小麦抗条锈病基因Yr26的分子标记及黑麦1R、鹅观草1Rk~(#1)与簇毛麦1V和6VS特异分子标记的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子标记技术是二十世纪80年代初建立起来的一种以遗传物质DNA为基础的新型的遗传标记体系,目前广泛应用于分子遗传图谱的构建、基因定位与克隆、重要性状的标记辅助选择以及比较基因组学等研究。本研究利用分子标记技术(如SSR,STS,RGA等)开展对小麦抗条锈病基因Yr26的分子标记筛选和定位研究,并开发了黑麦1R、鹅观草1Rk~(#1)、簇毛麦1V和6VS染色体特异的分子标记。
     1.小麦抗条锈病基因Yr26的SSR和STS标记
     小麦条锈病是由小麦条锈菌(Puccinia striiformis f.sp.stritic)引起的一种广泛流行的世界性小麦病害,培育抗病品种是防治小麦条锈病最经济有效且利于环境安全的措施。然而,由于小麦条锈菌具有高度的变异性,随着新致病小种的出现许多抗病品种相继“丧失”了抗性。普通小麦-簇毛麦6VS/6AL易位系携带有位于1B染色体上的Yr26基因,能抵抗目前流行的多个条锈菌生理小种,因此对Yr26基因进行分子标记研究对在育种中更好地利用该基因具有重要意义。本研究选用普通小麦1B染色体上的35对SSR引物和根据1B染色体不同物理区段的EST序列设计的81对STS引物,对抗、感亲本和抗、感池进行扩增分析,筛选到5对SSR标记(Xgwm11、Xgwm18、Xgwm413、Xbarc181和Xwmc419)和8对STS标记(WE173、WE171、WE177、WE201、WE202、WE210、WE11和WE17)在抗、感亲本和抗、感池间存在多态性。进一步利用筛选到的13对引物扩增扬麦5号×92R137 F_2群体的单株,大部分感病单株扩增出与感病亲本扬麦5号一致的带型,而大部分抗病单株扩增出与抗病亲本92R137相同的带型或双亲的带型。利用Mapmaker 3.0进行连锁分析,这13个标记位点与抗条锈病基因Yr26连锁,遗传距离在1.4~14.1cM之间。其中WE173、WE171、WE177、WE201、WE202、WE210、Xgwm11、Xgwm18和WE11等9个标记与Yr26的连锁距离在5.5 cM以内,特别是共显性的STS标记WE173与Yr26的遗传距离最小,为1.4cM。
     利用中国春非整倍体和缺失系对筛选到的多态性标记进行物理定位,位于Yr26基因两侧的标记WE173和Xwmc419定位在1B染色体长臂,紧靠Yr26基因的WE173、WE201等标记被定位在1BL-6区段,从而将Yr26基因定位于1B染色体长臂紧靠着丝粒的1BL-6区域。
     利用与Yr26基因连锁的分子标记对利用6VS/6AL易位系做抗病亲本育成的高代品系和新品种进行分子标记检测。内2938,内麦9号,内4221,95-108和南农9918等5份材料含有与Yr26基因紧密连锁的标记,石012056,A4-74-8和A5-82-3-5等3份材料不含有与Yr26基因紧密连锁的标记,利用分子标记检测的结果与苗期条锈病的抗性鉴定结果一致,表明本研究筛选到的分子标记可以用于Yr26基因的分子标记辅助选择。
     2.簇毛麦6V染色体短臂特异分子标记的开发和应用
     来自簇毛麦的抗白粉病基因Pm21被定位在6V染色体短臂上,为进一步定位和克隆Pm21基因,须创造更多染色体结构变异体和更多的分子标记。为开发簇毛麦6V染色体短臂特异的分子标记,本研究选用11个RGA和17对STS引物进行多态性分析,有1个RGA引物和1对STS引物分别检测到一条约1000bp和约800bp的多态性片段,根据这两条多态性片段的序列设计出引物CINAU17和CINAU18,利用一套普通小麦-簇毛麦异附加系和涉及6V不同片段的异染色体系,筛选出6V短臂特异的分子标记CINAU17-_(1086)和CINAU18-_(723),并进一步将CINAU17-_(1086)标记定位在簇毛麦6VS FL0.58与FL0.70之间,将CINAU18-_(723)标记定位在簇毛麦6VS FL0.45和着丝粒之间。利用这两个标记对通过花粉辐射获得的部分簇毛麦6VS结构变异材料进行PCR鉴定,结果与细胞学鉴定结果相一致。因此CINAU17-_(1086)和CINAU18-_(723)标记可用来快速检测和追踪导入普通小麦背景中的簇毛麦6VS染色体片段,并对缺失系的断点进行初步界定。
     3.普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草IRk~(#1)染色体特异分子标记的开发
     根据普通小麦第一部分同源群的EST序列设计104对STS引物,筛选出5对黑麦1R染色体特异标记:CINAU 19-_(500)、CINAU20-_(950)、CINAU21-_(1500)、CINAU22-_(310)和CINAU23-_(2000);5对簇毛麦1V染色体特异标记:CINAU23-_(1700)、CINAU24-_(1050)、CINAU25-_(1650)、CINAU26-_(500)和CINAU27-_(620);5对鹅观草IRk~(#1)特异标记:CINAU27-_(960)、CINAU28-_(1360)、CINAU29-_(480)、CINAU30-_(566)和CINAU31-_(520)。表明可以利用普通小麦的EST序列设计PCR引物,转化成STS标记,筛选普通小麦近缘物种黑麦、簇毛麦及鹅观草等染色体特异的分子标记,这些标记可以用来快速检测和追踪导入普通小麦背景中的黑麦1R、簇毛麦1V及鹅观草1Rk~(#1)染色体或染色体片段,从而为普通小麦远缘杂种材料进行深入研究提供新的工具。
The molecular marker, which was established in the early of 1980s, is a DNA sequence-based genetic marker system. It was now widely used in many research fields, such as genetic map constructing, gene mapping and cloning, marker assistant selection and comparative genomics researches. In present study, different types of molecular markers (SSR, EST, RGA etc.) were used to map the stripe rust resistance gene Yr26 and develop the chromosome-specific markers for chromosome 1R of Secale cereale, 1Rk~(#1) of Roegneria kamoji , 1V and 6VS of Haynaldia villosa.
