一种含柔性杆件的高速并联机器人优化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文紧密结合提高高速并联抓取机器人动态精度的需要,以Diamond 600型2平动自由度并联机器人为对象,系统研究了考虑运动构件弹性的动力学建模及模型修正、试验方法、优化技术及性能评价等与动态设计相关的理论与方法。论文取得了如下创造性成果:
     基于KED精确分析方法建立了Diamond 600并联机器人的弹性动力学模型。通过对比机器人在不同位姿下的模态,分析了其作为时变机构的模态频率的变化规律,修正了前人得出该机构动态特性分布具有对称性的结论,并研究了机器人运行峰值加速度对模态频率的影响。
     以Diamond并联机器人动力学试验为例,提出了一种适用于研究时变机构的模态试验技术,通过对比两类模型(动平台模型和整机模型)的模态试验结果,从而准确判断出影响机器人操作精度的关键模态。在时变机构动态特性的模态试验研究中,运用该试验技术可以显著提高试验效率。
     在运用静态有限元技术修正并联机器人理论模型的单元参数时,建立了一种适用于多原则的参数修正模型,该模型具有效率高且通用性强的特点。同时利用动态修正技术,以试验模态模型为基准,修正了弹性动力学模型。对比试验结果表明,修正后的模型基本能够反映机器人的动力学特性,可以作为优化设计的基础。
     在不降低运行速度条件下,以提高操作精度为目标,提出一种组合递进的全局优化设计方法,借助遗传算法和经典优化算法,完成了Diamond 600并联机器人的动态设计。
     基于模态性质分析的全域均值,提出了一种衡量时变机构的动力学评价指标,通过对比优化前后机器人的动力学指标值,表明优化后机器人的动态特性得到很大改善。
This dissertation presents a theoretical package for dynamic modeling, modal test, model refining, optimization technique and dynamics index of a translational 2-DOF parallel robot with flexible links named the Diamond 600 robot. The outcome has been employed in the elasto-dynamics optimization of the robot aimed at improvement of the dynamic accuracy of the end-effector for high-speed pick-and-place operation. The following contributions have been made.
     By taking the Diamond robot as an example, the dynamic model is formulated based on the Kineto-elasto-dynamics (KED) theory. The unsymmetrical variation of modes is explored by modal analysis which corrected the conclusion of the natural frequency distribution symmetrically in workspace. Moreover, the relation between the acceleration maximum and the natural frequency variation is excogitated.
     A new dynamic test technique is presented in order to obtain the time-varying modal parameter of a mechanism. These key modes related to the dynamic accuracy could be picked up by comparison between the modal test of the moving-platform and the modal test of the robot. The applicability and efficiency of this technique is validated by the dynamic test of the Diamond robot.
     A new mathematical model is developed to modify element parameters by means of the static FEM technique. This mathematical model is general to modify parameters efficiently according to multiple requisitions. Moreover, the dynamic model is modified in conformity to the test model by dynamic modification technique. The modified model takes on the same characteristic as the actual robot approximately and has enough accuracy to optimization.
     An integration of genetic algorithm (GA) and classic arithmetic is investigated to search the overall solution of the optimization which gets the better dynamic accuracy of the Diamond 600 robot’s by means of parameters modification. The GA avoided the local optimization, but it gets approximate one which is used as the initial basic feasible solution to seek out the global solution by classic arithmetic in succession.
     An advanced dynamics index is proposed in virtue of modal shape classification, which is used to evaluate the dynamics of a mechanism with time-varying modal parameter. By means of the comparison between two indices of the original robot and the improved one, it is identifiable that the optimization improved the dynamic performance of the robot.
