绞股蓝皂甙对山羊瘤胃菌群及微生物发酵特性和甲烷产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瘤胃生成的CH4是饲料能量的一种损失,同时也造成大气环境的污染。因此,调控瘤胃发酵,减少CH4释放,提高动物生产性能越来越受到重视。天然植物提取物皂甙具有抑制瘤胃原虫生长,减少CH4产生的作用。开发植物皂甙调节瘤胃微生物发酵减少CH4产生及其对调控的机理的研究成为热点。本试验选用具有达玛烷结构三萜类植物提取物-绞股蓝皂甙,分析其对瘤胃微生物体内和体外CH4产量及对瘤胃微生物区系构成和数量的影响,从微生物区系和数量的变化来阐述绞股蓝皂甙减少CH4产生的机理。并从耐受性试验中,分析绞股蓝皂甙减少CH4生成具有时效性的可能原因。为绞股蓝皂甙在调控反刍动物瘤胃发酵,减少CH4生成中的应用提供理论依据。
     1绞股蓝皂甙对瘤胃微生物体外甲烷产量及发酵特性的影响
     利用体外产气量法研究绞股蓝皂甙对瘤胃微生物CH4产量的影响。试验包括两个部分,试验一研究了绞股蓝皂甙对瘤胃微生物发酵的影响,试验二分析绞股蓝皂甙对瘤胃微生物发酵动力学参数的影响。试验以0.42g羊草+0.126g玉米+0.054g豆粕为发酵底物,绞股蓝皂甙添加量分别为0(对照)、5、10、20和40mg/60mL,发酵24h。结果显示,与对照组比较,各处理组CH4摩尔产量显著下降(P<0.05),CH4产量与皂甙之间有显著的线性效应。对氢的利用率仅有10mg组显著低于对照组,其它试验组无明显变化。10mg绞股蓝皂甙水平与对照组比较,显著提高了TVFA产量及乙酸、丙酸和丁酸的比例(P<0.05),乙丙比无显著变化,乙酸,丁酸,异丁酸,戊酸,异戊酸,支链脂肪酸百分比及乙丙比和TVFA浓度随着皂甙剂量增加呈现显著的二次方效应,丁酸同时具有显著的线性效应。处理组原虫数量显著下降(P<0.05),有着显著的线性和二次方效应(P<0.05),而微生物蛋白含量没有显著变化,但呈现上升趋势。高剂量皂甙组的氨态氮浓度显著高于对照组(P<0.05),与绞股蓝皂甙之间有显著的线性效应。高剂量绞股蓝皂甙降低了微生物发酵的理论产气量与实际产气量,并呈现显著的线性和二次方效应,产气速率与皂甙之间有着显著的线性效应。以上结果表明,绞股蓝皂甙能改变瘤胃微生物发酵模式,提高VFA的生成,抑杀瘤胃原虫,降低CH4产量,提高饲料能量利用效率,减少CH4释放。
     2绞股蓝皂甙对山羊瘤胃微生物发酵及血液生化指标的影响
     选用4只体重约为30±3kg的波尔山羊与本地山羊杂交的一岁阉公羊,采用4×4拉丁方试验设计,分成4组,研究绞股蓝皂甙对瘤胃发酵特性和微生物区系的影响。每天08:00和17:00进行饲喂,饲料为70%羊草和30%精料(玉米:豆粕=7:3)。每天早晚分两次经瘤胃瘘管共向瘤胃中灌注0g(对照),2g,4g和8g/d.h-1绞股蓝皂甙。采食前Oh和采食后2,4和8小时通过瘤胃瘘管负压采集瘤胃内容物。结果显示,饲喂高剂量的皂甙后,瘤胃氨态氮浓度趋于显著下降(P=0.057),但对微生物蛋白、CH4产量及氢的利用无显著影响(P>0.05),但CH4产量有下降的趋势,氢的利用率提高。乙酸、支链脂肪酸浓度及乙丙比略微下降,而采食量和丙酸浓度有所提高(P>0.05)。血清中的血糖、甘油三酯、总胆固醇、血液尿素氮和总蛋白浓度无显著变化(P>0.05)。瘤胃原虫总数及Entodinium spp和Diplodinium spp数量显著线性下降。从瘤胃内容物中提取基因组DNA,对微生物数量进行定量分析。产甲烷菌、真菌、黄化瘤胃球菌和产琥珀酸丝状杆菌数量以占总菌16S rDNA的比例来表示。产甲烷菌数量急剧下降,而真菌、纤维降解菌在低剂量2g/d.h-1条件下,与对照组比较比例显著提高。在高剂量皂甙的添加量下,几种微生物的数量显著下降。使用PCR/DGGE技术追踪了瘤胃原虫、细菌和产甲烷菌区系的变化,每只羊处理前后瘤胃原虫区系的相似性在48-75%之间变化,产甲烷菌的相似性在66~87%之间。对7种原虫上共生产甲烷菌的区系分析发现,不同原虫上产甲烷菌区系结构存在差异,且同种原虫在绞股蓝皂甙处理后,其共生产甲烷菌区系结构发生改变。切胶克隆测序发现原虫上共同存在的优势产甲烷菌为产甲烷短杆菌(Methanobrevibacter sp.)。以上结果表明,添加绞股蓝皂甙影响瘤胃发酵,减少产甲烷菌、原虫总数及单个种原虫数量,促进两种纤维降解菌及真菌的生长,改变了瘤胃微生物区系及与原虫共生产甲烷菌的区系。
     3瘤胃微生物的绞股蓝皂甙耐受性研究
     本试验通过体外批次培养,分析多次传代后,绞股蓝皂甙对微生物发酵特性及细菌和产甲烷菌区系的影响。结果显示,绞股蓝皂甙提高了发酵体系的pH值,在对产气量的影响上,除第1代5mg和10mg组产气量高于对照组外,其它试验组的产气量与对照组比较都有所下降,其中有些组的产气量显著或极显著下降,并与绞股蓝皂甙剂量之间存在显著或极显著的线性或二次方效应。CH4产量下降,与皂甙剂量之间有显著和极显著的线性和二次方效应(P<0.05或P<0.01)。氨态氮浓度均有所提高,MCP在第1代提高外,其它试验组都与对照组相比有所下降,有些剂量和不同代次达到显著或极显著效应。原虫数量在第1和2代均显著下降,与绞股蓝皂甙添加量之间有显著的线性效应,到第3代原虫数量很少,因此未做计数。绞股蓝皂甙明显降低了VFA的浓度,乙酸,丙酸和丁酸浓度下降。添加皂甙后,细菌和产甲烷菌区系发生变化,优势条带如溶纤维丁酸弧菌和产琥珀酸丝状杆菌在皂甙处理后消失,同时一些新的优势条带如欧文氏菌和未知菌成为优势菌。这些变化表明,绞股蓝皂甙能够抑制一些微生物生长,同时,一些能够适应或降解绞股蓝皂甙的微生物得以成为发酵体系中的优势菌群。以上结果表明,在多次传代中,绞股蓝皂甙改变了瘤胃微生物的发酵,微生物区系逐渐发生变化,以适应有皂甙存在的生长环境。
     4绞股蓝皂甙对真菌与产甲烷菌共培养甲烷的产量及发酵特性的影响
     以青链霉素和氯霉素为抑制剂分别制备真菌与产甲烷菌共培养(体系Ⅰ)及以真菌为主(体系Ⅱ)的两种体外培养体系,研究添加不同剂量绞股蓝皂甙对两种培养体系CH4产量及体外发酵特性的影响。试验结果表明,(1)在体系Ⅰ中添加绞股蓝皂甙,CH4产量和产甲烷菌数量极显著下降,与绞股蓝皂甙剂量之间有极显著的线性效应(P<0.01);产气量和真菌数量极显著下降,与绞股蓝皂甙剂量之间有极显著的线性和二次方效应(P<0.01);TVFA和乙酸浓度显著下降,并与绞股蓝皂甙剂量之间存在极显著的二次方效应(P<0.01);pH值显著上升,并与绞股蓝皂甙剂量之间呈极显著的二次方效应(P<0.01)。(2)在体系Ⅱ中添加绞股蓝皂甙,产气量呈极显的线性和二次方下降(P<0.01);真菌和产甲烷菌数量呈极显著的线性下降(P<0.01);TVFA显著下降(P<0.05),乙酸极显著下降,并与绞股蓝皂甙剂量有显著的线性和二次方效应;pH值显著上升,并与剂量之间有极显著的线性和二次方效应(P<0.01)。以上结果显示,绞股蓝皂甙导致pH上升,产气量和CH4产量的下降主要是由于绞股蓝皂甙抑制了厌氧真菌数量或活性及产甲烷菌数量所致,表明绞股蓝皂甙对共培养真菌和产甲烷菌产生抑制作用。
Methane is a loss of feed energy for ruminants, and a pollution resource for atmosphere environment. So, the more attention were highlighted for modulating ruminal fermentation, reducing ruminal methane emission and prompting the ruminants performance. Saponin, as one of plant extracts, can inhibit the growth of protozoa and reduce the methane emission. The common interesting were attracted for exploitation of new natural plant saponin for reducing methane emission and mechanisms of reducing methane were investigated. The effects of gypenosides with dammarane structural triterpenes saponin were selected to investigate the effects on in vitro and in vivo methane production of goat rumen. Effects of gypenosides on community of rumen microbe and mechanisms of decreased methane were analysed by the shifts of community of microbes when saponin was usded to reduce methane. The reasons of reducing methane with short time effect were investigated by the experiment of microbial resistance to gypenosides. The theoretical evidences were explained for regulating ruminal fermentation and reducing methane emission.
     1 Effects of gypenosides on in vitro fermentation and fermentation kinetic parameters by mixed ruminal microorganisms
