桥门式起重机电机拖动系统能效及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
起重机大车、小车运行机构和起升机构的动力装置多采用三相交流异步电机,实现起重机低能耗、高效率经济运行的关键是对起重机电机拖动系统的有效控制。电机的能效问题包括电机运行时的能源消耗(简称能耗)和工作效率两个方面的问题。
     电机运行效率、功率因数对电机拖动系统能耗产生直接影响,而负载率是影响电机运行效率和功率因数的重要运行参数。一般,当负载率为30~40%时,能实现电机高效运行,当负载率超过60%时,电机的功率因数接近额定功率因数。相对于功率因数曲线,电机的效率曲线具有更宽的高效率区域。高效运行的电机,其功率因数不一定高,要使两者都接近较高值,应使电机的负载率不低于60%。通过分析电机效率数据得出电机效率与不同电机功率之间的数值拟合关系,电机效率与不同电机功率之间的关系符合指数变化规律。电机效率数值拟合曲线对于电机的生产和工程中电机选型具有理论指导意义。
     对电机运行的经济性进行有效判定,必须合理确定电机运行的效率、经济负载率。根据电机运行综合效率和额定综合效率的比较,将电机运行的经济性分为非经济运行、基本合理运行、经济运行等三种运行工况。电机综合节电率的计算方法主要有功率计算法、综合效率计算法和累积电能计算法三种。电机综合功率随电机所拖动负载转矩按二次抛物线规律变化,考虑了无功功率引起的线路损耗的情况时,电机的综合效率曲线低于效率曲线,从电机的综合效率曲线也可定义电机三种运行工况。由于考虑了无功引起线路损耗的情况,电机最高效率点向负载率增大的方向偏移,所以经济运行区域相对变小。
     电机拖动系统节能的重要要求之一就是电机高效运行,这就要求降低电机运行时的内部损耗,尤其是电机内部的电气损耗。为了实现具有恒转矩运行和变工况负载特性的起重机节能运行,基于电机Г型等效电路,将定子铜耗和铁耗看作不变损耗,将转子铜耗看作可变损耗,其中不变损耗仅与定子电压有关,可变损耗仅与起重机负载转矩有关。根据折算前后传动系统动能不变和功率平衡的原则,得到起重机吊重起升机构等效单轴电机拖动系统电机转子侧的等效转动惯量和等效负载转矩。为了方便计算,同时电机平稳运行时,转差率较小,通过求解转差率与负载转矩之间的近似关系,得到随负载转矩按指数规律变化的起重机节能的最优调节电压,以及使电气总损耗最小的目标函数。起重机以380V的恒定电压运行时,轻载工况总损耗最大,以220V恒定电压运行时,在重载工况总损耗最大,按照负载转矩变化适时调整的最优调节电压运行方式时的节能效果是显著的。
     对电机定子电压和频率同时进行控制,使电机根据负载变化,具有调速平稳、快速起、制动,并且快速跟踪负载转矩的动态性能,对起重机节能控制具有重要意义。为了达到这一目的,针对电机在同步旋转坐标系中的数学模型,基于电机定、转子转差频率设计的电机变频节能控制系统,通过实时测量电机运行转速,计算转速差,经过转速调节器计算定子电流转矩分量,从而计算转差频率,并得到同步旋转坐标系的同步旋转角速度,进而得到空间矢量变换角。定子电压转矩分量和励磁分量由矢量变换角经过两相旋转坐标系到三相静止坐标系变换成电压型逆变器的控制信号,由整流器和逆变器输出电机定子三相变压变频电压,实现电机以给定转速稳定运行,并快速跟踪变化的负载转矩。仿真研究表明:闭环系统的空载起动时间比开环系统快0.34s,并且电机平稳起动,起动阶段开环和闭环系统的峰值电磁转矩差值达148N·m;闭环系统电机消耗的电动率小于开环系统的电机消耗电功率,尤其是在起动阶段开环系统的峰值功率是闭环系统峰值功率的2.5倍,电机具有明显的节能效果。
     基于矢量变换的矢量变频控制对电机拖动系统的调速范围宽,并且属于转差功率不变型的无极调速方法,结合现代控制理论与方法,既能应用于对调速性能要求较高的场合,对电机拖动系统也具有明显的节能效果。针对基于内扰定义MT坐标系中的电机等效结构设计了起重机电机拖动系统自抗扰控制器,4个一阶自抗扰控制器分别控制磁链方程的磁链、转速方程的转速、励磁电流方程的定子电流励磁分量和转矩电流方程的定子电流转矩分量。闭环系统电机具有良好的起动动态性能。开环系统电机负载起动时的能耗随负载转矩的增大而增大,尤其是在重载和满载时,负载转矩对起动能耗影响较大;对于闭环系统电机负载起动的能耗几乎不随负载转矩的变换而变化;在重载和满载时,闭环系统电机起动时的节能效果是显著的。满载时,闭环系统的节电率可达88%,中等载荷时,节电率可达64%,轻载时,节电率可达55%。
The power plant of mobile mechanism and load's hoisting mechanism is often three-phase asynchronous motor for the bridge crane and gatry crane. If the crane could be economically running with low energy consumption and high efficiency, the key problem is that the crane's motor driving system can be effectively controlled with low energy consumption and high efficiency. Motor's energy efficiency problems are including two aspects of problems. The first is motor's energy consumption and the second is motor's working efficiency when the motor is running.
