48.
    [135]刘怡,黄克正,刘和山.基于产品基因进化的结构设计自动化.机械科学与技术,2004,23(7):813-815.
    [136]Chen K Z, Feng X A. Exploring a genetics-based design theory and methodology for innovating products. Proceedings of the 6th International Conference on Engineering Design and Automation, Maui, Hawaii, U.S.A.,2002:278-283.
    [137]Chen K Z, Feng X A. A framework of the genetic-engineering-based design theory and methodology for product innovation. Proceedings of 14th International Conference on Engineering Design, Stockholm, Sweden, August, 2003.
    [138]Chen K Z, Feng X A. Virtual genes of manufacturing products and their reform for product innovative design. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.2004,218(5): 557-574.
    [139]穆建华,徐人平.产品基因和TRIZ理论在弹簧进化中的应用.产品设计,2006,33(1):50-52.
    [140]陈昆昌,陈子辰.大批量定制产品仿生建模基础.机电工程,2005,22(7):36-41.
    [141]赵亮,潘双夏,冯培恩.基于基因工程的产品成本建模理论和方法.机械工程学报,2003,39(5):76-81.
    [142]赵亮,冯培恩,潘双夏.基于基因工程的成本建模方法的研究.机械设计与研究,2000,3:10-12.
    [143]周生祥.基于基因工程思想的产品建模方法.机械科学与技术,2000,19(5):815-820.
    [144]陈洪武,黄克正,杨波.基于功能表面的产品结构设计自动化研究与实现.机械设计与研究,2004,20(3):24-27.
    [145]Huang Kezheng. Research on scheme design for mechanical products based on design requirement decomposition & reconstitution, Manufacturing Science and Technology for New Century, Eds. Jun. Ni, et al, Whhan,1998:360-364.
    [146]Rosenman M A. A exploration into evolutionary models for non-routine design[J]. Artificial Intelligence in Engineering.1997,11:287-293.
    [147]John S Gero, Thomas Mc Neill. An approach to the analysis of design protocols[J]. Design Studies.1998,19:21-61.
    [148]John S Gero, Vladimir A Kazakov. Evolving design genes in space layout planning problems[J]. Artificial Intelligence in Engineering.1998,12:163-176.
    [149]Bentley P. J.. Generic Evolutionary Design of Solid Objects Using a Genetic Algorithm. Ph.D. Thesis.1996.
    [150]Charles P. W.. Touched by Nature. Science(U. S. News & World Report).1998, 27(6):43-45.
    [151]Lipson H., Jordan B.P.. Automatic Design and Manufacture of Robotic Life Forms. Nature,2000,8(4):974-978.
    [152]Huang Kezheng, Ai Xing, Zhang Chengrui. Decomposition & Reconstitute Principle for Complex Surface and its Application. Science in China(Series E), 1997,1:89-96.
    [153]黄克正,艾兴,姜建平.共轭曲面求解的分解重构原理及其应用.机械工程学报,1996,32(1):68-73.
    [154]Huang K Z, Y Rong. Decomposition and reconstitution based fixture design Int. Mechanical Engineering Congress and Exposition, Nov.,1999, Nashville, Tennessee, USA.
    [155]Huang Kezheng, Li Xudong. Co-DARFAD-The Collaborative Mechanical Product Design System. The Sixth International Conference of Computer Supported Cooperative Work in Design(CSCWD), London, Canada. July,2001.
    [156]黄克正.复杂表面成形加工系统设计智能化理论与应用研究[博士学位论文].济南:山东工业大学,1998.
    [157]徐志刚,黄克正等.支持产品概念设计的产品信息网络模型.工程图学学报.1999,2:79-87.
    [158]徐志刚.机械产品结构设计自动化理论与CAD系统建模[博士学位论文].济南:山东工业大学,1998.
    [159]曹树坤.机械产品概念结构生长型设计力学综合技术研究[博士学位论文].济南:山东工业大学,2002.
    [160]杨志宏.产品公差与概念结构同步综合进化设计理论与技术研究[博士学位论文].济南:山东大学,2004.
    [161]NEWMAN M E J. Models of the small world[J]. Journal of Statistical Physics, 2000,101:819-841.
    [162]STROGATZ S H. Exploring complex networks[J]. Nature,2001,410:268-276.
    [163]BOCCALETTI S, LATORAB V, MORENOD Y, et al. Complex networks structure and dynamics[J]. Physics Reports,2006,424:175-308.