     Effects of Gypenosides on rumen methane prodcution were investigated by in vitro gas technique using mixed rumen microorganisms from goats as inoculum. The study includes two experiments. Experiment 1 was investigated to estimate its effects on fermentation characteristics of rumen microorganisms. Experiment 2 was conducted to assay its effects on fermentation kinetic parameters. The diet consisted of Leymus chinensis (70%), ground corn grain (21%) and soybean meal (9%)(1 mm screen). Five different gypenosides doses were used for each compound:0,5,10,20 and 40 mg/60 ml of the total culture medium. The results showed that as compared with the control, methane production and concentration were reduced by gypenosides addition (p<0.05) and there was a linear effects on methane production between control and treatments. The hydrogen utilization was lower than control at 10mg level. The TVFA concentration, acetate, propionate and butyrate acids proportion of TVFA were significantly increased (P<0.05) at 10mg level, and there was a significant quadratic effects on acetate, butyrate, isobutyrate, valerate, isovalerate, BCP proportion, acetate to propionate ratio and TVFA concentration with the gypenosides doses. There was a linear effect on butyrate with gypenosides addition. The protozoa counts for treatment groups decreased with a significantly linear and quadratic effects (P<0.05). Microbial protein was not changed abruptly, but with a increasing trend. Ammonia nitrogen concentration was significantly higher than control at highest saponin level and there was a linear effect on ammonia concentration with gypenosides addition. The theoretic and observed gas production decreased at high saponin level with a significant linear and quadratic effects. There was a significant linear effect on rate of gas production with saponin doses increasing. Above results indicated that gypenosides addition could modify the microorganisms fermentation pattern, reduce protozoa numbers and methane emission, abate pollution of methane derived from ruminants to environment. The VFA production and feed conversion efficiency were promoted.
     2 Effects of gypenosides on rumen fermentation, microorganisms population and blood parameters in goats
     Four Boer crossbred with local goat wether male goats (30±2.3 kg) were used in a 4×4 Latin square experiment to determine effects of gypenosides from Gynostemma Pentaphyllum Makino on ruminal fermentation characteristics and ruminal microbial community. The goats fed a 70%Leymus chinensis:30%concentrate (corn:soybean meal=2:1) were intraruminally given with suspensioned gypenosides at 0800 and 1700 daily. Doses were 0 (control),2,4 and 8g/d.head-1. Ruminal contents were sampled at 0(immediately prior to feeding),2,4 and 8 h after feeding in the morning. The results showed that ruminal ammonium concentration in gypenosides treatments decreased (P=0.057), while there was no significant effect on microbial crude protein, methane emission and hydrogen recovery (P>0.05). But, there was a decreasing trend for methane and a increasing rate of hydrogen utilization Acetate, BCVFA concentration and ratio of acetate to propionate decreased slightly, whereas feed intake (low and high dose), propionate concentration increased than control group (P>0.05). There were no differences for blood parameters such as blood serum glucose, TG, TC, BUN and TP concentration between control and treatments (P>0.05). The numbers of total protozoa, Entodinium spp. and Diplodinium spp. in rumen with gypenosides addition were significantly lower (P<0.05) than those in control group, with a dose-dependent manner. Total genomic DNA were extracted from ruminal microbes, and populations of rumen microbes were determined by a real-time PCR. Populations of total methanogens, anaerobic fungi, Ruminococcus flavefaciens and Fibrobacter succinogenes were expressed as a proportion of total ruminal bacterial 16S rDNA. The number of methanogens sharply reduced. While fungi, fibrolytic bacteria percentage of total bacteria in rumen markedly increased at 2 g/dh-1. The numbers of all microbial groups decreased obviously at high dose of gypenosides addition. DGGE was used to monitor the shifts of protozoal, methanogenic and bacterial population after gypenosides treatment. The similarity varied from 48%to 75%for protozoa,66 to 87%for methanogens and 40 to 82%for bacteria. The community assay of methanogens from seven protozoal species found that there were difference for the different protozoa. The shift of methanogenic population from single protozoal species was observed before and after treatment with gypenosides. The common dominant methanogen in all protozoa collected was Methanobrevibacter sp. after treat or untreat by gypenosides. These results suggest that the gypenosides supplementation could influence on the rumen fermentation, and reduce methanogens, total protozoal and single protozoal species number Gypenosides could promote the growth of two fibrolytic bacteria and fungi, change the microorganism community and the methanogens community associated with protozoa.