     Motor's working efficiency and power factor can directly affect motor driving system's energy consumption. And load rate is the important parameter that affects motor's working efficiency and power factor. The relationship of numerical fitting between motor's efficiency and different motor's power was found by analyzing motor's efficiency data. The relationship is accord with exponential change law. The numerical fitting carve has theoretical guiding significance for motor's may be high efficiently running when the load rate is30-40%. Motor's power factor may be close to rated power factor when the load rate is more than60%. The motor's efficiency curve has more wide region of high efficiency comparing with motor's power factor curve. High running motor's power factor is not always high. When motor's load rate is not less than60%, motor's power factor and working efficiency is all high.
     In order to effectively judge motor operation's economy, motor operation's efficiency and economic load rate must be reasonably determined. There are three running conditions according to the combined efficiency and rated combined efficiency. The first is no-economic operation, the second is basic reasonable operation and the third is economic operation. The calculation methods of integrated power saving rate have mainly power calculation method, combined efficiency calculation method and cumulative energy calculation method. Motor's combined efficiency will change according to parabola with load torque's change. Motor's combined efficiency curve is lower than efficiency curve when line loss caused by reactive power is considered. Motor's peak efficiency point will deviate toward the direction of load rate's increase. So the region of economic operation will decrease.
     One of important demand for motor driving system's saving energy should be motor's high effectively running. So motor running's internal loss must be decreased, especially decrease motor's internal electric loss. In order to realize container crane's saving energy operation of optimal voltage regulation aiming at crane's working characteristics of constant torque operation mode and variable working condition's load, the direct relationship between electric total loss and stator voltage or load torque is obtained based on the asynchronous motor's Γ-shape equivalent circuit because the stator's copper loss and iron loss are regarded as invariable loss that only relates to stator voltage and the rotor's copper loss is regarded as variable loss that is changed following load torque's changing. The optimal regulation voltage is obtained through mathematical calculation on the condition that the asynchronous motor be stable running. The electric total loss will be minimum when the stator's voltage is the optimal regulation voltage. The research and simulation results showed:the electric total loss was commonly influenced by the stator voltage and load torque; the optimal regulation voltage would be changing according to the exponential law with the load torque's changing; the electric total loss's error between the exact solution and the approximate solution obtained according to the approximate slip ratio while the asynchronous motor's stable running was bigger when the stator voltage was less than220V, and the error was nearly zero when the stator voltage was more than220V.
     Motor's stator's voltage and frequency are samely controlled. Motor should have good dynamic performance, including smooth speed regulating, fast starting prompt braking and fast tracking load torque. These measures have important significance for crane's energy saving. In order to achieve these goals, control crane's motor driving system to real-time track the abrupt load torque and make the motor stably run with a given rotational speed, the equivalent moment of inertia and equivalent load torque on the rotor of the hoisting mechanism and the motor driving system's dynamic equation are derived through equivalently calculating, and the synchronous rotating coordinate according to rotor flux linkage oriented is constructed, and the load torque tracking's vector converter close-loop control system is designed with the slip angle frequency between the synchronous angular velocity and the rotor's electric angular velocity. The research and engineering example calculation results showed:the close-loop control system's starting time with no-load was faster0.34s than the open-loop system, and the motor could be stably starting, and the difference of electromagnetic torque's peak value was148N-m for the open-loop system and the close-loop control system; the electric power that the close-loop control system's motor consumed was less than the electric power that the open-loop system's motor consumed, especially the open-loop system's peak value of electric power was2.5times for the close-loop control system's peak value on the motor's starting stage, and the motor's effect of energy saving was obvious.
     Vector inverter control's motor driving system's based on vector transfer has wide speed adjustable range. Vector inverter control is a stepless speed regulation method and motor's slip power will be not changed. Vector inverter control that is combine with modern control theory and method can be applied into situation where the requirement of speed control performance should be high, and also has obvious energy-saving effect for crane's motor driving system. Crane's motor driving system's active disturbance rejection controller is designed aiming at motor's mathematical model's equivalent structure in MT coordinate system. There are4first-order active disturbance rejection controller. The first can control magnetic flux linkage of flux-linkage equation. The second can control revolving speed of speed equation. The third can control stator current's excitation component of field current equations. And the forth can control stator current's torque component of field current equations. The closed-loop system's motor has good starting dynamic performance. Energy consumption of starting will increase with load torque's increase for the open-loop system's motor, and especially when crane's load torque is full and heavy, load torque's influence on the energy consumption of starting is obvious. Energy consumption of starting for the closed-loop system's motor is hardly not changed with load torque's changing. Motor's energy saving effect of the closed-loop system is prominent when motor is starting. For the closed-loop system, energy saving rate is88%when motor's load torque is full, energy saving rate is64%when motor's load torque is medium, and energy saving rate is55%when motor's load torque is light.
引文
[1]段向军.异步电动机轻载节能控制系统开发[J].制造技术与机床,2011,(1):134-137.
    [2]Bose B K, Patel N R, Rajashekara K. A neurofuzzy-base on-line efficiency optimization control of a stator flux-oriented direct vector-controlled induction motor drive [C]. IEEE Trans. on Ind. Electron,2000,44(2):270-273.
    [3]Matsuse K, Katsuta. Fast rotor flux control of vector controlled for electric vehicles [C].Proc. EVS-13,2000:67-71.