     1. Development of markers for wheat stripe rust resistance gene Yr26
     Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most devastating wheat diseases worldwide. Development of resistant cultivars is the most economic, effective and ecological approach to control the disease. However, most of the cultivars with genes for resistance to stripe rust have lost resistance because of the co-evolution of host resistance and pathogen virulence. T. aestivum-H, villosa 6VS/6AL translocation lines were highly resistant to stripe rust with resistance gene Yr26 located on chromosome 1B. In order to better utilize Yr26 in wheat improvement, we attempted to develop SSR and EST-based STS markers more closely linked with Yr26. 35 SSR markers and 81 STS markers derived from EST sequences located on chromosome1B were select to analyse resistant and susceptible bulks as well as their parents. The results showed that 5 pairs of SSR primers, GWM11、GWM18、GWM413、BARC181and WMC419, and 8 pairs of STS primers, WE173、WE171、WE177、WE201、WE202、WE210、WE11and WE17, could amplify polymorphic fragments between resistant and susceptible bulks and their parents. These thirteen markers were used to amplify the DNA of individuals in Yangmai 5/92R137 F_2 population. Most of the susceptible plants amplified the bands as same as that from susceptible parent and most resistance plants amplified the bands as same as that from resistant parents or both. Using Mapmaker 3.0b, the linkage between Yr26 and the 13 markers was detected with genetic distances ranging from 1.4 to 14.1 cM. Among them, nine markers, WE173、WE171、WE177、WE201、WE202、WE210、Xgwm11、Xgwm18 and WEll, showed the genetic distances less 5.5 cM with the Yr26, especially WE173 with genetic distance of 1.4 cM.
     Using Chinese Spring nulli-tetrasomic, telosomic and deletion lines, the polymorphic markers flanking Yr26, WE173 and Xwmc419, were physically mapped in the long arm of chromosome 1B, and the markers close to Yr26, WE173 and WE201, were mapped in deletion bin 1BL-6. Therefore, gene Yr26 was mapped in deletion bin 1BL-6 near the centromere of chromosome lB.
     Eight cultivars and advanced lines developed by different institutes used 6VS/6AL translocation lines as resistant parents, were identified using selected markers closely linked to Yr26. Five of them, Nei 2938, Neimai 9, Nei 4221, 95-108 and Nannong 9918, could amplify the specific linked markers, while three derivatives, Shi01Z056, A4-74-8 and A5-82-3-5, can not amplify the markers. The result of molecular assisted selection was in agreement with the result by race inoculation test in the greenhouses. The markers linked to Yr26 developed in this study should be efficient tools for identifying Yr26 in the breeding program.
     2. Development of markers specific to chromosome 6VS of Haynaldia villosa
     The resistance gene of powdery mildew Pm21 was introduced from Haynaldia villosa into common wheat and located on 6VS. In order to precisely map and clone Pm21, more molecular markers and chromosome structural variants need to be developed. 11 RGA and 17 pairs of STS primers were selected to screen polymorphism between wheat-Haynaldia villosa 6VS/6AL translocation and Yangmai 5. One RGA primer and a pair of STS primer amplified polymorphic fragments, about 1000bp and 800bp, respectively. Two pairs of primers, CINAU17 and CINAU18, were designed according to the sequences of two polymorphic fragments. The results indicated that CINAU17-(1086) and CINAU18-(723) were located on chromosome 6VS because only the materials with 6VS could amplify the specific fragments. Furthermore, CINAU17-(1086) was located in the region of 6VS between FL0.58 and FL0.70, and CINAU18-(723) was located in the region between FL0.45 and centromere by using 6VS deletion addition lines and translocation lines. The results obtained by using these two markers were coincided with that by using cytogenetic identification in the structural variants of chromosome 6VS induced by radiating powder. Therefore, CINAU17-1086 and CINAU18-723 markers could be used to rapidly detect the correspondent chromosome segments of 6V and the breakage points of deletion lines.
     3. Development of chromosome-specific markers for chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk~(#1) of Roegneria kamoji
     In order to develop chromosome-specific markers for chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk~(#1) of Roegneria kamoji, 104 STS primers were designed based on EST sequences distributed on chromosome 1A, 1B and 1D of Triticum aestivum. Five STS markers, CINAU 19-500、CINAU20-950、CINAU21-1500、CINAU22-310 and CINAU23-2000 amplified from S.cereal, T. aestivum-S, cereale amphiploid and 1R addition line, but not from CS and 2R-7R addition lines, were specific to 1R of S. cereale. Five STS markers, CINAU23-1700、CINAU24-1050、CINAU25-1650、CINAU26-500 and CINAU27-620 were specific to 1V of H. villosa because of the corresponding fragments amplified only from H. villosa, T. durum-H, villosa amphiploid and 1V addition line, not from CS and 2V-7V addition lines. And five STS markers, CINAU27-960、CINAU28-1360、CINAU29-480、CINAU30-560 and CINAU31-520 specific to 1Rk~(#1) of R. kamoji were screened owing to specific fragments amplified from R. kamoji, Wheat-R. kamoji DA1Rk~(#1) and DS1Rk~(#1)(1A). The result indicated that STS markers derived from the EST of common wheat were useful tool for identify corresponding specific chromosomes of wheat relatives.
引文
1.安室喜正,伊尚武译.小麦种子蛋白质的遗传改良.国外农学—麦类作物,1991,(1):1-4
    2.曹张军,井金学,王美南等.国内重要抗源品种水源11、水源92及Hybrid46抗条锈基因关系分析.西北植物学报,2003,23(1):64-68
    3.陈佩度,周波,齐莉莉等.用分子原位杂交(GISH)鉴定小麦)簇毛麦双倍体、附加系、代换系和易位系.遗传学报,1995,22(5):380-3861
    4.陈佩度,王兆悌,王苏玲等.将大赖草种质转移给普通小麦的研究,Ⅲ.抗赤霉病异附加系的选育.遗传学报,1995,22(3):206-210
    5.陈佩度,刘大钧,齐莉莉等.小麦条锈病新抗源的抗谱鉴定初析.植物病理学报,2001,31(1):31-36
    6.陈佩度,张守忠,王秀娥等.抗白粉病高产小麦新品种南农9918.南京农业大学学报,2002,25(4):105-106
    7.陈晓红.小麦抗条锈病基因Yr5的RAPD标记.东北农业大学硕士学位论文,2003,哈尔滨
    8.陈新民.抗白粉病小麦品种培育之我见.麦类作物学报,1999,19(5):7-9
    9.崔志富,林志珊,辛志勇等.应用GISH与STS标记鉴定小麦-中间偃麦草抗黄矮病端体系.作物学报,2006,12(32):1855-1859
    10.代君丽.我国小麦农家品种抗条锈遗传分析.西北农林科技大学,硕士学位论文,2002,陕西杨凌
    11.冯祎高.小麦-鹅观草1Rk~(#1)染色体变异体的选育及其抗赤霉病性鉴定.南京农业大学硕士学位论文,2002,南京
    12.高安礼,何华纲,陈全战等.分子标记辅助选择小麦抗白粉病基因Pm2、Pm4a和Pm21的聚合体.作物学报,2005,32(11):1400-1405
    13.高海波,陈孝,陈明等.小麦-中间偃麦草异附加系Z4的外源染色质的分子标记.西南农业学报,2005,18(5):634-637
    14.高胜国.南农92R系统白粉病抗源多抗性鉴定及抗条锈性遗传分析.作物学报,1999,25(3):389-391
    15.耿以礼,陈守良.国产鹅观草属ROEGERIA C.Koch.之订正.南京大学学报,1963,1:1-92
    16.郭伟锋,张改生,王军卫等.N95175抗条锈病的RAPD分析.麦类作物学报,2004,24(4):25-27
    17.郭延平,郭本兆.小麦族植物的属间亲缘和系统发育的探讨.西北植物学报,1991,11(2):159-169
    18.黄朝峰,张文竣,余波澜等.大麦6H染色体特异性标记的筛选与鉴定.遗传学报,2000,27(8):713-718
    19.黄光永,庞启华,周强等.小麦条锈病新抗源92R149的初步利用和评价.麦类作物学报,2000,20(1):91-93.