     3 The study of ruminal microbial resistance to gypenosides
     Consecutive batch cultures, involving six serial transfer were established to investigate the effects of gypenosides on ruminal microbial fermentation properties, and the communities of bacteria and methanogens from rumen digesta. The results showed that pH value increased after gypenosides treatment. Compared with the control group, the gas production of different gypenosides groups in different transfers was low excepted for the 5mg and 10mg groups of first transfer with higher gas production. Gas production of some treatment groups decreased with significant linear and quadratic effects. There was a significant reducing with linear and quadratic effects between methane production and gypenosides doses (P<0.05 or P<0.01). Ammonia nitrogen concentration of treatment were higher than that of control. MCP concentration of most of treatment groups decreased than that of control excepted for first transfer with gypenosides increasing. There were significant decrease for some treatments and different transfers(P<0.05). Protozoal numbers reduced significantly with a linear effect for first transfer and second transfer after treatment by gypenosides. Protozoa were not detected under microscopy for third transfer. There were significantly decreasing for TVFA, acetate, propionate and butyrate concentration after gypenosides addition. The shifts of communities of bacteria and methanogen were observed after treatment. Some predominant bands such as Butyrivibrio fibrisolvens and Fibrobacter succinogenes were gradually disappeared and a few new predominant bands such as Erwinia alni and uncultured bacterium were observed after treatment by gypenosides. These data indicated that the growth of some microbes were inhibited, and others bacteria with capability of adaptation to gypenosides and degradation of gypenosides became the predominant bacteria in fermentation systems. The results suggested that gypenosides affected the ruminal microbial fermentation. In turn, the community of bacteria were gradually formed to adapt to the survival environment with gypenosides.
     4 Effects of gypenosides on fungi co-culture with methanogens methane production and fermentation characteristics
     This study were conducted to investigate the effects of gypenosides on methane production and fermentation property under fungi co-culture methanogens (Ⅰ) and fungi as dominant species (Ⅱ). The formation of two culture system of fungi associated with methanogens and fungi as main species were treated by penicilline & streptomycin (I) and chloramphenicol (Ⅱ), respectively. The results showed that, in system I after treatment by gypenosdies, there were significantly linearly decrease for methane production and methanogenic numbers (P<0.01). Gas production and fungi numbers were siginificantly reduced with a linear or quadratic effects (P<0.01). pH value increased with significant quadratic effect (P<0.05). TVFA and acetate concentration decreased significantly with a significant quadratic effect. In system II after treatment by gypenosides, methane production were not detected for minor production. Gas production decreased with a linear or quadratic effects (P<0.01). Fungi and methanogens numbers were significantly reduced with a linear effect. TVFA (P<0.05) and acetate concentration (p<0.01) decreased with linear or quadratic effects. pH value increased (P<0.05) with linear or quadratic effects (P<0.01). These results indicated that the pH value increasing, gas and methane production decreasing were induced by the decreased numbers of fungi or methanogens, and inhibitation of fungi and methanogenic activity. Growth of fungi and methanogens in two fermentation systems were depressed by gypenosides.
引文
Alexander G, Singh B, Sahoo A, et al. In vitro screening of plant extracts to enhance the efficiency of utilization of energy and nitrogen in ruminant diets[J]. Animal Feed Science and Technology,2008,145(1-4):229-244
    Aslan K, Lakowicz JR, Geddes CD. Nanogold-plasmon-resonance-based glucose sensing[J]. Analytical Biochemistry,2004,330(1):145-155
    Attawish A, Chivapat S, Phadungpat S, et al. Chronic toxicity of Gynostemma
    pentaphyllum[J]. Fitoterapia,2004,75:539-551
    Ajay A, Sergey RK, Barbara AW, et al. Effect of substrate adaptation on the microbial fermentation and microbial composition of faecal microbiota of weaning piglets studied in vitro[J]. Journal of the Science of Food and Agriculture,2005,85: 1765-1772
    Baah J, Ivan M, Hristov AN, et al. Effects of potential dietary antiprotozoal supplements on rumen fermentation and digestibility in heifers[J]. Animal Feed Science and Technology,2007,137(1-2):126-137
    Bauchop T. Rumen anaerobic fungi-colonizers of plant fiber[J]. Annales De Recherches Veterinaires,1979,10 (2-3):246-248
    Bauchop T. Inhibition of rumen methanogenesis by methane analogues[J]. Journal of Bacteriology,1967,94:171-175
    Bauchop T, Mountfort DO. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens[J]. Applied and Environmental Microbiology,1981,42:1103-1110
    Bergen WG. Quantitative determination of rumen ciliate protozoal biomass with real-time PCR[J]. Journal of Nutrition,2004,134:3223-3224
    Blaxter KL, Clapperton JL. Prediction of the amount of methane produced by ruminants[J]. British Journal of Nutrition,1965,19:511-522
    Borneman WS, Akin DE, Ljungdahl LG. Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi[J]. Applied and Environmental Microbiology,1989,55(5):1066-1073
    Braune A, Gutschow M, Engst W, et al. Degradation of quercetin and luteolin by Eubacterium ramulus[J]. Applied and Environmental Microbiology,2001,67(12): 5558-5567
    Broudiscou LP, Papon Y, Broudiscou AF. Effects of dry plant extracts on fermentation and methanogenesis in continuous culture of rumen microbes[J]. Animal Feed Science and Technology,2000,87:263-277
    Busquet M, Calsamiglia S, Ferret A, et al. Plant extracts affect in vitro rumen microbial fermentation[J]. Journal of Dairy Science,2006,89:761-771
    Cardozo PW, Calsamiglia S, Ferret A, et al. Effects of natural plant extracts on protein degradation and fermentation profiles in continuous culture[J]. Journal of Animal Science,2004,82:3230-3236
    Cardozo PW, Calsamiglia S, Ferret A, et al. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet[J]. Journal of Animal Science, 2006,84(10):2801-2808
    Chagan I, Mitsunori T, Jouany JP, et al. Detection of methanogenic archaea associated with rumen ciliate protozoa[J]. Journal of General Applied Microbiology,1999,45: 305-308
    Cheeke PR. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition[J]. Journal of Animal Science,2000,77:1-10
    Circosta C, Pasquale RD, Occhiuto F. Cardiovascular effects of the aqueous extract of Gynostemma pentaphyllum Makino[J]. Phytomedicine,2005,12,638-643
    Clapperton JL. The effect of trichloroacetamide chloroform & linseed oil given into the rumen of sheep on some of the end products of rumen digestion[J]. British Journal of Nutrition,1974,32:155-161
    Chen M, Wolin MJ. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria[J]. Appled and Environmental Microbiology,1979,38:72-77
    Chen XL, Wang JK, Wu YM, et al. Effects of chemical treatments of rice straw on rumen fermentation characteristics, fibrolytic enzyme activities and populations of liquid and solid associated ruminal microbes in vitro. Animal Feed Science and Technology,2008. 141:1-14.
