固相参数对泵内流动影响的数值模拟与PIV测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固液泵是输送固液混合物的关键设备,在国民生产生活各个领域均有应用,如矿山行业的矿渣输送,水利方面的清淤灌溉等。但是随着固液泵的广泛应用,它在实际使用过程中存在的缺点和不足也逐渐暴露出来,如过流部件磨损严重及效率偏低等。同时由于两相流动的复杂性,关于这方面的理论研究及设计还不成熟,仍处于探索与发展阶段,流道内部许多固液两相流动规律还没有被揭示出来,在工程实际中多数的设计是建立在经验基础之上,以至于设计出的泵性能得不到保证。因此迫切需要对泵的内部流动进行深入研究,为设计出性能高和运行稳定的泵提供理论基础。粒子图像测速技术(particle imagevelocimetry,PIV)是一种瞬态、多点、无接触式的流体力学测速方法,通过它能够获得平面流场的图像,进而获得平面区域的速度场。目前PIV技术已成为一种有效的速度场测量方法。
     本文主要对固液两相流泵进行数值模拟与分析,并采用PIV技术对泵内部固液两相流场的分布情况进行测量。通过对泵内部流场的PIV试验测试与数值模拟结果进行对比研究,以期进一步认识固液泵内部流动的流场结构和流动规律,这将有助于改善泵的结构设计,提高泵的性能。
     本文的主要工作如下:
     1)系统阐述了固液两相流泵的研究现状及PIV技术的发展状况。
     2)利用UG造型软件进行离心泵实体造型,并使用Gambit进行网格划分,后利用Fluent软件进行清水和固液两相流的数值模拟及结果分析。
     3)完善离心泵测试试验台,应用粒子图像测速技术(PIV)对泵在不同工况下的内部流场进行两相流PIV测试试验,并分析流场内固相颗粒的速度变化规律和运动特性。
     4)将数值模拟结果与PIV试验结果进行综合对比分析,从而互相验证了数值方法和试验方法的可靠性,取得了有参考意义的试验数据和结果,为后续的固液泵的进一步研究积累了基础。
The Solid-liquid pump is the key transportation equipment of solid-liquid mixture, it waswidely used in the national production fields, such as dredging, water conservancy,environmental protection industries and so on. But with the wide application ofsolid-liquid pump, its shortcomings and insufficiencies in the actual use weregradually revealed, such as serious wear and tear on flow components and lowefficiency. At the same time, due to the complexity of the two phases flow, thetheories and the design methods were still not mature, many two-phase flow laws inthe solid-liquid pump has not been revealed. Most of the design is based onexperience in engineering practice so that design of the pump's performance notguarantee. So the further research of solid-liquid pump is urgent need in order toprovide theoretical foundation of designing a high performance and operation stablepump. In recent years,with the Particle Image Velocimetry (PIV) rapid development,it has became a kind of effective test means with which people gain a transient, nocontacted, plane flow field.
     In order to research pump internal law of the solid-liquid two-phase flow, acombination way of numerical simulation and PIV experimental study was adopted inthis paper, According to the comparison of simulation results and PIV measurement,we can acquire further understanding of solid-liquid flow field and the flow law. It ishelpful to improve the structure and the performance of the pump.
     The main work is outlined as following:
     1) Summarizing the research result and the status in solid-liquid two-phasepump and PIV (Particle Image Velocimetry) measurement of the domestic andforeign scholars.
     2) The modeling software UG was used to modele the stereo centrifugal pump,and it was imported into Fluent software, where the water and solid-liquid two-phase flow numerical simulation was carried out, and the results were analyzed.
     3) The solid-liquid two-phase pump test platform was Improved, different flowrate of the solid-liquid two-phase flow PIV experiments carried out, which providedthe particles speed and movement characteristics in the flow field.
     4) The comprehensive comparative analysis between the numerical results andPIV test result was made in order to verify the reliability of numerical simulation andPIV measurement method for each other. And some important test results wasobtained for the subsequent study of the solid-liquid pump.
引文
[1] Elghobashi S E, Abou-Arab T W. A two-equation turbulence closure for two-phase flows[J].Physics Fluids,1993:26-310.
    [2] Grabow G. Zweiphasenstromung in Kreiseelpumpen Ener[J]. Technology,1982,(9):9454-9459.