    20.姬红丽,朱华忠,沈丽等.川麦“107”慢条锈性研究.西南农业学报,2005,18(6):767-772
    21.贾继增.小麦染色体第六部分同源群RFLP连锁图绘制.中国科学(B),1994,24,(12):1281-1289
    22.贾继增.小麦分子标记研究进展.生物技术通报,1997,(2):1-51
    23.井长勤,陈荣振,冯国华等.52个重要小麦品种抗条锈基因的推导.江苏农业学报,2005,21(1):30-34
    24.井金学.三个小麦近缘属种抗条锈性传递的初步研究.植物病理学报,1998,29(2):147
    25.孔凡娜,徐智斌,姚秋燕等.小偃6号抗条锈基因遗传分析及分子标记,西北植物学报,2006,26(1):23-27
    26.李爱霞.普通小麦辉县红-荆州黑麦异染色体系的选育及其梭条花叶病和白粉病抗性鉴定.南京农业大学硕士论文,2006,南京
    27.李桂萍.小麦-簇毛麦6VS/6AL易位染色体的遗传效应研究.南京农业大学博士论文,2007,南京
    28.李淑梅.普通小麦-簇毛麦涉及2V染色体端体和易位系的选育与鉴定.南京农业大学硕士论文,2005,南京
    29.李勇.小麦品种C591中一个主效抗条锈病基因的定位与分子标记研究.中国农业科学院硕士学位论文,2006,北京
    30.李振岐,曾士迈.中国小麦锈病.北京:中国农业出版社,2002,41-50,164-173
    31.李振岐.我国小麦品种抗条锈丧失原因及其解决途径.中国农业科学,1980,(3):72-77
    32.李振声,穆素梅,蒋立训等.蓝粒单体小麦研究(一).遗传学报,1982,9(6):431-439
    33.林凤,徐世昌,张立军等.小麦抗条锈病基因Yr2的SSR标记.麦类作物学报,2005,25(1):17-19
    34.刘大钧,齐莉莉,陈佩度等.导入小麦的外源染色体片段的准确鉴定及外源抗性基因的稳定性分析.遗传学报,1996,23(1):18-23
    35.刘大钧,齐莉莉,陈佩度等.硬粒小麦-簇毛麦双二倍体.作物学报,1986,12(3):155-161
    36.刘大钧,齐莉莉,王苏玲等.簇毛麦6V染色体缺失系的鉴定RFLP标图遗传.遗传,1998,20(增刊):125
    37.刘红彦.小麦抗条锈病基因分子标记的建立.西北农业大学博士论文,1999,陕西杨凌
    38.刘守斌,唐朝晖,尤明山等.簇毛麦1V染色体SSR标记的筛选.作物学报,2004,30(2):138-142
    39.刘小俊,姬红丽,杨武云等.川麦107慢条锈性遗传分析和分子标记研究.麦类作物学报, 2006,26(3):41~45
    40.刘亚萍,曹双河,王献平等.小麦抗条锈病基因Yr24的SSR标记.植物病理学报,2005,35(5):478-480
    41.刘志勇,孙其信,李洪杰等.小麦抗白粉基因Pm21的分子标记鉴定和标记辅助选择.遗传学报,1999,26(6):673-682
    42.陆文辉,林小虎,李兴峰等.抗条锈小滨麦易位系的鉴定.作物学报,2005,31(1):88-91
    43.马渐新,周荣华,董玉琛等.来自长穗偃麦草的抗小麦条锈病基因的定位.科学通报,1999,44(14):1513-1517
    44.马渐新,周荣华,董玉琛等.用微卫星标记定位一个未知的小麦抗条锈病基因.科学通报,1997,44(14):1513-1517
    45.马蕾蕾,王瑞义,吴玉星等.小麦条锈菌中国鉴别寄主阿夫的抗条锈病基因单体分析.植物保护,2006,32(1):27-29
    46.牛永春,刘红彦,吴立人等.小麦品种“Lee”种抗条锈基因的RA PD标记.高技术通讯,1998,12:11-14
    47.牛永春,乔奇,吴立人.豫鲁皖三省重要小麦品种抗条锈病基因推导.植物病理学报,2000,30(2):122-128
    48.牛永春,吴立人.繁6-绵阳系小麦抗条锈性变异及对策.植物病理学报,1997,27(1):5-8
    49.裴新梧,倪建福,仲乃琴等.用改良缺体回交法选育小麦-黑麦异代换系.甘肃农业科技,1995,6:3-4
    50.亓增军,刘大钧,陈佩度等.利用染色体C-分带和双色荧光原位杂交鉴定普通小麦-黑麦-簇毛麦双重易位系1RS·1BL、6VS·6AL.遗传学报,2001,28(3):267-273
    51.亓增军,庄丽芳,刘大钧等.将荆州黑麦种质导入栽培小麦的研究(I).南京农业大学学报,2000,23(4):1-4
    52.齐莉莉,陈佩度,刘大钧等.小麦白粉病新抗源—基因Pm21.作物学报,1995,21(3):257-262.