    Cheng YF, Edwards JE, Allison GG, et al. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture[J]. Bioresource Technology,2009,100(20):4821-4828
    Chesson A, Stewart CS, Wallace RJ. Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria[J]. Applied and Environmental Microbiology, 1982,44(3):597-603
    Crutzen PJ, AselmannI, Seiller W. Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus,1986,38B:271-284
    Czerkawski JW, Breckenridge G. Fermentation of various soluble carbohydrates by rumen micro-organisms with particular reference to methane production[J]. British Journal of Nutrition,1969,23(4):925-937
    Dehority BA. Rumen ciliate protozoa of the blue duiker (Cephalophus monticola), with observations on morphological variation lines within the species Entodinium dubardi[J]. Journal of Eukaryotic Microbiology,1994,41(2):103-111
    Dehority, BA. Rumen Microbiology[C]. Nottingham University Press, Nottingham, UK, 2003
    Dehority BA, Tirabasso PA. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose[J]. Journal of Animal Science,1998,76(11): 2905-2911
    Demeyer DI. Quantitative aspects of microbial metabolism in the rumen and hindgut[C]. In: Rumen Microbial Metabolism and Ruminant Digestion. Edited by J P Jouany. Paris, France,1991, pp 217-237
    Demeyer DI, Van Nevel CJ. Effect of defaunation on the metabolism of rumen microorganisms [J]. British Journal of Nutrition,1979,42:515-524
    Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumer[J]. FEMS Microbiology Ecology,2006,58(3):572-582
    Devant M, Anglada A, Bach A. Effects of plant extract supplementation on rumen fermentation and metabolism in young Holstein bulls consuming high levels of concentrate[J]. Animal Feed Science and Technology,2007,137(1-2):46-57
    Diaz A, Avendan OM, Escobar A. Evaluation of Spinadus saponaria as a defaunating agent and its effects on different ruminal digestion parameters. Livestock Research for Rural Development,1993,5:1-10
    Dinius DA, Simpson ME, Marsh PB. Effect of monensin fed with forage on digestion and the ruminal ecosystem of steers[J]. Journal of Animal Science,1976,42:229-234
    Donald WJ, Katharine H. Atmospheric methane and global change[J]. Earth-Science Reviews,2002,57(3-4):177-210
    Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora[J]. Science,2005,308 (5728):1635-1638
    Ellis JE, McIntyre PS, Saleh M. Influence of CO2 and low concentrations of O2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum[J]. Applied and Environmental Microbiology,1991,57(5):1400-1407
    Embley TM, Finlay BJ, Brown S. RNA sequence analysis shows that the symbionts in the ciliate Metopus contortus are polymorphs of a single methanogen specie[J]. FEMS Microbiology Letters,1992,76(1-2):57-61
    Eryavuz A, Dehority BA. Effect of Yucca schidigera extract on the concentration of rumen microorganisms in sheep[J]. Animal Feed Science and Technology,2004,117: 215-222
    Etheridge D, Steele L, Francey R, et al. Atmospheric methane between 1000 A.D. and present:evidence of anthropogenic emissions and climatic variability[J]. Journal of Geophysical Research,1998,103,15979-15993
    Fenchel T, Finlay BJ. Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for the growth of efficiency of the host[J]. Journal of Protozoology,1991, 38,18-22
    Fenchel T, Ramsing NB. Identification of sulphate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S rRNA binding oligonucleotide probes[J]. Archives of Microbiology,1992,158(6):394-397
    Finlay BJ, Embley TM. On protozoan consortia and the meaning of biodiversity[J]. Society for General Microbiology Quarterly,1992,19(3):67-69
    Finlay BJ, Esteban G, Clarke KJ, et al. Some rumen ciliates have endosymbiotic methanogens[J]. FEMS Microbiol Letters,1994,17:157-162
    Glauert, AU, Dingle JT, Lucy JA. Action of saponin on biological cell membranes[J]. Nature,1962,196(4858):953-955
    Garcia-Lopez PM, Kung LJr, Odom JM. In vitro inhibition of microbial methane production by 9,10-anthraquinone[J]. Journal of Animal Science,1996,74(9): 2276-2284
    Goel G, Makkar HP, Becker K. Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane[J]. Animal Feed Science and Technology,2008,147(1-3):72-89
    Goetsch AL, Owens FN. Effects of sarsaponin on digestion and passage rates in cattle fed medium to low concentrate[J]. Journal of Dairy Science,1985,68(9):2377-2384
    Grobner MA, Johnson DE, Goodall SR, et al. Sarsaponin effects on in vitro continuous flow fermentation of a high grain diet. Journal of Animal Science,1982,55:491-497
    Gutierrez J, Davis RE, Lindahl IL. Characteristics of saponin-utilizing bacteria from the rumen of cattle[J]. Journal of Applied Microbiology,1959,7:304-308
    Gutierrez J, Davis RE, Lindahl IL. Dissimilation of alfalfa saponins by rumen bacteria[J]. Science,1958,127(3294):335
    Gutierrez J, Davis RE, Lindahl IL. Characteristics of saponin-utilizing bacteria from the rumen of cattle[J]. Journal of Applied Microbiology,1959,7:304-308
    Harrison DG, McAllan AB. In: Factors Affecting Microbial Growth Yields in the Retriculorumen[C]. Edited by Y Ruckebusch & P Thivend. MTP Press Ltd., Lancaster, 1980, pp:205
    Henbry FG, Pfander WH, Preston RL. Utilization of nitrogen from soybean meal, casein, zein, and urea by mature sheep[J]. Journal of nutrition,1975,105(3):267-273
    Hess HD, Beuret RA, Lotscher M, et al. Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage[J]. Journal of Animal Science, 2004,79:177-189
    Hess HD, Kreuzer M, Lascano TE, et al. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid[J]. Animal Feed Science and Technology,2003,109:79-94
    Hess HD, Monsalve LM, Lascano CE, et al. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis[J]. Australian Journal of Agricltural Research,2003,54: 703-713
    Hino T, Russell JB. Effect of reducing-equivalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts[J]. Applied and Environmental Microbiology,1985,50(6):1368-1374
    Holter JB, Young AJ. Methane prediction in dry and lactating Holstein cows[J]. Journal of Dairy Science,1992,75(8):2165-2175
    Hristov AN, Grandeen KamiL, Ropp JenK, et al. Effect of Yucca schidigera-based surfactant on ammonia utilization in vitro, and in situ degradability of corn grain[J]. Animal Feed Science and Technology,2004,115(3-4):341-355
    Hristov AN, McAllister TA, Van Herk F, et al. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in Heifers [J]. Journal of Animal Science,1999,77: 2554-2563
    Huang, WC, Kuo ML, Li ML, et al. Extract of Gynostemma pentaphyllum enhanced the production of antibodies and cytokines in mice[J]. Yakugaku Zasshi,2007,127(5): 889-896