    [4]Chis M, Jayaram S, Rajashekara K. Neural network-based efficiency optimization of EV drive [C]. IEEE Conference on Electrical and Computer Engineering,2001,2:454-461.
    [5]Kioskeridis I, Margaris N. Loss minimization in induction motor adjustable speed drives[C]. IEEE Trans. on Ind. Electron.,2002,43(1):226-231.
    [6]Garcia G O, Luis J C M, Stephan R M, et al. An efficient controller for an adjustable speed induction motor drive [C]. IEEE Trans. on Ind. Electron,2002,41(1):533-539.
    [7]崔纳新,张承慧,杜春水.变频调速异步电动机效率优化控制的研究进展[J].电工技术学报,2004,19(5):36-42.
    [8]冯光,喻辉洁,黄立培.异步电机柔性控制系统[J].电工电能新技术,1998,(3):1-4.
    [9]Ortega Romeo, Canudas Carlos, Seleme Seleme I. Nonlinear control of induction motors: torque tracking with unknown disturbance [J]. IEEE Trans. on Auto. Cont., 2001,38(11):1675-1680.
    [10]陈新,崔凯,朱宏林.基于6SE70变频器的异步电动机节能控制系统研究[J].硅谷,2011,9(4):100,87.
    [11]张承慧,曾毅,刘玖,等.供水泵变频调速非线性控制系统[J].冶金自动化,2001,(1):55-56.
    [12]刘桂芬,张继华,孟庆春.异步电动机功率因数自动控制实验[J].煤矿机电,2008,(4):64-66.
    [13]孟庆春,邱彬,任志玲.异步电动机功率因数自动控制实验[J].辽宁工程技术大学学报,2005,24(6):876-878.
    [14]尹俊,魏云冰,张国亮,等Matlab/Simulink环境下考虑铁损因素的异步电机建模与仿真[J].郑州轻工业学院学报(自然科学版),2011,26(1):83-86.
    [15]孟大伟,庞向东,潘波,等.YKK系列高效高压三相异步电动机的优化设计[J].电机与控制学报,2010,14(4):31-35.
    [16]Tahara J I, Tsuboi K, Sawano T, Nagata Y. An adaptive VSS control method with integral type switching gain[C]. Proceedings of the IASTED International Conference Robotics and Applications Florida, USA,2001:106-111.
    [17]Mirafzal B, Demerdash N A O. On innovative methods of induction motor interturn and broken-bar fault diagnostics [C]. IEEE Transactions on Industry Applications,2006, 42(2):405-414.
    [18]Miloudia A, Alradadi E A, Draou A. A new control strategy of direct torque fuzzy control of a PWM inverter fed induction motor drive [C]. IEEE ISIE,2006,9 (12):2535-2540.
    [19]Kuo Kai shyu, Hsin Jang shieh. A new switching surface sliding node speed control for induction motor drive systems [C]. IEEE Trans. Ind. Electron,2005, 11(4):660-667.
    [20]Yu Yong, Song Hailong, Xu Dianguo. Research on speed sensorless vector control of induction motor based on stator flux orientation [C]. IEEE 33rd Annual Power Electronics Specialists Conference,2002,2(2):875-880.
    [21]Famouri P, Cathey J J. Loss minimization control of an induction motor drive [C]. IEEE Trans. on Ind. Applicat,2000,27(1):32-37.
    [22]Moreira J C, Lipo T A, Blasko V. Simple efficiency maximizer for an adjustable frequency induction motor driver [C]. IEEE Trans. on Ind. Applicat,2001, 27(5):940-946.
    [23]Sousa G C D, Bose B K, Cleland J D. Fuzzy logic based on-line efficiency optimization control of an indirect vector-controlled induction motor drive[C]. IEEE Trans. on Ind. Electron,2002,42(2):192-198.
    [24]Ta C M, Hori Y. Convergence improvement of efficiency-optimization control of induction motor drives [C]. IEEE Trans. on Ind. Applicat,2001,37(6):1746-1753.
    [25]Wang J B, Liaw C W. Indirect field-oriented induction motor drive with fuzzy detuning correction and efficiency optimization controls[C]. IEEE Electri. Applicat,2001, 144(1):37-45.
    [26]马莉丽,程文明,张则强.铁路集装箱起重机异步电动机调压节能的优化方法[J].中国铁道科学,2012,33(1):126-132.
    [27]马莉丽,程文明,钟斌.桥门式起重机最优调压节能仿真研究[J].计算机仿真,2012,29(1):383-388.
    [28]林飞,刘晓敏,郑琼林.基于无源化的感应电机能量最优控制[J].电力自动化设备,2005,25(1):28-31.
    [29]季筱隆,沈传文,孟永庆,等.基于无源性的感应电机最小磁场能量的效率优化控制[J].西安交通大学学报,2008,42(6):728-733.
    [30]Behrooz M, Richard J P, Nabeel A O D. Interturn fault diagnosis in induction motors using the pendulous oscillation phenomenon [C]. IEEE Transactions on Energy Conversion,2006,21(4):871-882.
    [31]Matsuse K, Katsuta. Fast rotor flux control of vector controlled induction motor operating at maximum efficiency for electric vehicles [C]. Proc. EVS-13,2006:67-71.