    53.秦跟基,陈佩度,刘耀光等.用克隆池PCR法筛选小麦-簇毛麦易位系6VS/6AL基因组TAC文库获得抗病基因侯选克隆.生物工程学报,2002,18(3):313-317
    54.任正隆.黑麦种质导入小麦及其在小麦育种中的利用方式.中国农业科学,1991,24(3):18-25
    55.商鸿生.小麦对抗条锈的高温抗病性研究.中国农业科学,1998,31(2):143
    56.邵映田,牛永春,朱立煌等.小麦抗条锈病基因Yr10的AFLP标记.科学通报,2001,46(8):669-672
    57.陶文静,刘金元,王秀娥等.用RFLP鉴定普通小麦-纤毛鹅观草二体附加系中外源染色体的同源转化.作物学报,1999,25(6):657-661
    58.陶文静,刘金元,刘大均等.普通小麦—提莫菲维小麦白粉病抗性渐渗系中渗入片段的准确鉴定.植物学报,1999,41(9):941-946
    59.万安民,牛永春,吴立人.中国小麦品种抗条锈性丧失及其治理对策.植物保护与植物营养研究进展(C),北京:中国农业出版社,1999:70-75
    60.万安民.小麦条锈病的发生状况和研究现状.世界农业,2000,5:39-40
    61.万安民,赵中华,吴立人.2002年我国小麦条锈病发生回顾.植物保护,2003,29(2):5-8
    62.汪可宁,吴立人,孟庆玉等.1975-1984年我国小麦条锈菌生理专化研究.植物病理学报,1986,16(2):79-85
    63.汪可宁,洪锡午,吴立人等.1951~1983年我国小麦品种抗条诱性变异分析.植物保护学报,1998,13(2):117-123
    64.汪杏芬,吴丽芳,陈佩度等.普通小麦.鹅观草异附加系的选育与鉴定初报.植物学报,1995,37(11):878-884
    65.王春连,戚华雄,潘海军等.水稻抗白叶枯病基因Xa23的EST标记及其在分子育种中的利用.中国农业科学,2005,38(10):1996-2001
    66.王二明,邢宏燕,张文俊等.黑麦1R染色体特异性PCR引物的分子证据.植物学报,1999,41(6):603-608
    67.王凤乐,吴立人,徐世昌.绵阳系小麦抗条锈病变异的系统调查.植物病理学报,1996,26:105-109
    68.王凤乐,吴立人,万安民等.陕甘川重要小麦品种抗条锈病基因分析.作物学报,1994,20(5):589-594
    69.王凤乐,吴立人,谢水仙等.我国小麦重要抗源材料抗条锈病基因推导及其成株抗病性分析.植物病理学报,1994,24(2):175-180
    70.王秀娥,Gill B S,刘大钧.小麦—大赖草易位系的RFLP分析.遗传学报,2001,28(12):1142-1150
    71.王彦梅,钟冠昌,穆素梅,安调过等.小麦品种“高优503"抗条锈基因染色体定位.作物学报,2001,27(3):383-386
    72.王悦冰,徐世昌,徐仲等.小麦条锈菌国际鉴别寄主Vilmorin23的抗条锈病基因YrV23微卫星标记.遗传,2006,28(3):306-310
    73.翁东旭,徐世昌,蔺瑞明等.小麦条锈菌鉴别寄主抗条锈病基因Yr9的微卫星标记.遗传学报,2005,32(9):937-941
    74.翁益群,刘大钧.鹅观草与普通小麦属间杂种F1的形态、赤霉病抗性和细胞遗传研究.中国农业科学,1989,22(5):1-7
    75.吴立人,牛永春.我国小麦条锈病持续控制的策略,中国农业科学,2000,33(5):1-7
    76.吴丽芳.普通小麦与鹅观草杂种回交后代鉴定和异附加系选育.南京南京农业大学硕士论文,1992,南京
    77.武军,王辉,刘伟华等.小麦新种质4844中外源P染色质的GISH与SSR分析。西北植物学报,2006,26(6):1093-1097
    78.徐乃谕.异源细胞质对普通小麦主要病害抗性影响的初步以及.湖北农业科学,1990,7:7-9
    79.徐琼芳,马有志,辛志勇等.应用原位杂交及RAPD技术标记抗黄矮病小麦.中间偃麦草染色体附加系.遗传学报,1999,26(1):49-53
    80.徐世昌,张敬原,赵文生等.小麦条锈病重要抗源京核8811品系抗性遗传机制.植物保护学报,2001,28(4):283-289
    81.徐相波,刘冬成,郭小丽等.小麦谷蛋白亚基1Dx 5的分子鉴定及标记辅助选择.中国农业科学,2005,38(2):415-419
    82.薛秀庄,王祥正,许堂喜等.利用染色体工程选育小麦新种质.《中国小麦育种研究进展》,北京:中国农业出版社,PP:361-365
    83.薛秀庄,许喜堂,王祥正.用染色体工程法培育小麦新品种.遗传学报,1992,19(4):316-321
    84.杨敏娜,邵军民,井金学等.小麦品种Gaby的抗条锈基因遗传分析.麦类作物学报,2006,26(1):38-41
    85.杨木军,伍少云.云南作物种质资源·麦作篇.昆明:云南科技出版社,2005,534-536
    86.杨足君,李光蓉,任正隆.簇毛麦抗白粉病基因向四川小麦转移.四川农业大学学报,18(3):193-196
    87.姚占军,徐世昌,穆国俊等.2个小麦品种抗条锈基因遗传分析,中国农学通报,2005,21(10):69-71
    88.殷学贵,尚勋武,宋建荣等.小麦品种里勃留拉的持久抗条锈性遗传机制.麦类作物学报,2006,26(2):147-150
    89.殷学贵,张莹花,阎秋洁等.小麦持久抗条锈品种斯汤佩利的遗传机制研究.植物遗传资源学报,2005,6(4):390-393
    90.尤明山,李保云,唐朝晖等.偃麦草E染色体组特异RAPD和SCAR标记的建立.中国农业大学学报,2002,7(5):1-6
    91.于玲,王莱,牛吉山等.植物抗病相关基因分离策略.西北植物学报,2002,22(6):1494-1503
    92.曾祥艳,张增艳,杜丽璞等.分子标记辅助选育兼抗白粉病、条锈病、黄矮病小麦新种质.中国农业科学,2005,38(12):2380-2386
    93.张建诚,谢三刚.小麦核质互作抗条锈类型的发现及其遗传机制分析.华北农学报,1992,7(1):14-18
    94.张启军.几个小麦·黑麦外源易位系的细胞学和分子生物学分析.四川农业大学硕士论文 1999,四川雅安
    95.张文俊,胡含.小麦.黑麦易位系的创制和利用.遗传,1995,17(增刊):1-5
    96.张文俊,瞿绍洪,王献平等.黑麦6R抗白粉病基因向小麦的渗进与鉴定.遗传学报,1999,26(5):53-57
    97.张相岐,王献平,景建康等.一个小黑麦附加-双代花粉株系(M16)的创制与鉴定.遗传学报,1999,26(4):391-396
    98.张增艳,曾祥艳,林志珊等.小麦新种质YW243抗条锈病新基因的AFLP标记.中国农学通报,2005,21(12):56-59
    99.张增艳,陈孝,张超等.分子标记选择抗白粉病基因Pm4a,Pm13和Pm21聚合体.中国农业科学,2002,35:789-793
    100.赵文生,徐世昌,张敬原等.中国小麦条锈菌寄主抗引655抗条锈基因分子标记建立及基因定位.植物保护学报,2006,33(1):22-26
    101.钟鸣,牛永春,徐世昌等.小麦Triticum spelta album中抗条锈病基因Yr5的RAPD标记.遗传学报,2002,29(8):719-722
    102.周兖晨,张相岐,王献平等.滨麦抗条锈病基因的染色体定位和分子标记.遗传学报,2001,28(9):864-869
    103.Adams M D, Kelley J M, Gocayne J D. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252:1651-1656
    104.Allan R E, Purdy L H. Single gene control of stripe rest resistance in wheats: Plant Dis. Rep., 1967, 51:1041-1043
    105.Aniol A, Gustafson J P. Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Theor. Appl. Genet., 1984, 26:701-705
    106.Autrique J E. RFLP mapping of genes associated with different agronomic traits and disease resistance in wheat. Abstract of Intemation Plant Genome, 1995, Ⅲ:8
    107.Ban T. Estimation of the scab resistance in Japanese indigenous Agropyron (Elymus) species. In LiZS & Xin ZY eds. Proc. 8th Intl. Wheat Genet. Symp. Beijing, China, 1993, 977-982
    108.Bariana H S, Parry N, Barclay I R. Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor. Appl. Genet., 2006, 112:1143-1148
    109.Bariana H S, Brown G N, Ahmed N U. Characterisation of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection. Theor. Appl. Genet., 2002, 104:315-320
    110.Becker J, Heun M. Barley microsatellites: allele variation and maping. Plant Mol. Biol., 1995, 27:835-845
    111. BiffenRH. Mendel' s law of inheritance and wheat breeding. Agri. Sci., 1905,1:4-48
    112. Blake T K, Kadyrzhanova D, Shepherd K W. STS-PCR markers appropriate for wheat-barley introgression. Theor. Appl. Genet., 1996,93: 826-832
    113. Blanco A, Resta P, Simeone R. Chromsomal location of seed storage protein genes in the genome of Dasyprum villosa (L) Candargy. Theor. Appl. Genet., 1991, 82: 358-362
    114. Botstein D. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet, 1980, 32:314-331
    115. Boukhatem N, Baret P V, Mingeot D. Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor. Appl. Genet., 2002,104:111-118
    116. Bryan G J, Collins A J, Stepheson P L. Isolation and characterization of microsatellites from hexaploid bread wheat. Theor. Appl. Genet., 1997, 94: 557-563
    117. Caetano-Anolles G, Callahan L M, Willianms P E. DNA amplification fingerprinting analysis of bermudagrass (cynodon) : genetic relationships between species and interspecific crosses. Theor . Appl. Genet., 1995, 91:228-235
    118. Cao A Z, Wang X E, Chen Y P. A sequence-specific PCR marker linked with Pm21 distinguishes chromosome 6AS, 6BS, 6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breeding, 2006,125: 201-205
    119. Cato A, Gardner R C, Kent J. A rapid PCR-based method for genetically mapping ESTs. Theor. Appl. Genet., 2001, 102:296-306