    Ivan M, Koenig KM, Teferedegne B, et al. Effects of the dietary Enterolobium cyclocarpum foliage on the population dynamics of rumen ciliate protozoa in sheep[J]. Small Ruminant Research,2004,52:81-91
    Joblin KN, Naylor GE, Williams AG. Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi [J]. Applied and Environmental Microbiology,1990,56(8):2287-2295
    Joblin KN, Naylor GE, Naylo GE. Fermentation of woods by rumen anaerobic fungi[J]. FEMS Microbiology Letters,1989,65(1-2):119-122
    Johosn DE, Hill TM,Cannena BR. New perspectives on ruminant methane emission[C]. In:Energy metabolism of farm animals.Edited by Wenk EDC and Boessinger. ETH, Zurich, Switzerland,1991,376-379
    Johnson DE, Ward GM. Estimates of animal methane emissions[J]. Environmental Monitoring and Assessment,1996,42:133-141
    Johnson K. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique[J]. Environmental Science & Technology,1994,94(28): 359-362
    Johnson KA, Johnson DE. Methane emissions from cattle [J]. Journal of Animal Science, 1995,73:2483-2492
    Jouany JP. Defaunation of the rumen[C]. In:Rumen microbial metabolism and ruminant digestion. Edited by JP Jouany. Paris:INRA Editions,1991, pp239-261
    Kamel MS, Assaf MH, Hasanean HA, et al. Monoterpene glucosides from Origanum syriacum[J]. Phytochemistry,2001,58(8):1149-1152
    Kamra DN, Agarwal N, Chaudhary LC. Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds [J]. International Congress Series,2006,1293: 156-163
    Karnati SKR, Yu ZT, Sylvester JT, et al. Technical note:Specific PCR amplification of protozoal 18S rDNA sequences from DNA extracted from ruminal samples of cows [J]. Journal of Animal Science,2003,81:812-815
    Kennedy PM, Milligan LP. Effects of cold exposure on digestion, microbial synthesis and nitrogen transformation in sheep[J]. British Journal of Nutrition,1978,39:105-117
    Khalil M, Shearer MJ, Rasmussen RA. Methane sources in China: historical and current emissions [J]. Chemosphere,1993,26:127-142
    Konstantinov SR, Zhu WY, Williams BA, et al. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA[J]. FEMS Microbiology Ecology, 2003,43:225-235
    Krumho L, Bryant R. Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercitin[J]. Archive of Microbiology, 1986,144:8-14
    Krumholz LR, Forsberg CW, Veira DM. association of methanogenic bacteria with rumen protozoa[J]. Canadian Journal of microbiology,1983,29:676-680
    Kung LJr, Hession AO, Bracht JP. Inhibition of sulfate reduction to sulfide by 9,10-anthraquinone in in vitro ruminal fermentations[J]. Journal of Dairy Science,1998,8(18):2251-2256
    Lacis A, Hansen J, Lee P, et al. Greenhouse effect of trace gases,1970-1980[J]. Geophysical Reseach in Letters,1981,8:1035-1038
    Lanigan GW, Payne AL, Peterson JE. Antimethanogenic drugs and heliotropium europaeum poisoning in penned sheep[J]. Australian Journal of Agricultural Research, 1978,29:1281-1291
    Le Van TD, Robinson JA, Ralph J, et al. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and acetitoculum ruminis[J]. Applied and Environmental Microbiology,1998,64:3429-3436
    Leng RA, Nolan JV. Nitrogen metabolism in the rumen[J]. Journal of Dairy Science, 1984,67:1072-1089
    Leng RA, Bird SH, Klieve A, et al. The potential for tree forage supplements to manipulate rumen protozoa to enhance protein-to-energy ratios in ruminants fed on poor quality forages[C]. In: Legume Trees and Other Fodder Trees as Protein Sources for Livestock. Rome,1992
    Lila ZA, Mohammed N, Kanda S, et al. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro[J]. Journal of Dairy Science, 2003,86:3330-3336
    Li L, Jiao L, Lau BH. Protective effect of gypenosides against oxidative stress in phagocytes, vascular endothelial cells and liver microsomes[J]. Cancer Biotherapy, 1993,8:263-272
    Liu YC, William BW. Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea[J]. Annals of New York Academy of Science,2008,1125: 171-189
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT Method[J]. Methods,2001,25(4):402-408
    Lopez S, McIntosh FM, Wallace RJ, et al. Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms[J]. Animal Feed Science and Technology,1999,78(1-2):1-9
    Lowe SE, Theodorou MK, Trinci AP. Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development[J]. Applied and Environmental Microbiology,1987,53(6):1210-1215
    Lu CD, Jorgensen NA. Alfalfa saponins affect site and extent of nutrient digestion in ruminants[J]. Journal of Nutrition,1987,117(5):919-927
    Luo DH, Wang ZJ. Research advances in polysaccharide of Gynostemm apentaphyllum Makino[J]. Letters in Biotechnology,2005,16,704-705
    Makkar HPS, Becker K. Degradation of quillaja saponins by mixed culture of rumen microbes[J]. Letters in Applied Microbiology,1997,25:243-245
    Makkar HPS. In vitro gas methods for evaluation of feeds containing phytochemicals[J]. Animal Feed Science and Technology,2005,123-124:291-302
    Makkar HPS, Sharma OP, Dawra RK, et al. Simple determination of microbial protein in rumen liquor[J]. Journal of Dairy Science,1982,65:2170-2173
    Mao SY, Zhang G, Zhu WY. Effect of disodium fumarate on ruminal metabolism and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA[J]. Animal Feed Science and Technology,2007,136 (1-2):154-163
    Masahiro N. Two glycosides of nonel demmarane alcohol from Gynostemma pentaphyllm[J]. Chemical and Pharmaceutical Bulletin,1981,29 (3):779-783
    Mathers JC, Miller EL. Some effects of chloral hydrate on rumen fermentation and digestion in sheep[J]. Journal of Agricultural Science(Cambridge.),1982,99:215-224
    May C, Payne AL, Stewart PL, et al. A delivery system for agents, International Patent Application, PCT/AU95/00733,1995
    McEwan NR, Abecia L, Regensbogenova M, et al. Rumen microbial population dynamics in response to photoperiod[J]. Letters in Applied Microbiology,2005,41: 97-101
    Megalli S, Aktan F, Davies NM, et al. Phytopreventative anti-hyperlipidemic effects of gynostemma pentaphyllum in rats[J]. Journal Of Pharmaceutical Sciences,2005,8(3): 507-515
    Menke KH, Rabb L, Salewski A, et al. The estimation of the digestibility and metabolisable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro[J]. Journal of Agricultural Science (Cambridge),1979,93:217-222
    Mitsunori T, Chagan I, Ushida K, et al. Study of methanogens associated with rumen ciliates[J]. Current Microbiology,1999,39:123-128
    Moate PJ. Defaunation increases milk yield of dairy cows[C]. University of New England Printery, Armidale, NSW, Australia,1989