引文
[1] http://www.sciencedaily.com/
    [2] http://www.robots.com/
    [3] http://www.robotics.org/
    [4] http://www.parallemic.org/
    [5] Clavel R, Delta, a fast robot with parallel geometry, Proceedings of the 18th International Symposium on Industrial Robots(ISIR’98), 1988: 91-100
    [6]汪劲松,黄田,并联机床——机床行业面临的机遇与挑战,中国机械工程,1999,10(10):1103-1107
    [7] http://www.demaurex.ch/
    [8] http://www.abb.com/
    [9] http://www.sig-robotics.com/
    [10] http://www.elau.de/
    [11] http://www.manz-automation.com/
    [12] http://www.gmes.com.cn/
    [13] http://www.lirmm.fr/~w3rob/SiteWeb/main.php
    [14] http://www.sciencedaily.com/releases/2007/05/070503102529.htm/
    [15] Company O, Nabat V, Pierrot F, et al, Dynamic modeling and identification of Par4, a very high speed parallel manipulator, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, 1: 220-226
    [16] Company O, Marquet F, Nabat F, et al, A new high-speed 4-dof parallel robot synthesis and modeling issue, IEEE Transactions on Robotics and Automation, 2003, 19(3): 411-420
    [17] Codourey A, Dynamic modeling of parallel robots for computed-torque control implementation, The International Journal of Robotics Research, 1998, 17(2): 1325-1336
    [18] Lee J D, Geng Z, A dynamic model of a flexible stewart platform, Computer and Structures, 1993, 48(3): 367-374
    [19] Fattah A, Angeles J, Misra A K, Dynamics of a 3-DOF spatial parallel manipulator with flexible links, Proceedings of IEEE International Conference on Robotics and Automation, 1995: 627-632
    [20] Fattah A, Angeles J, Misra A K, Dynamics of a flexible-links planar parallel manipulator in cartesian space, The 20th ASME Design Automation Conferences, 1994: 483-490
    [21] Book W, Modeling, Design and Control of Flexible Manipulator Arms_a Tutorial Review, IEEE Proceedings of the 29th Conferences on Decision and Contro1, 1990: 500-506
    [22] Shabana A A, Flexible multibody dynamics review of past and recent developments, Journal Multibody System Dynamics, 1997, 1: 189-222
    [23] Xu X R, Chung W J, Choi Y H, Modeling of kineto-elastodynamics of robots with flexible links, IEEE International Conference on Robotics and Automation, 1999, 1: 753-758
    [24]刘宏昭,关于多柔体动力学与弹性机构动力学的讨论,机械设计,1994(1) :26-31
    [25] Kang B, Mills J K, Dynamic modeling and vibration control of high speed planar parallel manipulator, International Conference on Intelligent Robots and Systems, Hawaii, USA, 2001: 287-1292
    [26] Kang B, Mills J K, Dynamic modeling of structurally flexible planar parallel manipulator, Robotica, 2002, 20(3): 329-339
    [27] Wang X Y, Mills J K, Dynamic modeling of a flexible-link planar parallel platform using a substructuring approach, Mechanism and Machine Theory, 2006, 41(6): 671-687
    [28]蔡胜利,余跃庆,白师贤,弹性平面并联机器人的KED分析,机械科学与技术,1997,16(2):261-265
    [29] Zhang M H, Huang T, Yang Z Y , Flexible dynamic analysis and optimal design of a three-dimension, high-speed parallel manipulator, The 6th International Conference on Frontiers of Design and Manufacturing, Xi’an, China, 2004
    [30]徐淑静,高速轻型并联机械手弹性动力学分析,硕士论文,天津大学,2004
    [31]赵永杰,高速轻型并联机械手动态设计理论与方法,博士论文,天津大学,2006
    [32]傅志方,华宏星,模态分析理论与应用,上海:上海交通大学出版社,2000
    [33] Alexander R M, Lawrence K L, An experimental investigation of the dynamic response of an elastics mechanism, ASME Journal of Engineering for Industry, 1974, 96(1): 268-274
    [34] Giovagnoni M, A numerical and experimental analysis of a chain of flexible bodies, ASME Journal of Dynamic System, Measurement of Control, 1994, 116: 73-80
    [35] Vivas A, Poignet P, Marquet F, et al, Gautier M, Experimental dynamic identification of a full parallel robot, Proceedings of the 2003 IEEE International Conference on Robotics and Automation, 2003: 3278-3283
    [36] Miller K, Experimental verification of modeling of DELTA robot dynamics by direct application of Hamilton’s principle, Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995: 532-537
    [37]张明辉,黄田,Diamond机构的弹性动力分析与试验研究,机械设计,2004,21(11):6-8