    [3] Caridad J, Asuaje M, Kenyery F, et al. Characterization of a centrifugal pump impeller undertwo-phase flow conditions[J]. Journal of Petroleum Science and Engineering,2008,63:18-22.
    [4] Angst R, Kraume M. Experimental investigations of stirred solid/liquid systems in threedifferent scales: Particle distribution and power consumption[J]. Chemical EngineeringScience,2006,61:2864-2870.
    [5] Wang F, Mao Z S, Wang Y F, et al. Measurement of phase holdups in liquid-liquid-solidthree-phase stirred tanks and CFD simulation [J]. Chemical Engineering Science,2006,61:7535-7550.
    [6] Wen J P, Zhou H, Li X L. Performance of a new vapor/liquid/solid three-phase circulatingfluidized bed evaporator[J]. Chemical Engineering and Processing,2004,43:49-56.
    [7] Hitoshi F, Takuya N, Hirohiko T. Performance characteristics of a gas-liquid-solid airliftpump[J]. International Journal of Multiphase Flow,2005,31:1116-1133.
    [8] Liu X, Deng H C, Ma W X. Numerical Analysis for Solid-liquid Two-phase Flow Field ofDraining-sand Jet Pump[C]. The2009IEEE International Conference on Mechatronics andAutomation,2009.4116-4121.
    [9] Tahsin E, Mesut G. Performance characteristics of a centrifugal cump impeller with runningtip clearance pumping solid-liquid mixtures[J]. Journal of Fluids Engineering,2001,123:533-538.
    [10] José A, Caridad F, Kenyery. Slip factor for centrifugal impellers under single and two-phaseflow conditions[J]. Journal of Fluids Engineering,2005,127:317-321.
    [11] Saleh W, Bowden R C, Hassan I G, et al. Two-phase flow structure in dual discharges-stereoPIV measurements [J]. Experimental Thermal and Fluid Science,2010,34:1016-1028.
    [12] Roco M C.Modelling erosion wear in centrifugal sluryy pumps[J]. Symposium of9th Int1.Conf. on Hydraulic Transport of Solid in Pippes,1984:291-3l6.
    [13] Bergeron P.The influence of the nature of the pumped mixture and hydraulic characteristicson the design and the installation of liquid/solid mixture pumps[C].5th Conference onHydraulics Turhines Pumps Hydrauliques,1958.597-605.
    [14] Li Y, Zhu Z C, He Z H, et a1. Abrasion characteristic analyses of solid-liquid two-phasecentrifugal pump[J]. Journal of Thermal Science,2010,20(3):283-287.
    [15] Girish R D, Bhupendra K G, Jain S C. Improvement in the design of a pot tester to simulateerosion wear due to solid–liquid mixture [J]. Wear,2005,259:196-202.
    [16] Karimi A, Schmid R K. Ripple formation in solid-liquid erosion[J]. Wear,1992,156(1):33-47.
    [17] Mehta M, Kadambi J R, Sastry S, et al. Study of particulate flow in the impeller of a slurrypump using PIV[C]. ASME2004Heat Transfer/Fluids Engineering Summer Conference(HT-FED2004),2004.489-499.
    [18]沈宗沼.国内液固两相流泵的设计研究综述[J].流体机械,2006,134(13):32-38.
    [19]彭维明,程良骏.水涡轮机械中轴对称固液两相流动的研究[J].水利学报,1994,(4):55-62.
    [20]彭维明.颗粒在泵轮中的运动轨迹计算[J].排灌机械,1994,(4):3-9.
    [21]倪福生,徐立群, Vlashlom W J,等.泥沙粒径对泥浆泵性能影响的实验研究[J].水动力学研究与进展,2001,16(4):427-734.
    [22]周昌静,陈国明,徐群,等.固液圆盘泵固相体积分数分布数值模拟[J].石油机械,2010,38(8):30-33.
    [23]刘建瑞,徐永刚,王董梅,等.离心泵叶轮固液两相流动及泵外特性数值分析[J].农业机械学报,2010,41(3):32,86-90.
    [24]张静.双流道式污水泵叶轮三维设计及水力模型开发研究[D].兰州:兰州理工大学,2008.1-70.