    Moon-van der Staay SY, van Rder Staay GWM, Javorsky P. Diversity of rumen ciliates revealed by 18S ribosomal DNA analysis[J]. Reproduction Nutrition Development, 2002,42(Suppl):S76
    Morrissey JP, Osbourn AE. Fungal resistance to plant antibiotics as a mechanism of pathogenesis[J]. Microbiology and Molecular Biology Reviews,1999,63:708-724
    Morgavi DP, Jouany JP, Martin C, et al. Archaeal community structure diversity in the rumen of faunated and defaunated sheep[J]. International Congress Series,2006,1293: 127-130
    Morvan B, Dore J, Rieu-Lesme F, et al. Establishment of hydrogen utilizing bacteria in the rumen of the newborn lamb[J]. FEMS Microbiology Letters,1994,117:249-256
    Moss AR. Methane production by ruminants:its contribution to global warming[J]. annales de zootechnie,2000,49:231-253
    Moss AR. Methane from ruminants in relation to global warming[J]. Chemical Industry, 1992,9:334-336
    Mountfort DO, Asher RA. Production of xylanase from anaerobic fungus, Neocallimastix frontalis[J]. Applied and Environmental Microbiology,1989,55:1016-1022
    Mountfort DO, Asher RA, Bauchop T. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with methanobrevibacter sp. Strain RA1 and methanosarcina barkeri[J]. Applied and Environmental Microbiology,1982, 44(1):128-134
    Muetzel S. Supplementation of barley straw with Sesbania pachycarpa leaves in vitro[J]. British Journal of Nutrition,2003,89:445-453
    Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplifed genes encoding for 16S rRNA[J]. Applied and Environmental Microbiology,1993,59: 695-700
    Nagaraja TG, Newbold CJ, Van Nevel CJ, et al. Manipulation of ruminal fermentation[C]. Edited by P N Hobson and C S Stewart. In Rumen Microbial Ecosystem.2nd ed.. Blackie Academic and Professional,, London,1997,pp.523-632
    Nakashimada Y, Marwoto B, Kashiwamura, T. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa[J]. Journal of Bioscience and Bioengineering,2000,90(6):661-664
    Navas-Camacho A, Laredo MA, Cuesta A, et al. Effect of supplementation with a tree legume forage on rumen function[J]. Livestock Research for Rural Development,1993, 5:58-71
    Newbold CJ, ElHassan SM, Wang J, et al. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria[J]. British Journal of Nutrition,1997,78:237-249
    Newbold CJ, Lassalas B, Jouany JP. The importance of methanogenesis associated with ciliate protozoa in ruminal methane production in vitro[J]. Letters in Applied Microbiology,1995,21:230-234
    Newbold CJ, Wallace RJ, Watt ND, et al. The effect of the novel ionophore tetronasin (ICI 139603) on ruminal microorganisms[J]. Applied and Environmental Microbiology, 1988,54:544-547
    Newbold CJ, Williams AG, Chamberlain DG. The in vitro metabolism of D, L-lactic acid by rumen microorganisms[J]. Journal of the Science of Food and Agriculture,1987,38: 9-18
    Nicholson M, Evans P, Joblin K. Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis:identification of uncultured methanogens[J]. Microbial Ecology,2007,54 (1):141-150
    Ningrat RWS, Garnsworthy PC, Newbold CJ. Saponin fractions in Sapindus rarak: effects on rumen microbes[J]. Reproduction Nutrition Development,2002,42 (Suppl. 1):S82
    Nubel U, Engelen B, Felske A, et al. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymixa detected by temperature gradient gel electrophoresis[J]. Journal of Bacteriology,1996,178:5636-5643
    Odenyo AA, Osuji PO, Karanfil O. Effect of multipurpose tree (MPT) supplements on ruminal ciliate protozoa[J]. Animal Feed Science and Technology,1997,67: 169-180
    Okine EK, Mathison GW, Hardin RT. Effects of changes in frequency of reticular contractions on fluid and particulate passage rates in cattle[J]. Journal of Animal Science,1989,67:3388-3396
    Orpin CG. Studies on the tureen flagellate Neocallimastix frontalis[J]. Journal of General Microbiology,1975,91:249-262
    Orpin CG. The occurrence of chitin in the cell walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis[J]. Journal of General Microbiology,1977,99:215-218
    Orpin CG, Joblin KN. The rumen anaerobic fungi[C]. In: The Rumen Microbial Ecosystem. Edited by P N Hobson and C S Stewart. London: Chapman and Hall,1997, pp.140-195
    Osbourn A. Saponins and plant defence--a soap story [J]. Trends in Plant Science,1996, 1:4-9
    Patra AK, Kamra DN, Agarwal N. Effect of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test[J]. International Congress Series,2006,1293:176-179
    Pen B, Sar C, Mwenya B, et al. Effects of Yucca schidigera and quillaja saponaria extracts on in vitro ruminal fermentation and methane emission[J]. Animal Feed Science and Technology,2006,129:175-186
    Price KR, Johnson IT, Fenwick GR. The chemistry and biological significance of saponins in food and feedingstuffs[J]. CRC Critical Reviews in Food Science and Nutrition,1987,26:27-133
    Qi G, Zhang L, Li C. Influence of gypenoside on serum lipoprotein and atherosclerosis in hyperlipidaemia animals[J]. Zhongguo Zhong Yao Za Zhi,1996,21(9):562-564
    Qian XH, Wang XX, Tang XL. The effects of jianpizengmian granule on tumor growth and immune function[J]. Journal of China Pharmaceutical University,1999,21, 358-360
    Ramanathan V, Cess RD, Harrison EF, et al. Cloud-radiative forcing and climate:results from the earth radiation budget experiment[J]. Science,1989,243(4887):57-63
    Rao AV, Kendall CW. Dietary saponins and serum lipids[J]. Food and Chemical Toxicology,1986,24(5):441
    Reeburgh WS. Global methane biogeochemistry[J]. Treatise on Geochemistry,2007,4: 1-32
    Regensbogenova M, Kisidayova S,Michalowski T, et al. Rapid identification of rumen protozoa by restriction analysis of amplified 18S rRNA gene. Acta Protozool,2004,43: 219-224
    Regensbogenova M, McEwan NR, Javorsky P, et al. A re-appraisal of the diversity of the methanogens associated with the rumen ciliates[J]. FEMS Microbiology Letters,2004, 238:307-313
    Regensbogenova M, Pristas P, Javorsky P, et al. Assessment of ciliates in the sheep rumen by DGGE[J]. Letters in Applied Microbiology,2004,39:144-147
    Rochfort S, Parker AJ, Dunshea FR. Plant bioactives for ruminant health and productivity[J]. Phytochemistry,2008,69(2):299-322
    Rujjanawate C, Kanjanapothi D, Amornlerdpison D. The antigastriculcer effect of Gynostemma pentaphyllum Makino[J]. Phytomedicine,2004,11:431-435
    Rychlik JL, May T. The effect of a methanogens, Methanobrevibacter smithii, on the growth rate, organic acid production, and specific ATP activity of three predominant ruminal cellulolytic bacteria[J]. Current Microbiology,2000,40:176-180
