输送天然气水合物的管道及双流道提升泵流场分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,能源早已成了当代社会发展的基石。传统能源的日益枯竭,迫使人类不得不寻找更高效、更清洁的替代能源,天然气水合物是目前为止人类找到的、最具应用前景的替代能源、清洁能源。
     天然气水合物主要储藏在海底,覆盖层较浅,使用固态开采法开采天然气水合物是比较合理的。在固态开采方案中,通过水力输送技术将水合物颗粒输送至海面是最为关键的部分。在深海采矿领域,颗粒物质的水力输送问题是一个尚未得到有效解决的重要课题。因此本文选择对天然气水合物输送系统的输送管道和双流道泵的流场进行分析,以找到天然气水合物最佳的输送系统。
     本文根据两相流理论和管道输送理论,对其输送系统进行水力分析,得到了输送系统相关参数的表达式,在多种工况下详细验证水合物水力输送1000m系统和4000m系统的可行性。根据深海采矿应用环境,对提升泵进行研究,选择双流道泵作为天然气水合物输送系统的提升泵。然后,利用FLUENT软件对1000m系统输送管道和双流道提升泵内的固液两相流动进行了数值模拟。最后,通过相似试验验证本文数值模拟方法及结果的正确性。本文通过上述研究得到的主要研究成果如下:(1)在水深4000米以内,采用水力输送技术将天然气水合物颗粒输送至海面完全是可行的;在五种工况下,提升泵扬程最高要求为145m。(2)水合物在粒径小、密度小和中等体积浓度的情况下,最有利于水力输送。(3)双流道提升泵扬程-流量曲线陡,能够适应深海采矿环境;泵内颗粒分布规律与颗粒密度关系较为密切,为防止过度磨损,应根据密度大小对该泵进行优化。
     本文的研究可以为海底天然气水合物固态开采方案的进一步深入研究建立基础,也为深海采矿水力输送系统的优化提供理论依据。
Energy has already become the cornerstone of contemporary social development. As the traditional energy exhausting, humans have been forced to find more efficient and cleaner alternative energy. Gas hydrates is the alternative energy and clean energy, being of the most application prospect, human have found.
     Traditional mining methods are difficult to exploit undersea gas hydrate stored in shallow layer, because those methods can not build a close environment. Under this backgrand, and based on deep-sea mining technology and the cutter suction dredger technology. A new and more feasible solid-state mining program was proposed in this paper. In this program, transporting the hydrate mineral grains to the sea level is the most crucial part. Although there are a large number of research results on the hydraulic transport of solid grains, these results have considerable limitations. So, in order to find better gas hydrate transport parameters and transport equipments, this paper chose to research on hydraulic transport of hydrate.
     Based on the characteristics of seabed hydrates, this paper proposed a new solid-state mining plan and demonstrated its feasibility. And according to hydraulic transport theory, hydraulic analysises of the transportation system were made, and system parameters expression was given in this paper. Latter, designed five kinds of transportation programs and respectively verified the feasibility of those methods in hydraulic transportation system which works in 1000m and 4000m deep form sea surface. According to the application environment of lift pump, studied on the lift pump. Then, used the mixture module and RNGκ-εturbulence model of Fluent software to simulate the solid-liquid two-phase flow in transportation system. Finally, through experiments, the numerical simulation methods and results were verified. The main research results obtained in this study are as follows:(1)Less than 4,000 meters, using hydraulic transmission technology to transport natural gas hydrate particles to the surface is entirely feasible; In the five working conditions, the highest head of lift pump is 236m.(2)Decreasing density and particle size and increasing its volume fraction are conducive to raising the transmission efficiency of hydrate.(3)Double channel lift pump can adapt to the environment of deep-sea mining, but the overflow area of scroll should be enhanced cause its high intensity transportation working condition.
     This paper made a foundation for solid-state mining program further study, and provided a theoretical basis to the selection and optimization of deep-sea mining transportation equipment
引文
[1]Lee Holder.Methane hydrates potential as a future energy source[J].Fuel Processing Technology,2001;(71):181-186.
    [2]Sloan.E.D.Clathrate hydrates of natural gas[M].Second Edition, Revised and Expanded,1998.
    [3]Kvenvolden K A.Gas hyderate-geological perspective and global change[J]. Reviews of Geophysics,1993,31:173-187.
    [4]Gomitz V.Fung I. Potential distribution of methane hyderates in the world's oceans[J]. Global Biogeochemieal Cycles,1994,8:335-347.