    [25]丛小青,袁寿其,袁丹青,等.无过载双流道排污泵性能预测研究[J].排灌机械,2006,24(2):4-6.
    [26]刘厚林,陆斌斌,谈明高,等.双流道泵内固液两相流动的数值模拟[J].排灌机械,2009,27(5):297-301.
    [27]赵镇南,郝睿,王利.固液两相流中微对流强化的机理分析与数值模拟[J].工程热物理学报,2005,26(4):656-658.
    [28]周云龙,孙斌,段晓,等.复合管道内液-固两相流浆体水击压强计算[J].工程热物理学报,2004,25(2):251-254.
    [29]朱玉才,吴玉林,潘爱先,等.离心式固液两相流泵叶片形状对流体动力特性影响的研究[J].机械工程学报,2004,40(8):67-71.
    [30]朱玉才,吴玉林,曲衍国,等.离心泵叶片压力面固液两相流的边界层分析[J].工程热物理学报,2005,26(3):429-431.
    [31]刘栋,杨敏官,董祥,等.盐析液固两相流对化工泵性能的影响[J].排灌机械,2008,26(4):61-64.
    [32]高波,杨敏官.旋流泵内颗粒分布及对盐析特性的影响[J].工程热物理学报,2009,30(12):2031-2033.
    [33]袁寿其,李昳,何朝辉.无堵塞离心泵内部三维固液两相湍流场数值模拟[J].机械工程学报,2003,39(7):18-22.
    [34]谭东华,朱祖超,崔宝玲.固液两相双流道泵的设计与试验研究[J].流体机械,2006,34(5):1-4.
    [35]谭东华.水下运行环境的的固液两相双流道泵的设计与试验研究[D].浙江:浙江大学,2006.1-64.
    [36]齐学义,阎晓伟,姬孝斌,等.双流道污水泵内固相体积分数分布规律[J].江苏大学学报:自然科学版,2009,30(2):156-159.
    [37]刘娟,许洪元,唐澍,等.离心泵内固体颗粒运动规律与磨损的数值模拟[J].农业机械学报,2008,39(6):54-59.
    [38]李昳,何伟强,朱祖超,等.脱硫泵固液两相流动的数值模拟与磨损特性[J].排灌机械,2009,27(2):124-128.
    [39]朱祖超,崔宝玲,李昳,等.双流道泵输送固液介质的水力性能及磨损试验研究[J].机械工程学报,2009,45(12):65-75.
    [40] Echardt D. Detailed flow investigations with in a high speed centrifugal cCompressorimpeller[J]. Journal of Fluids Engineering,1976,98:390-402.
    [41] Adler D, Levy Y A. Laser-doppler investigation of the flow inside a back swept, closedcentrifugal impeller[J]. Mechanic Engineering Science,1979,21(1):1-6.
    [42] Hamkins C P, Flack R D. Laser velocimetry measurements in shrouded and unshrouded radialflow impellers[J]. Turbo mach (Trans ASME),1987,109:70-80.
    [43] Miner S M, Beaudoin R J, Flack R D. Laser velocimeter in a centrifugal pump[J]. Turbomach(Tans ASME),1989,111(3):205-212.
    [44] Adrian R J. Multi-point optical measurements of simultaneous vectors in unsteady flow-areview[J]. Journal of Heat and Fluid Flow,1986,7:127-145.
    [45] Adrian R J. PIV processing technique: mage plane and Fourier plane Von kartnem Institutefor fluid dynamics ecture Series[J]. Particle Image velocimetry, Brussels Belgium,1988.
    [46] Adrian R J. Partical-imaging techniques for experimental fluid mechanics[J]. FluidMechanics,1991,23:261-304.
    [47] Shepherd I C,. Velocity measurement in fan rotors using particle imaging velocimetry[C].ASME Conference on Laser emometry Advances and Applications,1994.179-183.
    [48] Chu S, Dong R, Katz J. Relationship between unsteady flow, pressure fluctuations and noisein a centrifugal pump, Part B: Effect of blade-tongue interaction[J]. Journal of FluidsEngineering (Transactions of ASME),1995,117(1):30-35.
    [49] Khan F R, Rielly C D, Brown D A. Angle-resolved stereo-PIV measurements close to adown-pumping pitched-blade turbine[J]. Chemical Engineering Science,2006,61:2799-2806.