    Sallam, SMA. Nutritive Value Assessment of the Alternative Feed Resources by Gas Production and Rumen Fermentation In vitro[J]. Research Journal of Agriculture and Biological Sciences,2005,1(2):200-209
    Santoso B, Kilmaskossu A, Sambodo P. Effects of saponin from Biophytum petersianum Klotzsch on ruminal fermentation, microbial protein synthesis and nitrogen utilization in goats[J]. Animal Feed Science and Technology,2007,137(1/2):58-68
    Santoso B, Mwenya B, Sar C, et al. Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep[J]. Livestock Production Science,2004,91:209-217
    Schelling GT. Monensin mode of action in the rumen [J]. Journal of Animal Science, 1984,58:1518-1527
    Seeman P. Ultrastructure of membrane lesions in immune lysis, osmotic lysis and drug-induced lysis[J]. Federation Proceedings,1974,33:2116-2124
    Shang L, Liu J, Zhu Q, et al. Gypenosides protect primary cultures of rat cortical cells against oxidative neurotoxicity[J]. Brain Research,2006,1102(1):163-174
    Shin EC, Cho KM, Lim WJ, et al. Phylogenetic analysis of protozoa in the rumen contents of cow based on the 18S rDNA sequences[J]. Journal of Applied Microbiology,2004,97:378-383
    Sidhu GS, Oakenfull DG. A mechanism for the hypocholesterolaemic activity of saponins[J]. British Journal of Nutrition,1986,55(3):643-649
    Singer MD, Robinson PH, Salem AZ, et al. Impacts of rumen fluid modified by feeding Yucca schidigera to lactating dairy cows on in vitro gas production of 11 common dairy feedstuffs, as well as animal performance[J]. Animal Feed Science and Technology,2008,146(3-4):242-258
    Simpson JM, McCracken VJ, White BA, et al. Application of denaturing gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota[J]. Journal of Microbiological Methods,1999,36:167-179
    Sliwinski BJ, Kreuzer M, Wettstein HR, et al. Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane[J]. Archives of Animal Nutrition,2002,56: 379-392
    Sliwinski BJ, Soliva CR, Machmuller A, et al. Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation[J]. Animal Feed Science and Technology, 2002,101:101-114
    Southon S, Johnson IT, Gee JM, et al. The effect of Gypsophila saponins in the diet on mineral status and plasma cholesterol concentration in the rat[J]. British Journal of Nutrition,1988,59(1):49-55
    Stewart CS, Flint HJ, Bryant MP. The rumen bacteria [C]. In: The Rumen Microbial Ecosystem. Edited by Hobson P N & Stewart C S. London: Blackie Academic & Professional,1997,10-72
    Stumm CK, Gijzen HJ, Vogels GD. Association of methanogenic bacteria with ovine rumen ciliates[J]. British Journal of Nutrition,1982,47:95-99
    Stumm CK, Zwart KB. Symbiosis of protozoa with hydrogen utilizing methanogens[J]. Microbiology Science,1986,3:100-105
    Sugihara Y, Nojima H, Matsuda H, et al. Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice[J]. Journal of Asian natural Products Research,2000,2(4):321-327
    Sylvester JT, Karnati SK, Yu Z, et al. Development of an Assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR[J]. Journal of Nutrition,2004,134(2): 3378-3384
    Sylvester JT, Karnati SKR, Yu Z, et al. Evaluation of a real-time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen[J]. Journal of Dairy Science,2005,88(6):2083-2095
    Tajima K, Nagamine T, Matsui H, et al. Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens[J]. FEMS Microbiology Letters,2001,200 (1): 67-72
    Teferedegne B, McIntosh F, Osuji PO, et al. Influence of foliage from different accessions of the sub-tropical leguminous tree, Sesbania sesban, on ruminal protozoa in Ethiopian and Scottish sheep[J]. Animal Feed Science and Technology,1999,78: 11-20
    Teferedegne B. New perspectives on the use of tropical plants to improve ruminant nutrition[J]. The Proceedings of the Nutrition Society,2000,59:209-214
    Teunissen MJ, Kets EP, Camp OH. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities[J]. Archives of Microbiology,1992,157(2):176-182
    Thalib A, Widiawatii Y, Hamid H, et al. The effects of saponin from Sapindus rarak on ruminal flora and fermentation characteristics in vitro[J]. Journal of Ilmu Ternak dan Vertiner,1996,2:17-20
    Theodorou MK, Longland AC, Dhanoa MS, et al. Growth of Neocallimastix sp strain R1 on Italian ryegrass hay-removal of neutral sugars from plant-cell walls[J]. Applied and Environmental Microbiology,1989,55(6):1363-1367
    Theodorou MK, Zhu WY, Richers A, et al. Biochemistry and ecology anaerobic fungi[C]. In: The Mycota: Ⅵ Human and Animal Relationship. Edited by Howard DH and Miller JD ed. New York:Springer-Verlag, pp.265-295
    Theodorou MK, Williams BA, Dhanoa MS, et al. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds [J]. Animal Feed Science and Technology,1994,48(3/4):185-197
    Tokura M, Chagan I, Ushida K, et al. Phylogenetic study of methanogens associated with rumen ciliates[J]. Current Microbiology,1999,39:123-128
    Tom HWH, Van HT, Basil DR, et al. Gypenoside XLIX, a naturally occurring PPAR-α activator, inhibits cytokine-induced vascular cell adhesion molecule-1 expression and activity in human endothelial cells[J]. European Journal of Pharmacology,2007,565: 158-165
    Tyler SC. Stable carbon isotope ratios in atmospheric methane and some of its sources[J]. Journal of Geophysical Research,1986,91:13232-13238
    Ushida K, Miyazaki A, Kawashima R. Effect of defaunation on ruminal gas and VFA production in vitro[J]. Japanese Journal of Zootechnie Science,1987,57:71-77
    Ushida K, Tokura M, Takenaka A, et al. Ciliate protozoa and ruminal methanogenesis[C]. In: Rumen microbes and digestive physiology in ruminants. Edited by Onodera R, Itabashi H, Ushida K, Yano H and Sasaki Y. Tokyo:Japan Sci Soc Press/Basel:S Karger,1997, pp.209-220
    Valdez FR, Bush LJ, Goetsch AL, et al. Effect of steroidal sapogenins on ruminal fermentation and on production of lactating dairy-cows[J]. Journal of Dairy Science, 1986,69:1568-1575
    Van Nevel CJ, Demeyer DI. Effect of monensin on rumen metabolism in vitro[J]. Applied and Environmental Microbiology,1977,34:251-257
    Van Nevel CJ, Demeyer DI. Feed additives and other interventions for decreasing methane emissions[C]. In: Biotechnology in Animal Feeds & Animal Feeding. Edited by Wallace R J, et al. Weinheim:Wiley-VCH,1995, pp.329-349
    Van Nevel CJ, Demeyer DI. Control of rumen methanogenesis[J]. Environmental Monitoring and Assessment,1996,42:73-97
    Van Soest PJ. Nutritional Ecology of the Ruminant. O&B Books, Cornallis, OR,1982
    Vogels GD, HoppeWF, Stumm CK. Association of methanogenic bacteria with rumen ciliates[J]. Applied and Environmental Microbiology,1980,40:608-612.