    120. Chague V , Fahima T, Dahan A. Iso lation of m icro sallite and RA PD markers flanking the Yrl5 gene of wheat using N IL s and bulked segregant analysis. Genome, 1999,42: 1050-1056
    121. Chang Y L, Tao Q, Scheuring C. An Integrated Map of Arabidopsis thaliana for Functional Analysis of Its Genome Sequence. Genetics, 2001,159:1231-1242
    122. Chao S, Sharp P J, Worland A J. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet., 1989, 78: 495-504
    123. Chen P D, Qi L L, Zhou B. Development and molecular cytogenetic analysis of wheat-Haynaldia 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet., 1995, 91: 1125-1128
    124. Chen X M, Line R F, Leung H. Genome scanning for resistance-gene analogs in rice, barley and wheat by high-resolution electrophoresis. Theor. Appl. Genet., 1998b, 97: 345-355
    125. Chen X M, Soria M A, Yan G P. Development of sequence tagged site and cleaved amplified polymorphic sequence markers for wheat stripe rust resistance gene Yr5. Crop science, 2003(43): 2058-2064
    126. Chen X M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant. Pathol., 2005, 27: 314-337
    127. Chen X M, Line R F. Mapping barley genes for resistance to stripe rust, leaf rust, and scab using resistance gene analog polymorphism and restriction fragment length polymorphism, (abstr.) phytopathology 89(suppl.): 1999, sl5
    128. Chen Y P, Wang H Z, Cao A Z. Cloning of a resistance gene analog from wheat and development of a co-dominant PCR marker for Pm21. Integ. Plant Biol, 2006,48(6): 715-721
    129. Chen P D, Wang Z T, Wang S L. Transfer of wheat scab resistance from Elymus giganteus into common wheat. Proc. 8th Inter. Wheat Genetics Symposium p. 1993,153-157
    130. Chen X M, Line R F. Inherence of stripe rustr esistancein wheat cultivars postulated to have resistanceat Yr3 and Yr4 loci. Phytopath.., 1993, 83:382-388
    131. Chen X M, Soria M A, Yan G P. Development of sequence tagged site and cleaved amplified polymorphic sequence markers for wheat stripe rust resistance gene Yr5. Crop sci., 2003, 43(6): 2058-2064
    132. Cordeiro G M, Casu R, McIntyre C L. Microsatellite markers from sugarcane (Saccharumspp.) ESTs cross transferable to Erianthus and Sorghum.Plant. Science, 2001,160,1115-1123
    133. Cristobal U, Brevis J C, Chen X M. High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidumssp. dicoccoidesis closely linked to the grain protein content locus Gpc-B1. Theor. Appl. Genet., 2005, 112:97-105
    134. Daniel J M, Platteter A, Teakle N L. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome, 2005, 58(5):811-822
    135. Dary I J. Somers, Isaac P, Keith E. A high-density microsatellite consensus map for bread wheat. Theor. Appl. Genet, 2004,109: 1105-1114
    136. DeVires, Sybeng. Chromosomal location of 17 monogenetically inheritied morphological markers in rye (Secale cereale L) using the translocation tester set. Z P flanzenzucht, 1984, 92:117-139
    137. Decroocq V, Fave M G, Hagen L. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor. Appl. Genet., 2003,106(5): 912-922
    138. Deng Z Y, Zhang X Q, Wang X P. Identification and molecular mapping of a stripe rust resistance gene from common wheat line Qz180. Theor. Appl. Genet., 2004,46(2): 236-241
    139. Delaney D, Nasuda S, Endo T R. Cytologically based physical maps of the group-2 chromosomes of wheat. Theor. Appl. Genet, 1995a, 91: 568-573
    140. Devos K M, Gale M D. Comparative genetics in the grasses. Plant Mol. Biol., 1997, 35: 3-15
    141. Devos K M, Chao S, Li Q Y. Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes. Genetics, 1994,138:1287-1292
    142. Dyck P L, Kerber E R, Aung T. An interchromosomal reciprocal translocation in wheat involving leaf rust resistance gene Lr34. Genome , 1994, 37:556-559
    143. EI-Bedewy R, Robbelen B. Chromosomal location and change of dominance of a gene for resistance against yellow rust, Puccinia striiformis West., in wheat, Triticum aestivum L. Zeitschrift fur pflanzenzuchtug, 1982, 89:145-157
    144. Endo, T R. The heterochromatin distribution and genome evoluation in diploid species of Elymus and Agropyron. Can. Genet. Cytol., 1984,26:669-678
    145. Eriksen L, Afshari F, Christiansen, M J. Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V. Theor. Appl. Genet., 2004,108:567-575
    146. Erpelding J E, Blake N K, Blake T K. Transfer of sequence tagged site PCR markers between wheat and barley. Genome, 1996, 39:02-810
    147. Feuillet C, Schachermayr G, Keller B. Molecular characterization of a new type of receptor-like kinase (wlrk) gene family in wheat. Plant Molecular Biology, 1998,37: 943-953
    148. Francki M, Carter M, Ryan K. Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophylls content in wheat. Funct. Integr. Genomics, 2004,4(2):118-130
    149. Friebe B, Hatchett J H, Sears R G. Transfer of Hessian fly resistance from 'Chaupon' rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor. Appl. Genet., 1990, 79: 385-389
    150. Friebe B, Gill B S. Characterization of rust-resistance wheat-Agropyron internedium derivatives by C-banding. In situ hybridization and isozyme analysis. Theor. Appl. Genet., 1992, 83:775-782
    151. Friebe, B. C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica, 1994,78:1-5
    152. Friebe, B. A noncompensating wheat-rye translocation maintained in perpetual monosomy in alloplasmic wheat. Hered., 1993, 84:126-129
    153. Gall J, Pardue. Formation and detection of RNA-DNA hybrid moleads in cytological preparations. Proc. Natl. Acad. Sci., 1969,69:377-382
    154. Gao L F, Jing R L, Huo N X. One hundred and one new mi-crosatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor. Appl. Genet., 2004,108: 1392-1400
    155. Gill B S. Standed karyotype and system for description of chromosome blands and stuetural aberactions in wheat. Genome, 1991, 34:830-839