    [50] Martin K, Schiffer H P. Endoscopic PIV measurements in a low pressure turbine rig[J].Experiments in Fluids,2009,47:689-705.
    [51] Jaikrishnan R K, Pathom C, Subramanian A, et al. Investigations of particle velocities in aslurry pump using PIV: Part1, the tongue and adjacent channel flow[J]. Journal of EnergyResources Technology,2004,126:271-278.
    [52] Daniel B, Oguz U, Chow Y C, et al. A comparison of unsteady RANS simulations with PIVdata in an axial turbomachine[C]. ASME2005Fluids Engineering Division Summer Meeting(FEDSM2005),2005.1309-1320.
    [53] Benra F K, Feng J J, Dohmen H J. Measurement of the periodic flow field in a radial diffuserpump by the PIV-method[C]. ASME/JSME20075th Joint Fluids Engineering Conference(FEDSM2007),2007.841-848.
    [54] Aubin J, Sauze N L, Bertrand J, et al. PIV measurements of flow in an aerated tank stirred bya down-and an up-pumping axial flow impeller[J]. Experimental Thermal and Fluid Science,2004,28:447-456.
    [55] Westra R W, Broersma L, Andel K, et al. Secondary flows in centrifugal pump impellers: PIVmeasurements and CFD computations[C]. ASME2009Fluids Engineering Division SummerMeeting (FEDSM2009),2009.305-314.
    [56] Silva G, Leal N, Semiao V. Determination of micro channels geometric parameters usingmicro-PIV[J]. Chemical Engineering Research and Design,2009,87:298-306.
    [57] Angele K P, Suzuki Y, Miwa J, et al. Development of a high-speed scanning micro PIVsystem using a rotating disc[J]. Measurement Science and Technology,2006,17:1639-1646.
    [58]Schimpf A, Thamsen P U. Instantaneous measurement of unsteady three Dimensionalvelocity fields with photo grammetric PIV[C]. ASME2005Fluids Engineering DivisionSummer Meeting (FEDSM2005),2005.1217-1221.
    [59] Fukuda N, Someya S, Okamoto K. Measurement of unsteady flow in pump-turbine forhydropower using PIV method[C]. ASME2009Heat Transfer Summer Conferencecollocated with the Inter PACK09,2009.889-896.
    [60] Sheen H J, Hsu C J, Wu T H, et al. Unsteady flow behaviors in an obstacle-type valvelessmicropump by micro-PIV[J]. Microfluid Nanofluid,2008,4:331-342.
    [61] Giridharana G A, Ledererb C, Berthec A, et al. Flow dynamics of a novel counter pulsationdevice characterized by CFD and PIV modeling[J]. Medical Engineering&Physics,2011:1-10.
    [62] Sankovic J M, Kadambi J R, Smith W A, et al. PIV investigations of the flow field in thevolute of a rotary blood pump[J]. Journal of Fluids Engineering,2004,126:730-734.
    [63] Day S W, McDaniel J C. PIV measurements of flow in a centrifugal blood pump: steadyflow[J]. Journal of Biomechanical Engineering,2005,127:244-253.
    [64] Muller S H, Bohm B, Glei ner M, et al. Flow field measurements in an optically accessible,direct-injection spray-guided internal combustion engine using high-speed PIV[J].Experiments in Fluids,2010,48:281-290.
    [65] Sebastian K, Christopher M W. PIV and PLIF to evaluate mixture formation in a direct-injection hydrogen-fuelled engine[C]. Session: Hydrogen IC Engines,2008.
    [66] Valentino G, Allocca L, Marchitto L. PIV investigation of high swirl flow on spray structureand its effect on emissions in a diesel-like environment[C]. SAE2011World Congress&Exhibition,2011.
    [67] Wu Y L, Liu S H, Yuan H J, et al. PIV measurement on internal instantaneous flows of acentrifugal pump[J]. Science China Technological Sciences.2011,54(2):270-276.
    [68] Harada K, Murakami M, Ishii T. PIV measurements for flow pattern and void fraction incavitating flows of He II and He I[J]. Cryogenics,2006,46:648-657.