    [38] Wang X Y, Mills J K, Experimantal modal identification of configuration- dependent vibration using smart material transducers with application to a planar parallel robot, IEEE International Conference on Robotics and Biomimetics, 2005: 234-239
    [39] Jacobus R F, Serna M A, Modal analysis of a three dimensional flexible robot, Proceedings of IEEE International Conference on Robotics and Automation, 1994, 4: 2962-2967
    [40]刘善增,余跃庆,刘庆波等,并联机器人的动力学分析,中国机械工程,2008,19(15):1778-1781
    [41] Piras G, Cleghorn W L, Mills J K, Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links, Mechanism and Machine Theory, 2005, 40(7): 849-862
    [42] Chen J C, Direct structural parameter identification by modal test results, American Institute of Aeronautics and Astronautics Journal, 1983, 9(8):1481-1486
    [43] Berman A, Flannelly W G, Theory of incomplete models of dynamic structure, American Institute of Aeronautics and Astronautics Journal, 1971, 6(8):1481-1487
    [44] Brauch M, Optimization procedure to correct stiffness and flexibility matrices using vibration data, American Institute of Aeronautics and Astronautics Journal, 1978, 16(11):1208-1210
    [45] Vanhonacker P, Differential and difference sensitivities of natural frequencies and mode shapes of mechanical structures, American Institute of Aeronautics and Astronautics Journal, 1980, 18(12):1511-1514
    [46]李德葆,结构动特性修改的灵敏度分析及修改结构的重分析,全国第五届模态分析与试验学术交流会论文集,下册,1988
    [47]戴自华,屠良尧,用灵敏度分析法进行结构动特性修正方向的预估和结构优化修改,全国第五届模态分析与试验学术交流会论文集,下册,1988
    [48] Fox R L, Kapoor M P, Rates of change of eigenvalues and eigenvectors, American Institute of Aeronautics and Astronautics Journal, 1968, 6(12):2426-2429
    [49] Ven Belle H, Theory of adjiont structure, American Institute of Aeronautics and Astronautics Journal, 1978, 14(7):977-979
    [50]夏益霖,结构有限元模型修正的频响函数方法,振动工程学报,1993,6(4):376-379
    [51] Kreff M, Hesselbach J, Elastodynamic optimization of parallel kinamatics, IEEE International Conference on Automation Science and Engineering, 2005: 357-362
    [52]张绪平,余跃庆,冗余度柔性机器人轻型化结构设计,机械科学与技术,2003,22(4):601-604
    [53]张绪平,余跃庆,具有柔性关节和柔性杆的空间机器人频率特性,机器人,1998,20(5):342-346
    [54]张绪平,余跃庆,集中质量对柔性空间机器人振动特性的影响,机械科学与技术,1999,18(1):80-82
    [55]岳士岗,余跃庆,白师贤,多杆柔性机器人杆与关节耦合效应及优化设计,北京工业大学学报,1997,23(4):49-56
    [56] Oral S, Ider K S, Optimum design of high-speed flexible robotic arms with dynamic behavior constraints, Computers and Structures, 1997, 65(2): 255-259
    [57] Zhang X M, Shen Y W, Liu H Z, et al, Optimal design of flexible mechanisms with frequency constraints, Mechanism and Machine Theory, 1995, 30(1): 134-139
    [58]吴焱明,柯尊忠,徐业宜等,机器人操作器动力学形状优化设计,合肥工业大学学报(自然科学版),1996,19(4):50-55
    [59] Cui L L, Xiao Z Q, Optimum structure design of flexible manipulators based on GA, Proceedings of IEEE International Conference on Robotics and Automation, Taipei, China, 2003: 1622-1625
    [60] Wang F Y, Russell J L, Optimum shape construction of flexible manipulators with total weight constraint, IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25(4): 605-614
    [61] Wang F Y, Russell J L, A new approach to optimum flexible link design, Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995: 931-936
    [62] Kajiwara I, Nagamatsu A, Structural dynamic design considering controllability and stability, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, 1999, 3: 152-157
    [63] Gosselin C M, Angeles J, The optimum kinematic design of a planar three-degree-of-freedom parallel manipulators, Journal of Mechanisms, Transmissions, and Automations in Design, 1988, 110(1): 35-41
    [64] Tsai L W, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, New York, USA, Wiley-Interscience Publication, 1999
    [65] Tsai L W, Joshi S, Kinematics and optimization of a spatial 3-UPU parallel manipulator, ASME Journal of Mechanical Design, 2000, 122(4): 439-446
    [66] Chablat D, Wenger P, Architecture optimization of a 3-DOF translational paraller mechanism for machining applications, the Orthoglide, IEEE Transactions on Robotics and Automation, 2003, 19(3): 403-410
    [67] Angeles J, Lopez-Cajun C S, Kinematic isotropy and the conditioning index of serial robotic manipulator, The International Journal of Robotics Research, 1992, 11(6): 560-571