    [32]Matsuse K, Yoshizumi T, Katsuta S, et al. High response flux control of direct-field-oriented iduction motor with high efficiency taking core loss into account[C]. IEEE Trans. on Ind. Appl.,2001,35(1):62-69.
    [33]Khorrami F, Krishnamurthy P, Melkote H. Modeling and Adaptive Nonlinear Control of Electric Motors[C]. New York:Springer,2003.
    [34]Marino R, Sergei Peresada. Output feedback control of current-fed induction motors with unknown rotor resistance[C]. IEEE Trans. on Control System Technology, 2002,4(4):336-347.
    [35]Kokotovic P. The joy of feedback:nonlinear and adaptive[C]. IEEE Control System Magazine,2002,12(1):7-17.
    [36]Cecati C, Quintiliani A, Rotondale N. A low cost induction motor drive based on the passivity theory approach[C]. In:Industry Applications Conference,2002:581-586.
    [37]Ortega R, Jiang Z P, Hill D J. Passivity-based control of nonlinear systems:a tutorial [C]. In:American Control Conference,2004:2633-2637.
    [38]王久和,黄立培,李华德.感应电动机数学模型及非线性控制策略[J].辽宁工程技术大学学报(自然科学版),2009,28(2):246-249.
    [39]陈伯时,谢鸿鸣.交流传动系统的控制策略[J].电工技术学报,2000,15(5):11-15.
    [40]刘平,刘和平,郭军.纯电动汽车异步电动机驱动系统的Saber建模与仿真[J].微特电机,2011,(3):69-72.
    [41]李斌花.纯电动汽车电机驱动系统控制策略研究[D].湖南大学,2005.
    [42]田清.采用交叉耦合补偿的异步电动机矢量控制系统研究[J].制造业自动化,2011,33(1):37-39.
    [43]杨儒珊,康慧骏,冯勇.永磁同步电动机系统的能控性与能观性分析[J].上海大学学报(自然科学版),2005,11(3):234-237.
    [44]绍杰.电动汽车用异步电机的矢量控制研究[J].电气自动化,2011,33(2):14-16.
    [45]袁雪松.电动叉车交流异步电动机驱动系统的研究[D].合肥工业大学,2010.
    [46]欧卫斌,李军生.基于DSP的异步电动机矢量控制系统的设计与仿真[J].工矿自动化,2009,(6):39-41.
    [47]Poirier E, Ghribi M, Kaddouri A. Loss minimization control of induction motor drives based on genetic algorithms[C]. IEEE International Electric Machines and Drives Conference,2001:475-478.
    [48]Chakraborty C, Ta M C, Uchida T, et al. Fast search controllers for efficiency maximization of induction motor drives based on DC link power measurement[C]. IEEE PEE-Osaka 2002:402-408.
    [49]Spiegel R J, Turner M W, McCormick V E. Fuzzy-logic-based controllers for efficiency optimization of inverter-fed induction motor drives[J]. Fuzzy Sets and Systes. 2003,(137):387-401.
    [50]Poirier E, Ghribi M, Kaddouri A. Loss minimization control of induction motor drives based on genetic algorithms [C]. IEEE International Electric Machines and Drives Conference,2001:475-478.
    [51]Kais Jamoussi, Mohamed Ouali. A sliding mode speed control of an induction motor [J]. American Journal of Applied Sciences,2007,4(12):987-994.
    [52]陈峰,徐文立,王旭.基于电磁子系统Lyapunov稳定的异步电动机非线性标量控 制[J].中国电机工程学报,2000,20(6):53-57.
    [53]陈峰,徐立文.基于无源性的异步电动机自适应控制[J].自动化学报,2000,26(6):776-781.
    [54]刘国海,戴先中.具有不确定负载的交流电机自适应后推控制方法[J].控制与决策,2001,16(6):947-949,953.
    [55]蔡超豪.交流感应电动机调速系统的非线性H∞控制[J].电机电器技术,2003,(1):35-38.
    [56]Shin M, Hyun D, Cho S, et al. An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors[C]. IEEE Trans. on PE,2000, 15(2):312-318.
    [57]Guzinski J, Abu-Rub H, Toliyat H A. An advanced low-cost sensorless induction motor drive[C]. IEEE Transactions on Industrial Application,2003,39(6):1757-1764.
    [58]Marino R, Peresada S, Tomei P. On-line stator and rotor resistance estimation for induction motors[C]. IEEE Trans. Control Systems Tech.,2000,8(3):570-579.
    [59]Seok Ho Jeon, Kwang Kyo Oh, Jin Young Choi. Flux observer with online tuning of stator and rotor resistances for induction motors [C]. IEEE Trans. IE., 2002,49(3):653-664.
    [60]Weng Haqing Liu Congwei, Li Fahai, et al. Anew flux observer of induction motor by H∞ optimization [C]. Thirty-Sixth IAS Annual Meeting Conference Record of the 2001 IEEE,2001.
    [61]宋文超,林飞,张春朋.基于定子磁链模型的异步电动机反馈线性化控制[J].电工技术学报,2003,18(4):85-88.
    [62]梅柏杉,胡文齐.带定子电阻补偿的异步电机定子磁场定向控制[J].电机与控制应用,2010,37(8):32-36.
    [63]陈凌飞.电动叉车交流感应电动机参数离线辨识系统设计[D].福建农林大学,2010.