    [164]LI Xiang, CHEN Guanrong. A local-world evolving network model [J]. Physica A:Statistical Mechanics and its Applications,2003,328:274-286.
    [165]Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationship of the internet topology[J]. Computer Communications Review (S0146-4833),1999,29(4): 251-262.
    [166]WATTS D J. Small worlds[M]. Princeton:Princeton University Press,1999.
    [167]濮良贵,纪名刚.机械设计.北京:高等教育出版社,2006.
    [168]杨家军,张卫国.机械设计基础.武汉:华中科技大学出版社,2002.
    [169]吴昌林,张卫国,姜柳林.机械设计.武汉:华中科技大学出版社,2011.
    [170]陶寄明.机械连接设计示例与分析.北京:机械工业出版社,2010.
    [171]成大先.机械设计手册.北京:化学工业出版社,2010.
    [172]于惠力,冯新敏,李广慧.连接零部件设计实例精解.北京:机械工业出版社,2009.
    [173]K. Y. Kim, H. J. Yang, D. W. Kim. Mereotopological assembly joint information representation for collaborative product design [J]. Robotics and Computer-Integrated Manufacturing,2008,24(6):744-754.
    [174]Hamid Ullah, Erik L. J. Bohez and M. A. Irfan. Assembly feature:definition, classification, and instantiation [J]. Proceedings of the 2nd International Conference on Emerging Technologies, Nov.2006:617-623.
    [175]Hamid Ullah, Erik L. J. Bohez and M. A. Irfan. Assembly features:definition, classification, and usefulness in sequence planning [J]. International Journal of Industrial and Systems Engineering,2009,4:111-132.
    [176]Changjiang Wan, Biao Gu, Yongjian Sun and Jianneng Chen. Assembly Oriented Product Semantic Modeling [J].2010 International Conference on Computer Application and System Modeling,2010,10:325-329
    [177]段文嘉.基于语义的智能装配与工艺资源管理系统研究[硕士学位论文].北京:北京邮电大学,2008.
    [178]李翔基.基于本体的虚拟零件智能识别方法研究与应用[硕士学位论文].北京:北京邮电大学,2009.
    [179]潘浩.基于商空间的装配任务粒度分析与感知算法研究[硕士学位论文].北京:北京邮电大学,2011.
    [180]Peter D. Karp and Thomas R. Gruber. A generic knowledge-base access protocol. In proceedings of the International Joint Conferences on Artificial Intelligence, an ontology-based knowledge sharing API for AI people. Montreal,1995.
    [181]杨秋芬,陈跃新Ontology方法学综述.计算机应用研究,2002,19(4):5-7.
    [182]C. E. Shannon. A Mathematical Theory of Communication. The Bell System Technical Journal,1948,7(27):379-423,623-656.
    [183]Polanyi M. The logic of tacit inference. Philosophy,1966,41:1-18.
    [184](美)Joseph C. Giarratano, Gary D. Riley著,印鉴,陈忆群,刘星成译.专家系统:原理与编程.北京:机械工业出版社,2006.
    [185]杨叔子,丁洪,史铁林.基于知识的诊断和推理.北京:清华大学出版社,1993.
    [186]Pawlak Z. Rough set. International journal of computer information science, 1982,11(5):341-356.
    [187]张立明.人工神经网络建模与应用[M].上海:复旦大学出版社,1995.
    [188]DANIEL Lemire, ANNA Maclachlan. Slope One predictors for online rating-based collaborative filtering. Proceedings of the Fifth SIAM International Conference on Data Mining 2005; 119:471-475.
    [189]S.M. Weiss, N. Indurkhya. Lightweight collaborative filtering method for binary encoded data. In PKDD'01,2001.
    [190]J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In Proc. of Research and Development in Information Retrieval,1999.
    [191]B.M. Sarwar, G. Karypis, I. Konstan, and J. Riedl. Incremental svd-based algorithms for highly scaleable recommender systems. In ICCIT'02,2002.
    [192]S. H. S. Chee. Rectree:A linear collaborative filtering algorithm. Master's thesis, Simon Fraser University, November 2000.
    [193]帕·巴克著,李炜等译.大自然如何工作——有关自组织临界性的科学.武汉:华中师范大学出版社,2001.
    [194]Anderson J. R.. The architecture of cognition. Harvard, MA:Harvard University Press,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700