    [68] Gosselin C M, Angeles J, A global performance index for the kinematic optimization of robotic manipulators, ASME Journal of Mechanical Design, 1991, 113(3): 220-226
    [69] Stamper R E, Tsai L W, Walsh G C, Optimization of a three dof translational platform for well-conditioned workspace, Proceedings of IEEE International Conference on Robotics and Automation, 1997, 4: 3250-3255
    [70] Huang T, Li M, Li Z X, et al, Optimal kinematic design of 2-DOF parallel manipulators with well-shaped workspace bounded by a specified conditioning index, IEEE Transactions on Robotics and Automation, 2004, 20(3): 538-543
    [71] Merlet J P, Jacobian, manipulability, condition number, and accuracy of parallel robots, ASME Journal of Mechanical Design, 2006,128(1): 199-206
    [72] Hao F, Merlet J P, Multi-criteria optimal design of parallel manipulators based on interval analysis, Mechanism and machine theory, 2005, 40(2): 157-171
    [73]安伟光,结构系统可靠性和基于可靠性的优化设计,北京:国防工业出版社,1997
    [74]张策,黄永强,王子良等,弹性连杆机构的分析与设计,北京:机械工业出版社,1997
    [75] Du Z C, Yu Y Q, Dynamic stress analysis of flexible planar robots, IEEE International Conference on Mechatronics and Automation, 2006: 1186-1190
    [76] Horst R, Pardalos P M, Thoai N V,黄红选译,全局优化引论,北京:清华大学出版社,2003
    [77]黄文奇,许如初,近世计算理论引导-NP难度问题的背景、前景及其求解算法研究,北京:科学出版社,2003
    [78]郑志勇,硕士学位论文开题文献综述报告,北京理工大学,2005
    [79] Cook A, The complexity of theorem proving procedures, Proceedings of 3rd Annual ACM Symposium on the Theory of Computing, New York, USA, 1971: 151-158
    [80] Holland J, Adaptation in natural and artificial systems, Lansing, USA, University of Michigan Press, 1975
    [81]张晶,张本源,惩罚函数法在遗传算法处理约束问题中的应用,武汉理工大学学报,2002,24(2):56-59
    [82]倪金林,遗传算法求解约束非线性规划及Matlab实现,大学数学,2005, 21(1):91-95
    [83] Huang T, Wang P F, Mei J P, et al, Time minimum trajectory planning of a 2-dof translational parallel robot for pick-and-place operations, CIRP Annals - Manufacturing Technology, 2007, 56(1): 365-368
    [84] Wilson D G, Star G P, Parker G G, et al, Robust control design for flexible-link/flexible-joint robots, Proceedings of IEEE International Conference on Robotics and Automation, 2000, 2: 1496-1501
    [85] Kuo Y L, Cleghorn W L, Behdinan K, et al, The h–p–r-refinement finite element analysis of a planar high-speed four-bar mechanism, Mechanism and Machine Theory, 2006, 41(5): 505-524
    [86] Huang T, Li Z X, Li M, Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations, ASME Journal of Mechanical Design, 2004, 126 (3): 449-455
    [87]曹树谦,张文德,萧龙翔,振动结构模态分析,天津:天津大学出版社,2001
    [88]杨辉,洪嘉振,余征跃,柔性多体系统动力学实验研究综述,力学进展, 2004,34(2):171-181
    [89] http://www.lmschina.com/
    [90]海伦等著,白化同,郭继忠译,模态分析理论与试验,北京:北京理工大学出版社,2001
    [91] Li H H, Yang Z Y, Huang T, et al, Dynamics and optimization of a 2-Dof parallel robot with flexible links, The 7th World Congress on Intelligent Control and Automation, 2008: 1000-1003
    [92]姜金辉,王自力,轴向受冲薄壁圆管的尺度效应研究,华东船舶工业学院学报2002,16(5):22-27
    [93] Huang T, Li M, Li Z X, et al, Whitehouse D J, Optimal kinematic design of 2-DOF parallel manipulators with well-shaped workspace bounded by a specified conditioning index, IEEE Transactions on Robotics and Automation, 2004, 20(3):538-543
    [94]雷英杰,张善文,李续武等,MATLAB遗传算法工具箱及应用,西安:西安电子科技大学出版社,2005
    [95] The MathWork, Inc., Matlab Version 7.1 Help Manual, 2008
    [96] Li H H, Yang Z Y, Mei J P, et al, A new dynamic index of parallel robots with flexible links, IEEE International Conference on Industrial Technology, 2008: 1-5
    [97] Li H H, Yang Z Y, Huang T, Dynamics and elasto-dynamics optimization of a 2-DOF planar parallel pick-and-place robot with flexible links, Structural and Multidisciplinary Optimization, 2008: Online
    [98]孙立宁,董为,杜志江,基于大行程柔性铰链的并联机器人刚度分析,机械工程学报,2005,41(8):90-95
    [99]刘辛军,汪劲松,王启明等,一种空间3自由度并联机器人的工作空间和转动能力分析,自然科学进展,2005,15(2):212-220
    [100]李舜酩,机械疲劳与可靠性设计,北京:科学出版社,2006
    [101] Michel G, Flexible multibody dynamics-a finite element approach, Chichester, UK, John Wiley and Sons. Ltd., 2000
    [102]黄真等,并联机器人机构学理论及控制,北京:机械工业出版社,1997
    [103]陆佑方,柔性多体系统动力学,北京:高等教育出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700