    [64]Maurizio C, Marcello P, Giansolvo C,et al. A new adaptive integration methodology for estimation flux in induction machine drive[C]. IEEE Transactions on Power Electronics. 2004,19(1):25-33.
    [65]Julius L, Markku N, Juha P. Estimation of the flux linkage in a direct-torque-controlled drive[C]. IEEE Transactions on Industrial Electronic,2003,50(2):283-287.
    [66]Juan Luis Zamora, Aurelio Garcha Cerrada. Online estimation of stator parameters in an induction motor using only voltage and current mearuement [C]. IEEE Transactions on Industry Applications,2000,36(3):805-816.
    [67]Jeltsema D, Ortega R, Scherpen J M A. An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems [J]. Automatica, 2004,40(9):1643-1646.
    [68]R Ortega, A Jvander Shaft, I Mareel, et al. Putting energy back in control[C]. IEEE Control Systems Magazine,2001,21(2):18-33.
    [69]Mitronikas E D, Safacas A N, Takakis E C. A-new stator resistance tuning method for stator-flux-oriented vetor-controlled induction motor drive[C]. IEEE Transactions on Industrial Electronics,2001,48(6):1146-1156.
    [70]Maes J, Melkebeek J A. Speed-sensorless direct route control of induction motors using an adaptive fluxe observer[C]. IEEE Transactions on Industry Applications, 2000,36(3):778-785.
    [71]Seok Ho Jeon, Kyo Oh, Jin Young Choi. Flux observer with online tuning of stator and rotor resistances for induction motor [C]. IEEE Transactions on Industrial Electronics, 2002,49(3):653-664.
    [72]Ortega R, Vander Schaftb A J, Maschkee B, et al. Interconnection and damping assignment passivity based control of port-controlled Hamiltonian systems[J]. Automatica,2002,38(4):585-596.
    [73]Feng Guang, Liu Yanfei, Huang Lipei. A new robust control to improve the dynamic performance of induction motors[C]. PESC,2001,2:17-21.
    [74]Huang Yi, Han Jingqing. Analysis and design for the second order nonlinear continuous extended states observer [J]. Chinese Science Bulletin,2000,45(21):1938-1944.
    [75]Boukas T K, Habetler T G. High-performance induction motor speed control using exact feedback linearization with state and state derivative feedback[C]. IEEE Trans on Power Electronics,2004,19(4):1022-1028.
    [76]Rodriguez H, Ortega R. Stabilization of eletromechanical systems via interconnection and damping assignment [C]. Int J Robust & Nonlinear Control,2003, 13(12):1095-1111.
    [77]Yu Haisheng, Wang Hailiang, Zhao Keyou. Energy-shaping control of PM synchronous motors based on Hamiltonian system theory [C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems. Beijing:World publishing Corporation, 2005,11:1549-1554.
    [78]J Zhou, Y Wang. Adaptive backstepping speed controller design for a permanent magnet synchronous motor[C]. Electric Power Applications on IEEE Proceedings Electric Power Applications,2002,149(2):165-172.
    [79]E Hegazi, Abidi A A. Varactor characteristics, oscillator tuning curves and AM-FMconversion[C].IEEE JSSC,2003,38(6):1033-1039.
    [80]Feng Guang, Liu Yanfei, Huang Lipei. A new robust controller to improve the dynamic performance of induction motors[C]. IEEE Transactions on Power Electronics, 2004,19(6):1614-1627.
    [81]苏远平,陈善富.基于PID神经元网络的交流感应电动机解耦控制研究[J].煤矿机电,2007,(6):8-11.
    [82]姜香菊,刘二林.基于Matlab的单相异步电机调速系统仿真设计[J].工业仪表与 自动化装置,2010,(5):49-53.
    [83]王文涛,刘学佳.基于反馈线性化理论的异步电动机解耦控制[J].沈阳工业大学学报,2009,31(1):22-25,34.
    [84]Kioskeridis I, Margaris N. Loss minimization in scalar-controlled induction motor drivers with search controllers [C]. IEEE Trans. on Power Electron,1996,11(2):231-220.
    [85]Wasynczuk O, Sudhoff S D, Hansen I G, et al. A Maximum torque per ampere control stratery for induction motor drives[C]. IEEE Trans. on Power Conversion.1998, 13(2):163-169.
    [86]袁长江,李向明.基于矢量控制的异步电机调速控制系统的仿真研究[J].电机技术,2009,(2):18-21.
    [87]王家军,王建中,马国进.感应电动机系统的变结构反推控制研究[J].中国电机工程学报,2007,27(6):35-38.
    [88]裴文卉.基于电机模型的非线性跟踪控制器的设计及应用[D].曲阜师范大学,2007.
    [89]山炳强.基于反步法的交流电机控制研究[D].青岛大学,2006.
    [90]Faa-Jeng Lin, Sheng-Lyin Chiu, Kuo-kai Shyu. Novel sliding mode controller for synchronous motor drive[C]. IEEE Transactions on Aerospace and Electronics System, 2004,34(2):532-542.
    [91]Matsuse K, Taniguchi S, Yoshizumi T, et al. A speed-sensorless vector control of induction motor operating at high efficiency taking core loss into account[C]. IEEE Trans. on Ind. Appl.,2001,37(3):548-557.
    [92]Huang M S, Liao C M. Improved field-weakening control of IFO induction[C]. IEEE Trans. on Aerospace and Elec. Sys.2003,39(2):647-658.