    156. Gill B S. Giemsa C-banding technique for cereal chrosome. Cereal Res. Commun., 1974,2:87-94
    157. Hackauf B, Wehling P. Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed, 2002,121: 17-25
    158. Hitta L, Manni S, Foolad M. Development of PCR-based markers to identify rice blast resistance gene pi-21t in a segregation population. Theor. Appl. Genet., 1995,91: 9-14
    159. Holton R A, Christopher J T, McClure L. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Molecular Breeding, 2002,9 : 63-71
    160. Huang X Q, Hsam S L K, Zeller F J. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. em Thell. ): IX. Cultivars, landraces and breeding lines grown in China. Plant Breed, 1997,116: 233-238
    161. Iqbal M J, Rayburn A L. Identification of the 1RS rye chromosomal segment in wheat by RAPD analysis. Theor. Appl. Genet, 1995,91:1048-1053
    162. Jiang J. Alloplasmic wheat Elymus cilliaris chromosome addition lines. Genome, 1993,26:327-333
    163. Jiang J, Gill B S. Sequential chromosome banding and in situ hybridization analysis. Genome, 1993d, 36:792-795
    164. Joen I, An G Gene tagging in rice: a high throughput system for functional genomics. Plant Sci., 2001,161:211-219.
    165. John, H. A. RNA-DNA hybrids at the cytological level. Nature, 1969,223:582-587
    166. Johnson R., Dyck P L. Resistance to yellow rust in Triticum spelta var. album and bread wheat cultivars Thatcher and Lee. Proceedings of the 6th European and Mediterranean Cereal Rusts Conference, Grignon, 1984:71-74
    167. Kam-Morgan L N W, Gill B S, Muthukrishnan S. DNA restriction fregment length polymorphisms: a strategy for genetic mapping of D genome of wheat. Genome, 1989, 32: 724-732
    168. Kantety R V, La Rota M, Matthews. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol., 2002,48: 501-510
    169. Krupinsky J K, Sharp E L. Reselection for improved resistance of wheat to stripe rust. Phytopathology, 1979, 69:400-404
    170. Kurata N, Moore G, Nagamura Y. Conservation of genome structure between rice and wheat. Bio.Technology, 1994, 12:276-279
    171. Lander E S. The new genomics: Global views of biology. Science, 1996, 274:536 - 539
    172. Lapitan, N L. Wheat-rye translocations detection of chromosome breakpoints by in situ hybridization with a biotin-labeled DNA probe. J. Hered. 1986, 77:415-419
    173. Leister D, Ballvora A, Salamini F. PCR based approach for isolating pathogen resistance genes from potato with potential for wide application in plant. Nate Genet., 1996,14: 421-429
    174. Leister D, Kurth J, Laurice D. RFLP-and physical mapping of resistance gene homologues in rice (O. sativa) and barley (H. vulgare). Theor. Appl. Genet., 1999, 98:509-520
    175. Lelley T, Stachel M, Grausgruber H. Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome, 2000,43(4): 661-668
    176. Li G Q, Li Z F, Yang W Y. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor. Appl. Genet., 2006, 112:1434-1440
    177. Lind V. Analysis of the resistance of wheat-rye addition lines to powdery mildew of wheat (Erysiphe graminis F sp tritici). Tagungsber Akad Landwirtschaftswiss DDR, 1982, 198:509-520
    178. Line R T. Factors contributing to an epidemic of stripe rust on wheat in the Sacramen to valley of California in 1974. Plant Disease Report, 1976,60:312-316
    179. Linde-Laursen I, Jensen H P, J0rgensen J H. Resistance of Triticale, Aegilops, and Haynaldia species to the take-all fungus, Gaeumannomyces graminis. Z P flanzenzuchtung,1973, 70:200-213
    180. Liu J, Liu D,Tao W, Li W. Molecular marker facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breeding, 2000,119:21-24
    181.Loarce Y, Hucros G, Ferrer E. Amolecular linkage map of rye. Theor. Appl. Genet., 1996, 93: 1112-1118
    182. Lupton F G H, Macer R C F. Inheritance of resistance to yellow rust in seven varieties of wheat. Trans.Brit.Mycol.Soc, 1962,45(1):21-45
    183. Ma H, Singh R P, Mujeeb-Kazi A. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica, 1995, 82:117-124
    184. Ma J X, Zhou R H, Dong Y C. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 2001, 120:219-226
    185. Mago R, H. Miah, G J, Lawrence. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9on the short arm of rye chromosome 1. Theor. Appl. Genet., 2005,112:41-50
    186. Maleki L, Faris J D, Bowden R L. Physical and genetic mapping of wheat kinase analogs and NBS-LRR resistance gene analogs. Crop Sci., 2003,43:660-670
    187. Marais G F, Pretorius Z A, Wellings C R. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica, 2005, 143:115-123
    188. Mateos-Hernandez M, Singh R P, Hulbert S H. Targeted mapping of ESTs linked to the adult plant resistance gene Lr46 in wheat using synteny with rice. Funet. Integr. Genomics, 2006, 6: 122-131
    189. McDonald D B, McIntosh R A, Wellings CR. Cytogenetical studies in wheat XIX. Location and linkage studies on gene Yr27 for resistance to stripe (yellow) rust. Euphytica, 2004,136:239-248
    190. McDonald B A, Linde C. Pathogen population genetics, evolution potential and durable resistance. Annu. Rev. Phytopathol., 2002,40:349-379
    191. Melz G, Schlegel R, Thiele V. Genetic linkage map of rye. Theor. Appl. Genet.,1992, 85:33-45
    192. Michelmore R W, Param I, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregation population. Proc. Nat. Acid. Sci., 1991, 88: 9828-9832
    193. Montebove L, De Pace C, Jan C C. Chromosomal location of isozymes and seed storage protein gene in Dasypyrum villosum (L.) Candargy. Theor. Appl. Genet., 1987, 73: 836-845
    194. Mukai Y B. Detection of rye chromatin in Wheat specifying resistance to Hessian fly by in situ hybridization using total rye genomes DNA probes. In: G Kimber (eds). Proc. 2nd Int. Symp. Chromosome Eng. in Plants. Columbia, Missouri, USA, 1991a, ppl84-188