    [69] Khalitov D A, Longmire E K. simultaneous two-phase PIV by two-parameter phasediscrimination[J]. Experiments in Fluids,2002,32:252-268.
    [70]徐玉明,迟卫,莫立新. PIV测试技术及其应用[J].舰船科学技术,2007,29(3):101-105.
    [71]罗玮,周孝德,程文,等. PIV应用于气液两相流的研究现状[J].传感器与微系统,2006,25(2):1-4.
    [72]金文,王道增. PIV直接测量泥沙沉速试验研究[J].水动力学研究与进展,2005,20(1):19-23.
    [73]邵春雷,顾伯勤,陈晔. PIV测量用模型泵的设计及测量中的误差分析[J].流体机械,2007,35(12):39-42.
    [74]袁寿其,何有世,袁建平,等.带分流叶片的离心泵叶轮内部流场PIV测量与数值模拟[J].机械工程学报,2006,42(5):60-63.
    [75]邵春雷,顾伯勤,黄星路,等.低比转速泵叶轮流道内部流动的PIV试验[J].航空动力学报,2010,25(9):2091-2096.
    [76]杨敦敏,叶海燕,陈刚.离心泵内固液两相流动的图像测量[J].农业机械学报,2006,37(12):100-108.
    [77]陈松山,周正富,何钟宁,等.离心泵偏置短叶片叶轮内部流动的粒子图像速度测量[J].机械工程学报,2008,44(1):56-61.
    [78]谢军龙,游斌,吴克启.前缘弯掠风扇叶尖涡的数值分析与PIV实验[J].工程热物理学报,2006,27(1):57-60.
    [79]何培杰,龙新平,梁爱国,等.射流泵流场的PIV测量[J].水科学进展,2004,15(3):296-299.
    [80]赵斌娟,袁寿其,刘厚林,等.双流道泵内非定常流动数值模拟及粒子图像测速测量[J].机械工程学报,2009,45(9):82-88.
    [81]赵斌娟,袁寿其,刘厚林,等.双流道及双叶片式叶轮内流场的PIV测量与比较[J].农业机械学报,2008,39(12):82-85.
    [82]陈松山,周正富,葛强,等.长短叶片离心泵叶轮内部流动的PIV测量[J].农业机械学报,2007,38(2):98-101.
    [83]王小兵.基于PIV的石油工程中螺旋流动研究[D].黑龙江:东北石油大学,2009.1-130.
    [84]李金伟,刘树红,杨帆,等.微小型粘性泵的内部流场PIV试验研究[J].工程热物理学报,2007,28(1):61-63.
    [85]王飞,王健,何枫.无移动部件微泵的设计、制造及基于微PIV技术的流动测量[J].实验流体力学,2005,19(3):67-72.
    [86]严敬,杨小林,邓万权,等.示踪粒子跟随性讨论[J].农业机械学报,2005,35(6):54-56.
    [87]阮驰,孙传东,白永林,等.水流场PIV测试系统示踪粒子特性研究[J].实验流体力学,2006,20(2):72-77.
    [88]袁辉靖,邵杰,刘树红,等.小流量工况下微小型泵内部流场数值模拟及LIF-PIV实验研究[J].工程热物理学报,2008,29(1):1852-1856.
    [89]杨敏官,刘栋,顾海飞,等.盐析液固两相流场的PIV测量方法[J].江苏大学学报(自然科学版),2007,28(4):324-32.
    [90]王凯,刘厚林,袁寿其,等.零流量工况下双叶片泵内部流场三维PIV测量[J].农业机械学报,2011,42(7):61-65.
    [91]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [92] Launder B E, Spalding Q B. Mathematical model of turbulence[M]. London, England: TheCademic Press,1972.
    [93]郭乃龙.螺旋离心泵性能与内部二维不可压湍流流动及应用混沌[D].镇江:江苏理工大学,1998.
    [94] Sinha M. Rotor-stator interactions, turbulence modeling and rotating stall in a centrifugalwith diffuser vanes[D]. The Baltimore, USA: The Johns Hopkins University,1999.
    [95]袁建平.离心泵多设计方案下内流PIV测试及其非定常全流场数值模拟[D].镇江:江苏大学,2008.
    [96]杨华.离心泵内部流场PIV实验研究[D].扬州:扬州大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700