    [93]Abrahamsen F, Blaabjerg F, Pedersen J K, et al. Efficiency-optimized control of medium-size induction motor drives [C]. IEEE Trans. on Ind. Appl.,2001, 37(6):1761-1767.
    [94]纪志成,薛花,沈艳霞.感应电动机无源性控制方法研究[J].电工技术学报,2005,20(3):1-6.
    [95]王涛,肖建,李冀昆.感应电机无源性分析及自适应控制[J].中国电机工程学报,2007,27(6):31-34.
    [96]顾亮,沈传文,季筱隆.基于无源性的感应电机控制系统设计[J].电工电能新技术,2006,25(3):42-45,80.
    [97]张兴华,戴先中.基于无源性的感应电机转矩与转速控制[J].电工技术学报,2001,16(40):34-38.
    [98]王海亮,于海生.异步电动机哈密顿控制系统的建模与仿真[J].青岛大学学报(工程技术版),2006,21(1):33-38.
    [99]马良河,姜建国.异步电机的一类无源性快速渐近跟踪控制器[J].中国矿业大学学报,2002,31(5):385-389.
    [100]Farid Khoucha, Soumia Mouna Lagoun. Hybrid cascaded-bridge multilevel-inverter induction-motor-drive direct torque control for automotive applications[C]. IEEE Transactions on Industrial Electronics,2010,57(3):892-899.
    [101]Briz F, Diez A, Degner M W D, et al. Current and flux regulation in field-weakening operation[C]. IEEE Trans. on Indus. Appl.,2001,37(1):42-51.
    [102]杨立永,李正熙,李华德,等.感应电动机调速系统的自适应逆控制[J].控制理论与应用,2007,24(1):95-98.
    [103]裴文卉,武玉强.感应电机系统的非线性反推自适应控制[J].电机与控制学报,2007,11(4):375-379.
    [104]徐小增,秦忆.矢量控制异步电动机的自适应控制和参数辨识[J].电机与控制学报,2002,6(2):111-114.
    [105]沈艳霞,林瑾,纪志成.自适应反步法感应电机控制器的设计和仿真研究[J].系统仿真学报,2006,18(2):451-455.
    [106]Chan C C. The state of art of electric, hybrid and fuel cell vehicles[C].Proceedings of the IEEE,2007,95(4):704-718.
    [107]Zeraoulia M, Benbouzid M E H, Diallo D. Electric motor drive selection issues for HEV propulsion systems:A comparative study[C]. IEEE Transactions on Vehicular Technology,2006,55(6):1756-1764.
    [108]Liu Y, Shao C, Ding Y. Modeling and simulating of variable parameters induction motors in electric vehicle applications[J]. Journal of System Simulation, 2006,18(12):3358-3361.
    [109]李擎,杨立永,李正熙,等.异步电动机定子磁链与电磁转矩的逆系统解耦控制方法[J].中国电机工程学报,2006,26(6):146-150.
    [110]周志刚.一种感应电机的解耦控制方法[J].中国电机工程学报2003,23(2):121-125.
    [111]汤先跃.非线性系统解耦理论及其在电机系统上的应用[D].沈阳工业大学,2005.
    [112]杨立永,李华德,王久和.基于逆系统理论的感应电动机控制策略[J].辽宁工程技术大学学报,2005,24(5):706-708.
    [113]孙晓东,朱熀秋.基于神经网络逆系统理论无轴承异步电动机解耦控制[J].电工技术学报,2010,25(1):43-49.
    [114]Chen N. Control of torque ripple reduction of switched reluctance motor drive based of fuzzy logic[C]. Proc of 6th Asie-Pacific Conference on Control & Measurement, 2004:28-32.
    [115]Li Yahui, Liu Guozhong, Zhuang Xianyi, et al. Adaptive backstepping control for induction motor based on neural networks and dynamic surface technique[C]. IEEE Conference on Control Applications- Proceedings,2003,2:826-831.
    [116]Liu H, Zhang Y, Zheng Q. Design and simulation of an inverter-fed induction motor for electric vehicles[C].Vehicle Power and Propulsion Conference.2007, Arlington, TX, USA,2008:4.
    [117]李春菊,刘国荣,蔡斌军.基于滑模磁通和速度观测器的异步电动机间接磁场定向控制[J].微特电机,2009,(4):48-50.
    [118]李宏,崔立国,乔增平,等.异步电动机复合滑模直接转矩控制方法研究[J].微特电机,2009,(2):56-58.
    [119]Li W, Mao Z Y. Efficient control of an induction motor based on the decoupling variable structure strategy[C]. Proc. of the World Congress on Intelligent Control and Automation.2002:2845-2848.
    [120]Spiegel R J, Turner M W, McCormick V E. Fuzzy-logic-based controllers for efficiency optimization of inverter-fed induction motor drives[J]. Fuzzy Sets and Systes. 2003,(137):387-401.
    [121]Pryymak B, Moreno E J, Peracaula J Nerual network based efficiency optimization of an induction motor drive with vector control[C]. IECON 02,2002,1:146-151.
    [122]Chakraborty C, Ta M C, Uchida T, et al. Fast search controllers for efficiency maximization of induction motor drivers based on DC link power measurement[C]. IEEE PCC-Osaka 2002:402-408.
    [123]李国华,王继强.新型异步电动机滑模变结构速度观测器的研究[J].电气传动,2011,41(2):11-14.