    [5]Lee H,Seo Y T.Recovering methane from solid methane hydrate with carbon dioxide[J].Angew Chem Int Ed,2003,42(41):5048-5051.
    [6]Sloan.E.D.Natural gas hydrates[J].Journal Petroleum Technology,1991,43(12):1 414-1417.
    [7]金庆焕,张光学,杨木壮等.天然气水合物资源概论[M]北京:科学出版社,2006.2-3.
    [8]Rach,Nina M.Japan undertakes ambitious hydrate drilling program[J].Oil and Gas Journal,2004,102(6):37-39.
    [9]Islam.M.R. A new recovery technique for gas production from Alaskan gas hydrates[J]. Journal of Petroleum Science&Engineering,1994,11(4):267-281.
    [10]M.H.Yousif,E.D.Sloan.Experimental investigation of hydrate formation and dissociation in consolidated porous media. SPE 20172,1991.
    [11]胡奥林.天然气水合物资源勘探开发现状[J].石油与天然气化工,1995,24(2):101-106.
    [12]史斗,郑军卫.世界天然气水合物研究开发现状和前景[J].地球科学进展,1999,14(4):330-339.
    [13]Ohgaki K,Takano K,Sangawe T H,et al.Methane expoitationby carbon dioxide from gas hydrates:Phase equilibria for CO2-CH4 mixed hydrate system[J]. J.Chem.Eng.Japan,1996,29(3):478-483.
    [14]周怀阳,彭晓彤.天然气水合物勘探开采研究进展[J].地质与勘探,2001,18(1):50-54.
    [15]Collett T S.Natural gas hydrates of the Prudhoe Bay and Kupruk River area, North Slope, Alaska [J].AAPG Bulletin,1993,77(5):793-812.
    [16]周怀阳,彭晓彤,叶瑛.天然气水合物勘探开发技术研究进展[J].地质与勘探,2002,38(1):70-73.
    [17]张志杰,于兴河,郑秀娟等.天然气水合物的开采技术及应用[J].天然气工业,2005,25(4):128-130.
    [18]吴传芝,赵克斌,孙长青等.天然气水合物开采研究现状[J].地质科技情报,2008,27(1):47-51.
    [19]杨帆,李治平,李庚等.天然气水合物的研究现状与展望[J].资源与产业,2007,4(2),98-100.
    [20]别沁,郑云萍,蒋宏业.天然气水合物研究的最新进展[J].油气储运,2007,26(3),1-4.
    [21]唐良广,冯自平,李小森等.海洋渗漏型天然气水合物开采的新模式[J].新能源及工艺,2006,11(3),15-18.
    [22]Bath A R. Deep sea mining technology:recent developments and future projects. Offshore Technology Conterence, 1989.
    [23]Herrouin G. Manganese nodule industrial venture world be profitable:Summary of 4-year study in France.OTC5997,1989:321-332.
    [24]肖林京.深海采矿扬矿管运动学和动力学特性研究[D].北京:北京科技大学,2000.
    [25]Jin S Chung, K Lee. Effects of particle size and concentration on pressure gradient in two-phase vertically upward transport. The proceedings of the fourth(2001) ISOPE ocean mining sympsium, Szczecin, Poland,2001.
    [26]文先保.海洋开采[M].北京:冶金工业出版社,1996.185-210.
    [27]邓祥吉.管道输沙阻力特性研究[D].南京:河海大学,2005,3-8.
    [28]许振良.一个非均质流水力坡度解析的新模型[J].水动力学研究与进展,2002,12(1):45-52.
    [29]韩旭,张奇志,伶庆理.用人工神经网络研究管道中浆体摩阻损失[J].矿冶工程,1997,17(1),5-8.
    [30]韩旭,张奇志,王晓光.管道输送中浆体水力坡度的研究[J].有色矿冶,1997年第2期,1-4.
    [31]张士海,孟哲锋.长距离管道输送流速及摩阻损失计算机软件的开发研制[J].
    [32]秦宏波,白晓宁.基于CDF的管道固液两相流体输送的数值计算及实验对比[J].水力采煤与管道运输,2001年第2期:3-6.
    [33]D M NEWITT,etal. Hydrualic conveying of solids in horizontal PiPes[J]. TransInstn Chen Engrs,1995,33:93-113.
    [34]白晓宁,胡寿根,张道方等.固体物料管道水力输送的研究进展与应用[J].水动力学研究与进展,2001,16(3):303-311.
    [35]Shook CA, Roco MC. Slurry flow principles and practice. Butterworth-Heinemann, Boston 1991.