    195. Murray T D, Pena R, Yildirim A. A new source of resistance of Pseudocercosporella herpotrichoides, cause of eyespot disease of wheat, located on chromosome 4V of Dasypyrum villosum. Plant Breed., 1994,113:281-286
    196. Olson, Hood L., Cantor C. A common language for physical mapping of the human genome. Sci., 1989,245:1434-1435
    197. Payne P I, Corfield K G, Blackman J A. Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheat of related pedigree. Theor. Appl. Genet., 1979, 55: 153-159
    198. Payne P I, Holt L M, Law C N. Structural and genetic studies on the high molecular weight subunits of wheat glutenin part I, allelic variation in subunits amongest varieties of wheat (Triticum aestivum). Theor. Appl. Genet., 1981,60: 229-236
    199. Payne P I. Genetics of wheat storage protein and the effect of allelic variation on bread-making quality. Ann. Rev. Plant Physiol., 1987, 38: 141-153
    200. Peil A, Korzun V, Schubert V. The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor. Appl. Genet., 1998, 96: 138-146
    201. Peng J, Richards D E, Hartley N M. "Green revolation" genes encode mutant gibberellin response modulators. Nature, 1999,400:256-261
    202. Peng J H, Fahima T, Roder M S. Micro satellite tagging of the stripe rust resistance gene YrH52 derived from wild emmer wheat and suggestive negative crossover interference on chromosome 1B. Theor. Appl. Genet., 1999, 97: 567-572
    203.Peng J H, Zadeh H, Lazo G R. Chromosome bin map of expressed sequence tags in homoeologous group l of hexaploid wheat and homoeology with rice and arabidopsis. Genetics, 2005, 168:609-623
    204.Peng J H, Fahimal T, R6der M S. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica, 2000, 109: 199-210.
    205.Plaschke J, Ganal M W, Roder M S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet., 1995, 91: 1001-1007
    206.Pop W K. Interactions of minor genes for resistance to stripe rust in wheat. Proc. Int. Wheat Genet.Symp., 3~rd, Canberra, 1968, 251-257
    207.Qayoum A, Line R F. High-temperature adult-plant resistance to stripe rust of wheat. Phytopathology, 1985, 75:1121-1125
    208.Qi L L, Cao M S, Chen P D. Identification, mapping, and application of polymorphie DNA associated with resistance gene Pm21 of wheat. Genome, 1996, 191-197
    209.Qualset C O, Zhang G Y. Biodiversity and wheat improvement, 李立会等译.北京:中国农业科技出版社.1996,10
    210.Robert O, Christine A, Francoise D. Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Molecular Breeding, 1999, 5:167-175
    211.Robert O. Combination of resistance tests and molecular tests to postulate the yellow rust resistance gene Yr17 in bread wheat lines. Plant Breeding, 2000, 119:467-472
    212.R6der M S, Korzun V, Wendehake K. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023
    213.R6der M S, Plaschke J, Konig S U. Abundance,variability and chromosomal location of microsatellites in wheat. Mol. Gen. Genet., 1995, 246:327-333
    214.Romanova N P. Ispolsovanie medoda opredelenija zeplenija faktorov samonesovmestimosti morfologitscheskimi markerami u rzi (russ). Sesd Vsesoj Obsch Genetikovi Selek, Kisginev, 1982,4:142
    215.Rosewame G M, Singh R P, Huerta-Espino J. Leaf tip necrosis, molecular markers and bl-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor. Appl. Genet., 2006, 112:500-508
    216.Rota M L, Sorrells M E. Compatative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct. Integr. Genomics, 2004,4:34-46
    217.Rudof W, Breitrage zur. Immunitatszuchtung gene puccinia glumarum tritici. Phytopathology, 1930, 1: 465-525
    218.Schlegel R, Melz G, Korzun V. Genes, marker and linkage data of rye (Secale cereale L.): 6th updated inventory, 2006
    219.Schlegel R, Melz G, Mettin D. Rye cytology, Cytogenetics and genetics-Current status. Theor. Appl. Genet.,1986, 72:721-734
    220.Schlegel R, Melz G, Korzun V. Genes, marker and linkage data of rye (Secale cereale L.): 5~(th) updated inventory. Euphytica, 1998, 101:23-67
    221.Schwarz G, Michalek W, Jahoor A. Direct selection of expressed sequences on a YAC clone revealed proline-rich-like genes and BARE-1 sequences physically linked to the complex Mla powdery mildew resistance locus of barley (Hordeum vulgare L.). Plant Science, 2002, 163, 307-311
    222.Schwarzacher T, Anamthawat-Jonsson K, Harrison G E. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor. Appl. Genet., 1992, 84:778-786
    223.Sears E R.中国春非整倍体的历史.国外农学-麦类作物,1990,2:16
    224.Sharma H C, Gill B S, Uyemoto J K High levels of resistance in Agropyron species to Barley Yellow Dwarf and Wheat Streak Mosaic Viruses. Phytopathol., 1984, 110-143
    225.Sharp E L. Additive genes in wheat for resistance to stripe(yellow) rest (P.striiformis West), Plant Protection, 1982, 2:181-189
    226.Sharp P J, Kreis M, Shewry P. Location of β-amylase sequence in wheat and its relatives. Theor. Appl. Genet., 1988, 75:289-290
    227.Shewry P R, Parmar S, Pappin D J C. Characterization and genetic control of the prolamins of Haynaldia villosa: Relationship to cultivated species of the Triticeae (Rye, wheat and Barley). Biochemical Genetics, 1987, 25:309-325
    228.Shi Z X, Chen X M, Line R F. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome, 2001, 44:509-516
    229.Singh R P, Nelson J C, Sorrells M E. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci., 2000, 40:1148-1155
    230.Singh, R P, William, H M, Huerta-Espino J. Indentification and mapping of genes Yr31 for resistance to stripe rust in Triticum aestivum cultivar pastor. Proceeding of the 10th international wheat genetics. Italia, symposium, 2003, Vol.1:411-413
    231.Smith P H, Korbner R, Michin P N. The isolation of yellow rust resistance genes from wheat. Proceedings of the 10th cereal Rusts and Powdery Mildews conference, 2000, 35:1-4