    [124]冯光,黄立培,朱东起.采用自抗扰控制器的高性能异步电机调速系统[J].中国电机工程学报,2001,21(10):55-58,120.
    [125]冯光,黄立培,朱东起.异步电机的新型非线性自抗扰控制器的研究[J].清华大学学报(自然科学版),1999,39(3):30-33.
    [126]冯杏辉,方建安,许红磊,等.基于自适应遗传算法的异步电机矢量控制参数优化与仿真[J].机电工程,2010,27(11):103-105.
    [127]康忠健,陈学允.非线性扩张状态观测器的一种设计方法[J].电机与控制学报,2001,5(3):199-203.
    [128]苏位峰,孙旭东,李发海.基于自抗扰控制器的异步电动机矢量控制[J].清华大学学报(自然科学版),2004,44(10):1329-1332.
    [129]Pryymak B, Moreno E J, Percaula J. Neural network based efficiency optimization of an induction motor drive with vector control[C]. IECON 02,2002,1:146-151.
    [130]Hossam A, Abdel Fattah, Loparo Kunneth A. Passivity-based induction motor speed control:unknown load torque case[C]. Proceedings of the American Conference, San Diego, California,2003:785-789.
    [131]Marino R, Tomei P, Peresada S. Adaptive output feedback control of current-fed induction motors with uncertain rotor resistance and load torque [J]. Automatica, 2004,34(5):617-624.
    [132]Carlo Cecati, Nicola Rotondale. Torque and speed regulation of induction motors using the passivity theory approach[J]. IEEE Transactions on Industrial Electronics, 2002,46(1):119-127.
    [133]邵立伟,廖晓钟,张宇河.基于时间尺度的感应电机自抗扰控制器的参数整定[J].控制理论与应用,2008,25(2):205-209.
    [134]曹建荣,虞烈,谢友柏.感应电动机的解耦控制与矢量控制的解耦性质[J].西安交通大学学报,2000,34(6):71-75.
    [135]蔡超豪.电压解耦型矢量控制异步电动机的非线性H∞控制[J].防爆电机,2005,40(1):19-23,43.
    [136]蔡超豪.矢量控制异步电动机的非线性H∞控制[J].中小型电机,2004,31(1):49-52.
    [137]马良河,姜建国.负载转矩未知时变情形下异步电动机的无源性跟踪控制[J].电工技术学报,2004,19(1):12-15,25.
    [138]Marino R, Tomei P, Peresada S. Adaptive output feedback control of current-fed induction motors with uncertain rotor resistance and load torque[J]. Automatica,2004, 34(5):617-624.
    [139]Ortega Romeo, Canudas Carlos, Seleme Seleme I. Nonlinear control of induction motors:torque tracking with unknown disturbance[C]. IEEE Trans. On Auto.cont., 2004,38(11):1675-1680.
    [140]张春朋,林飞,宋文超,等.异步电机鲁棒控制器及其Backstepping设计[J].控制与决策,2004,19(3):267-271.
    [141]欧卫斌.DSP矢量控制系统的实现与仿真[J].宝鸡文理学院学报(自然科学版),2009,29(1):59-61,65.
    [142]王彬杰.感应电机弱磁控制技术研究[D].华中科技大学,2007.
    [143]邱爱中.基于DSP的异步电机矢量控制变频调速系统研究[J].国外电子测量技术,2010,29(4):48-51.
    [144]绍杰.基于Matlab/simulink异步电机矢量控制系统仿真[J].自动化技术与应用,2009,28(3):73-76.
    [145]王水发,陈德为.基于ANSYS的异步电动机电磁场分析[J].电气开关,2011,(2):20-23.
    [146]谢晨芳.基于DSP的纺丝机卷绕控制系统的设计[J].沈阳工程学院学报(自然科学版),2010,6(1):78-80.
    [147]程良燕.基于LabVIEW的三相异步电动机动态过程仿真[J].合肥工业大学学报(自然科学版),2010,33(8):1179-1181.
    [148]李军法,党智乾.基于Matlab/simulink的异步电动机矢量模型的研究仿真[J].电机技术,2009,(2):14-17.
    [149]张恩睦,赵敏,任一峰.基于MRAS的无速度传感器矢量控制的研究[J].山西电子技术,2011,(1):91-93.
    [150]郑俭华,杨俊华,冯焕霞,等.基于MRAS和FNN的异步电动机无速度传感器直接转矩控制[J].微特电机,2009,(5):44-48.
    [151]张兴华,戴先中.基于逆系统方法的感应电机调速控制系统[J].控制与决策, 2000,15(6):708-711.
    [152]张兴华,戴先中,陆达君,等.感应电机的逆系统方法解耦控制[J].电气传动,2001,(1):28-31.
    [153]牛明波,魏清汉,王德全.基于SVPWM的异步电机直接转矩控制系统仿真研究[J].机电信息,2011,(15):166-167.
    [154]李静,程小华.基于模糊PI控制的抽油机用永磁同步电机直接转矩控制系统[J].防爆电机,2011,46(1):19-22,37.
    [155]汤仁彪.基于模糊自适应整定PI感应电动机直接转矩控制的研究[J].电气传动自动化,2010,32(5):27-30.
    [156]徐大鹏.基于直接转矩控制的异步电动机变频调速[J].山西电力,2011,(3):65-68.