    [36]许振良,张永吉,孙宝铮.水平管道沉降性浆体速度分布与浓度分布关系的研究[J]水力采煤和管道运输,1997年第3期,21-27.
    [37]魏进家,姜培正,王长安.密相液固两相流动的数值研究[J].水动力学研究与进展,1997年第12期,350-355.
    [38]张兴荣.高浓度管道输送中水流结构及运动机理的研究[J].管道输送,1997年第2期,19-27.
    [39]GGrabow.Zwei phasenstromung in Kreiseelpumpen. Ener. Tech.1982(9): 9454-9459.
    [40]梁冰,朱玉才.固液两相流泵的边界层理论及其应用[M].北京:科学出版社,2003.
    [41]何希杰.浆体对不同型式离心泵性能影响的试验和研究[J].杂质泵和管道水力输送学术讨论会论文集,1988,112-119.
    [42]Fusheng Ni. Laboratory in vestigation on sand-water flow in pipeline and characteristics of a slurry pump with high solids concentration Dredging Technology[J].The Netherlands,1999.
    [43]倪福生,徐立群.泥沙粒径对泥浆泵性能影响的实验研究[J].水动力学研究与进展,2001,12(3),42-46.
    [44]杨敦敏,陈刚,叶海燕.固液两相流离心泵破坏机理及其防治技术综述[J].水利电力机械,2004,26(1),39-43.
    [45]谭东华.水下运行环境的固液两相双流道泵的设计与实验研究[D].杭州:浙江大学,2006.
    [46]Zaya A N.The effect of the solid phase of a slurry on the head developed by a centrifugal pump[J].Fluid Mechanics-Soviet Research,1975,4(4),144-154.
    [47]罗先武,许洪元.杂质泵磨粒磨损研究现状和展望[J].水泵技术,1997(9),24-28.
    [48]Roco M C et al.Modelling erosion wear in centrifugal sluryy pumps Symposium of 9th Intl[J]. Conf.on Hydraulic Transport of Solid in Pippes,1984,291-316.
    [49]陈红生,朱祖超.固液两相流离心泵磨损机理和叶轮的设计[J].水利学报,2000,14(8),12-16.
    [50]赵敬亭,刘卫伟.离心泵叶轮出口处水沙两相流动分析计算[J].水泵技术,1990(4),1-6.
    [51]赵振海.管道内固液混合物运动的基本方程[J].水泵技术,1992年1月1-4.
    [52]佟庆理.两相流动理论基础[M].北京:冶金工业出版社.
    [53]H E Engelmann.Vertical hydraulic lifting of large-size-A contribution to marine mining.OCT3137,THE 10th Annual Offshore Technology Conference,1978.
    [54]S P Kostuik.Hydraulic HoisTING and the Pilot-Plant Investigation of the Pipeline Transport of Crushed Magnetite.The Canadian Mining and Metallurgical Bulletin,1996.
    [55]A.J.斯捷藩诺夫(美)著,吴达人译.泵与鼓风机、两相流.北京:机械工业出版社,1986,134-135.
    [56]G W格威尔K阿济兹.复杂混合物在管道中的流动[M].北京:石油工业出版社,1983,142-146.
    [57]国家标准局.GB270-88天然气储量规范,1988.
    [58]丁玉琪.管道输煤概述[J].煤矿开采,1998年3月,15-17.
    [59]邹伟生.海洋采矿扬矿参数与泵的研究[D].北京:北京科技大学,2005年4月.
    [60]万步炎,刘淑英.深海采矿专用提升泵的设计与研究[J].矿业研究与开发,1996,16(1),26-29.
    [61]谭东华,朱祖超,崔宝玲.海底矿物质输送泵方案设计.中国工程热物理学会流体机械学术会议论文集,2003(20):161-166.
    [62]何希杰.国外离心式杂浆泵研究概况[J].水泵技术,1992(1),31-34.
    [63]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995,422-425.
    [64]关醒凡.泵的理论与设计[M].北京:机械工业出版社,1987.
    [65]Sha WT, Soo SL. Multiphase fluid mechanics.IntIJ].Heatand Mass Transfer,1978.
    [66]蔡树棠,范正翘,陈越南.两相流基本方程[J].应用数学和力学,1986,7(6):477-485.
    [67]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004(9).
    [68]朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,1998(8).
    [69]张也影.流体力学[M].北京:高等教育出版社,1999(6)
    [70]邹滋祥.相似理论在叶轮机械模型研究中的应用[M].北京:科学出版社,1984(11)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700