    232.Smith P H, Koebner R M D, Boyd L A. The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro. Theor. Appl. Genet., 2002,104:1278-1282
    233. Somers D J, Peter I, Keith E. A high-density microsatellite consensus map for bread wheat. Theor. Appl. Genet., 2004, 109: 1105-1114
    234. Song Q J, Shi J R, Singh S. Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet., 2005, 110:550-560
    235. Spielmeyer W, McIntosh R A, Kolmer J. Powdery mildew resistance and Lr34 / Yrl8genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor. Appl. Genet., 2005,111: 731 735
    236. Sun G L, Fahim A T, Korol A B. Identification of molecular markers linked to the Yrl5 stripe rust resistance gene of wheat originated in wild emmer wheat Triticum dicoccoides. Theor. Appl. Genet., 1997, 95:622-628
    237. Sun Q, Wei Y, Ni Z. Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from split wheat. Plant breeding, 2002,121(6): 539-541
    238. Tang J F, Gao L F, Cao Y S. Homologous analysis of SSR-ESTs and transferability of wheat SSR-EST markers across barley, rice and maize. Euphytica, 2006,151: 87-93
    239. Taylor C, Madsen K, Borg S. The development of sequence-tagged sites (STSs) in Lolium perenne L: the application of primer sets derived from other genera. Theor. Appl. Genet., 2001,103: 648-658
    240. Thiel T, Michalek W, Varshney K. Exploiting ESTdatabases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theo.Appli.Genet.,2003,106:411-422
    241. Threadgill D S, Kraus J P, Krawetz S A. Evidence for the evolutionary origion of human chromosome 21 from comparative gene mapping in the cow and mouse. Proc. Natl. Acad. Sci. USA., 1991,88:154-158
    242. Ttiebe B, Mukai Y, Dhaliwal H S. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor. Appl. Genet., 1991,81:381-389
    243. Umethara Y, Inagaki A, Tanou H. Construction and characterization of rice YAC library for hysical mapping. Molecular Breeding, 1995,1:79-89
    244. Vanderplank J E. Plant Disease: Epidemics and control. Academic Press New York and London. 1963 pp349
    245. Vanichanon, Blake N K, Martin J M. Properties of sequence -tagged site primer sets influencing repeatability. Genome, 2000 ,43 : 47-52
    246. Varshney R K, Thiel T, Stein N. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol. Biol. Lett., 2002, 7: 537-546
    247. Varshney R K, Sigmund R, Borner A. Interspecific ransferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science, 2005,168, 195-202
    248. Vihanga P, Chen X M. Genetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogens. Phytopathology, 2005, 95(4):427-432
    249. Wan Y F, Yen C, Yang J L. The diversity of resources resistant to scab in Triticeae (Poaceae). Wheat Information Service, 1997, 84:7-12
    250. Wang L, Ma J X, Zhou R H. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I.178383 (Triticum aestivum L). Euphytica, 2002,124: 71 - 73
    251. Wang S L, Qi L L, Chen P D. Molecular cytogenetic identification of wheat-Elymus tsukushiense introgression lines. Euphytica, 1999, 107: 217-224
    252. Washington W J, Mann S S. Disease reaction of wheat with alien cytoplasm. Crop Sci., 1974, 14:904-905
    253. Willams K A D, Vivak K J. DNA polymophisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18: 6531- 6535
    254. Yamamoto K, Sasaki T. Large-scale EST sequencing in rice. Plant Mol. Biol., 1997, 35:144
    255. Yan G P, Chen X M, Line R F. Resistance gene-analog polymorphism markers co-segregating with the YR5 gene for resistance to wheat stripe rust. Theor. Appl. Genet., 2003,106: 636-643
    256. Yildirim A, Jones S S, and Murray T D. Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome, 1998,41:1-6
    257. Yu G X, Bush A L, Wise R P. Comparative mapping of homoeologous group 1 regions and genes for resistance to obligate biotrophs in Avena, Hordeum and Zea mays. Genome, 1996,39 (1) :55-164
    258. Gerechter-Amitai Z K, Silfhout C H, Grama A. Yr15 a new gene for resistance to puccinia striiformis in triticum dicoccoides sel.G-25. Euphytica, 1989,43:187-190
    259. Zabeau M, Vos P. Selective restriction fragment amplificayion: a general method for DNA fingerprinting, European Patent Application, Publication No, EP0534858, Paris: European Patent Office, 1993
    260. Zahravi M, Bariana H S, Shariflou M R. Bulked segregant analysis of stripe rust resistance in wheat (Triticum aestivum) using microsatellite markers. Tenth International Wheat Genetics Symposium, Italy, 2003, p861-863
    261. Zakari A, McIntosh R A, Hovmoller M S. Recombination of Yr15 and Yr24 in chromosome 1BS. In: PognaN.E., N. Romano, E.A. Pogna, & G. Galterio (eds) Procs 10th Int Wheat Gene Symp, Vol 1. Institute Sperimentale per la Cerealcoltura, Rome, 2003, pp 417-420
    262. Zhang L Y, Bernard M, Leroy P. High transferability of bread wheat EST-derived SSRs to other cereals. Theor. Appl. Genet, 2005, 111: 677-687
    263. Zhang Q P, Qi L L, Wang X E. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005,145,317-320
    264. Zhang S Z, Sheng B Q, Duan X Y. A new resistance resource of wheat yellow rust and its spectrum preliminary test for resistance. Acta Phytopathologica Sinica, 2001,31(1): 31-36
    265. Zhang W, Gao A L, Zhou B. Screening and applying wheat microsatellite markers to trance individual Haynaldia villosa chromosomes. Acta. Genet. Sin., 2006, 33(3): 236-243
    266. Zhong G Y, Qualset C O. Allelic diversity of high molecular weight glutenin protein subunits in natural populations of Dasypyrum villosum (L.) Candargy. Theor. Appl. Genet., 1993, 86: 851-858
    267. Zhu S, Kaeppler H F.A genetic linkage map for hexaploid, cultivated oat (Avena sativa L) based on an Intraspecific cross" Ogle/MAM 17-5". Theor. Appl. Genet., 2003, 107:26-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700