    [157]朱琰,佘焱,姜建国.一种改进的直接转矩控制电压矢量调试方法[J].微特电机,2006,(3):28-31.
    [158]李艳,何勇,高中秋.一种新的交流感应电动机控制算法[J].东华大学学报(自然科学版),2009,35(2):201-205,210.
    [159]王鹏云.遗传算法在异步电动机直接转矩控制系统中的应用[J].价值工程,2011,(10):17-19.
    [160]蒋晏强,陈世元,熊春雷.异步电动机直接转矩控制的开关电压优化[J].防爆电机,2009,44(3):34-36,53.
    [161]赵飞,李永亮,王婷婷.异步电动机直接转矩控制系统的设计与仿真[J].常熟理工学院学报(自然科学),2011,25(4):82-85.
    [162]冯倩,王栋,谢军贤,等.异步电动机直接转矩控制系统的研究[J].航空计算技术,2011,41(3):85-88.
    [163]秦虹,潘再平.异步电动机直接转矩控制中定子磁链控制方法的应用研究[J].起重运输机械,2009,(6):65-69.
    [164]李君,王忠庆.异步电机直接转矩控制系统的仿真研究[J].机电信息,2011,(9):25,27.
    [165]蔡文皓,刘庚,程红,等.直接转矩控制的磁链控制方法仿真与分析[J].西安科技大学学报,2010,30(2):227-231.
    [166]姬宣德,蒋建虎.直接转矩控制系统的两种速度估计器比较研究[J].微电机,2010,43(2):66-69.
    [167]江巧逢.基于MRAS无速度传感器矢量控制系统研究[J].变频器世界,2011,(6):79-81,108.
    [168]顾德英,季正东,张平.基于SIMULINK的异步电机的建模与仿真[J].电力系统及其自动化学报,2003,15(2):71-73.
    [169]王庆贤,理文祥.基于S函数的SVPWM算法仿真研究[J].自动化与仪器仪表,2011,(4):31-33,40.
    [170]杨军.基于S函数的异步电动机任意参考系建模和仿真[J].电气技术,2010,(9):22-24.
    [171]王平平,马维青,古永富.基于磁场定向电动执行机构变频调速系统[J].自动化与仪表,2009,(3):57-60.
    [172]许德志.基于单神经元自适应PID的矢量控制系统研究[J].常州工程职业技术学院学报,2009,(1):47-51.
    [173]杨文强,李树广,贾正春.基于降阶推广卡尔曼滤波算法的交流感应电动机无速度传感器矢量控制系统[J].上海交通大学学报,2003,37(9):1362-1365,1371.
    [174]赵歆,王明渝,刘述喜.基于扩展卡尔曼滤波器的异步电机矢量控制系统的转子电阻辨识[J].电机与控制应用,2009,36(3):18-23.
    [175]肖蕙蕙,王志强,李山.基于模糊控制的三相异步电动机软启动研究[J].现代电子技术,2011,34(10):136-138,148.
    [176]窦汝振,辛明华,杜智明.基于矢量控制的电动汽车用异步电动机弱磁控制方法[J].电机与控制应用,2009,36(5):25-27.
    [177]臧涛.基于双模糊控制的异步电动机软起动器[J].四川兵工学报,2011,32(2):59-60,68.
    [178]王鸿山,张兴,杨淑英,等.基于最小二乘法在线参数辨识的异步电动机矢量控制仿真[J].合肥工业大学学报,2009,32(4):495-499.
    [179]罗旖旎.异步电机常用制动方式及MATLAB实现[J].电力职业技术学刊,2010,(4):5-7.
    [180]陈世军,高军礼,邓则名,等.异步电机无速度传感器矢量控制与参数辨识研究[J].机械与电子,2010,(5):19-21.
    [181]吴涛,徐超.转子磁链定向矢量控制系统仿真研究[J].机械与电子,2009,(4):37-39.
    [182]张学亮.交流感应电动机转子电流矢量直接控制调速原理[J].芜湖职业技术学院学报,1999,(1):41-46.
    [183]徐凯.一种时间最优参数自调整模糊矢量控制方法的研究[J].控制与决策,2010,25(1):153-156,160.
    [184]喻多祥,祝国平.异步电动机按转子磁链定向的矢量控制建模与仿真[J].防爆电机,2009,44(1):35-37,49.
    [185]许伯强,孙丽玲,李和明.异步电动机定转子故障检测的交互影响[J].中国电机工程学报,2009,29(12):104-109.
    [186]杜永红,李哲峰,刘志刚.异步电动机间接磁场定向控制双闭环系统[J].电工技术学报,2009,24(5):24-28.
    [187]李实求,郝帅,马旭,等.异步电动机三闭环模糊PI矢量控制方法研究[J].电力电子技术,2011,45(5):60-61.
    [188]Ohishi K, Hayasaka E, Nagano T., er al. High-performance speed servo system considering voltage saturation of a vector-controlled induction motor[C]. IEEE Transactions on Industrial Electronics,2006,53(3):795-802.
    [189]林飞,张春朋,宋文超,等.基于扩张状态观测器的感应电机转子磁链观测[J].中 国电机工程学报,2003,23(4):145-147.
    [190]沈艳霞,林瑾,纪志成.神经网络磁链估计的感应电机反步法研究[J].控制与决策,2006,21(7):833-836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700