    Wallace JR. Antimicrobial properties of plant secondary metabolites[J]. The Proceedings of the Nutrition Society,2004,63:621-629
    Wallace RJ, Arthaud L, Newbold CJ. Influence of Yucca-shidigera extract on ruminal ammonia concentrations and ruminal microorganisms[J]. Applied and Environmental Microbiology,1994,60:1762-1767
    Wallace RJ, Wood TA, Rowe A, et al. Encapsulated fumaric acid as a means of decreasing ruminal methane emission[J]. International Congress Series,2006,1293: 148-151
    Wang CJ, Wang SP, Zhou H. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep[J]. Animal Feed Science and Technology,2009,148(2-4):157-166
    Wang Y, McAllister TA, Newbold CJ, et al. Effects of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC) [J]. Animal Feed Science and Technology,1998,74:143-153
    Wang YX, McAllister TA, Yanke LJ, et al. In vitro effects of steroidal saponins from Yucca schidigera extract on rumen microbial protein synthesis and ruminal fermentation[J]. Journal of the Science of Food and Agriculture,2000,80:2114-2122
    Wang Y, McAllister TA, Yanke LJ, et al. In vitro effects of steroidal saponins from Yucca schidigera extract on rumen microbes[J]. Journal of Applied Microbiology, 2000,88:887-896
    Weatherburn MW. Phenol-hypochlorite reaction for determination of ammonia[J]. Analytical Chemistry,1967,39(8):971-974
    Williams AG. Rumen holotrich ciliate protozoa[J]. Microbiological Reviews,1986,50(1): 25-49
    Williams AG, coleman GS. The rumen protozoa[C]. In: The Rumen Microbial Ecosystem. Edited by PN Hobson and CS Stewart, london, Blackie Academic & Professional,1992, pp.72-139
    Williams AG, Coleman GS. The Rumen Protozoa[C]. Springer-Verlag,1991
    Williams AG, Withers SE, Joblin KN. The effect of cocultivation with hydrogen-consuming bacteria on xylanolysis by Ruminococcus flavefaciens[J]. Current Microbiology,1994,29:133-138 Wilson RF, Tyburski JG. Metabolic responses and nutritional therapy in patients with severe head injuries[J]. Journal of Head Trauma Rehabilitation,1998, 13(1):11-27
    Wina E, Muetzel S, Becker K. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short and long-term feeding of Sapindus rarak saponins[J]. Journal of Applied Microbiology,2006,100:114-122
    Wina E, Muetzel S, Hoffman E, et al. Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro[J]. Animal Feed Science and Technology,2005,121:159-174
    Wolin MJ. Metabolic interaction among intestinal microorganisms[J]. American Journal of Clinical Nutritrion,1975,27:1320-1328
    Wolin MJ. Metabolic interactions among intestinal microorganisms[J]. American Journal of Clinical Nutrition,1974,27:1320-1328
    Wolin MJ. Fermentation in the rumen and human large intestine[J]. Science,1981, 213(4515):1463-1468
    Wolin MJ, Miller TL, Stewart CS. Microbe-microbe interactions[C] In: The Rumen Microbial Ecosystemed. Edited by Hobson P N and Stewart C S, New York, NY: Blackie Academic & Professional,1997, pp.467-491
    Wu Z, Sadik M, Sleiman FT, et al. Influence of Yucca extract on ruminal metabolism in cows[J]. Journal of Animal Science,1994,72:1038-1042
    Wuebbles DJ, Hayhoe K. Atmospheric methane and global change[J]. Earth-Science Reviews,2002,57(3-4):177-210
    Yu Z, Garcia-Gonzalez R, Schanbacher FL, et al. Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis[J]. Applied and Environmental Microbiology,2008,74(3):889-893
    Zhu S, Fang C, Zhu, S, et al. Inhibitory effects of Gynostemma pentaphyllum on the UV induction of bacteriophage lambda in lysogenic Escherichia coli[J]. Current Microbiology,2001,43:299-301
    Zhu WY, Williams B A, Akkermans ADL. Development of the microbial community in weaning piglets[J]. Reproduction Nutrition Development,2000,40:180
    Zoetendal EG, Akkermans ADL, de Vos WM. Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host-specific communities of active bacteria[J]. Applied and Environmental Microbiology,1998,64: 3854-3859
    成艳芬.厌氧真菌与产甲烷菌共培养系统的建立及其代谢与菌群变化的研究[D].南京农业大学,2008
    郭嫣秋.瘤胃产甲烷菌定量检测与微生物菌群调控研究[D].浙江大学,2008
    郭庭双.全球配合饲料市场预测[J].饲料广角,2002,18:12-13
    胡伟莲.皂甙对瘤胃发酵与甲烷产量及动物生产性能影响的研究[D].浙江大学,2005
    裴彩霞,毛胜勇,朱伟云.晋南牛瘤胃中古菌分子多样性的研究[J].微生物学报,2008,48(1):8-14
    覃章铮,赵蕾,毕世荣,等.绞股蓝的皂甙成分及资源[J].天然产物研究与开发,1992,4(1):83-98
    汪玉松,邹思湘,张玉静.现代动物生物化学[M].中国农业科技出版社,1999:428
    赵玉华.瘤胃微生物RaelTime PCR定量方法的建立及其应[D].中国农业科学院,2005
    周俐,叶开和,任先达.绞股蓝总苷对免疫低下小鼠非特异性免疫功能的影响[J].中国基层医药,2006,13(6):979-980
    周贞兵,梁珠民,戴腾飞,等.绞股蓝添加剂对断奶仔猪的饲养试验[J].广西农业科学,2004,35(4):319-321
    周贞兵,杨慧芳,李玉,等.绞股蓝添加剂对肉鸡的饲养试验[J].广西农业科学,2007,38(4):465-467
    竹本常松.葫芦科植物的成分研究-绞股蓝的皂甙成分[J].国外医学:中医中药分册,1985,7(4):30-32
    朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报,2003,43(4):503-508
    朱伟云.瘤胃微生物.见:冯仰廉.反当动物营养学[C].北京:科学出版社,2004,1-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700