电力牵引控制系统多采样率参数辨识与状态估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力牵引系统是铁路机车的动力来源,为满足铁路系统的发展,目前机车电力牵引采用高性能的交流调速技术,因此高性能的矢量控制方法及直接转矩控制方法成为电力牵引传动系统的首选。感应电机无速度传感器控制增加了系统的鲁棒性并能降低成本。电力牵引控制系统目前需解决的关键问题有粘着控制、牵引电机实时的状态估计及重要参数的实时辨识等。
     不同于传统的数字系统中对所有信号采用同步等间距采样的策略,多采样率系统中可以对系统中不同信号采用不同的采样策略。输入多采样率控制系统通过增加输入采样速率,增加了数字控制器的控制能力,可以实现许多单采样系统不具备的控制功能;输出多采样率使得控制器能获得更多被控对象的信息,使控制系统有更强大的控制能力。
     随着电机运行工况的不同,电机参数值会发生变化。转子时间常数是矢量控制感应电机系统中最敏感的重要参数,同时其准确性在很大程度上影响牵引控制系统的性能。针对电机的转子时间常数难以测量且随时间变化的情况,利用多采样率控制系统具有传统单采样率控制系统更强的控制性能等特点,将多采样率方法与MRAS方法相结合,提出了基于多采样率MRAS的转子时间常数参数辨识方法。在硬件在环试验系统中进行实时实验,并与传统MRAS的参数辨识结果进行了对比。结果表明,多采样率MRAS能实时对参数进行辨识,得到了满意的效果。
     感应电机状态估计的精度直接影响电机系统性能,同时状态估计值中包含的噪声会影响电机系统正常运行。针对这个问题,将多采样率控制理论与传统的扩展Kalman滤波(EKF)状态估计方法结合,提出了电机状态估计的多采样率EKF方法,分别得到了输入多采样率EKF方法及输出多采样率EKF方法。通过硬件在环试验系统进行了试验,通过对比输入多采样率EKF与不同帧周期下EKF算法对于感应电机状态估计的性能,表明多采样率EKF方法是一种适合实时应用的电机状态估计方法,同时算法能有效消除噪声、提高状态估计性能,并能降低成本。
     相对于EKF方法,强跟踪滤波方法(STF)具有更强的关于模型不确定性的鲁棒性和关于突变状态的跟踪能力的特点。针对机车电力牵引系统中牵引电机负载转矩的变换较快的问题,提出了基于多采样率STF的状态估计方法。通过扩展建立的电力机车单轴单电机模型,得到了与真实机车对应的多轴多电机的电力机车模型,通过与机车真实空转特性的对比验证了模型准确性。通过建立的电力机车多轴模型进行仿真试验,采用多采样率STF方法对发生空转的轮对的牵引电机进行状态估计,得到了良好的状态估计性能。
     电力机车的牵引和制动依赖于其轮轨间的粘着,若牵引力或制动力大于轮轨间可用粘着力,则会出现空转或滑行,制约牵引力或制动力的发挥,同时也会造成轮轨擦伤、轮箍发热损坏、甚至脱轨等安全隐患。电力机车采用粘着控制的方法提高机车的粘着力,而粘着控制的前提是空转或滑行状态的快速识别。为得到及时准确且迅速的空转识别,基于电力牵引系统中电气量响应速度远快于其机械量的思想,针对目前广泛用于电力机车粘着控制系统中的利用轮轴转速等机械量识别空转的方法的不足,首次提出了完全基于电气量的空转识别方法。通过某型电力机车反复空转过程中采集的大量数据和多采样率EKF牵引电机负载转矩方法,建立了基于电气量的空转识别规则。通过建立的模型进行了试验,结果表明:与传统的利用转速等机械量空转识别方法相比,该规则的应用大大降低了空转识别时间,避免了因空转导致的牵引力大幅丢失,提高了粘着控制系统的性能和电力机车的牵引效率。
Electric traction system is the power source for railway locomotives. The locomotive electric traction adopts high performance AC speed adjustment technology to meet the development of the railway system, thus the high performance field-oriented control (FOC) and direct torque control are the first choices of electric traction drive system. Speed sensor-less control of induction motor promotes the system robustness and reduces system cost. The key issues to be resolved of electric traction control system including:adhesion control, real-time state estimation of traction motor, real-time identification of important parameters.
     Different from the traditional digital system adopting a single sampling rate for all different signals, multi-rate system adopts different sampling strategies for different signals. Input multi-rate system increases the sampling speed of input, thus ability to control the system is improved, whereas the system could realize many control functions which single-rate system cannot. Output multi-rate system enables the controller to get more information of controlled object, thus system has a better control ability.
     Motor parameters may vary during motor operation. Among these parameters, rotor time constant is the most sensitive variable in FOC induction motor system. Its identification accuracy greatly affects the performance of traction control system. In view of the rotor time constant is time varying and difficult to measure, Using the principle that multi-rate control system has stronger control performance than traditional single-rate control system, combining multi-rate control method and model reference adaptive system (MRAS) method, the multi-rate MRAS parameter estimation method is proposed. Using the experiment set-up to validate the method, the comparison of parameter identification performance between multi-rate MRAS and traditional MRAS verified the proposed method is real-time and the proposed method has satisfactory dynamic and static estimation performance.
     Induction motor state estimation accuracy directly affect the performance of the system, at the same time the noise contained in state estimated value will affect the normal operation of motor system. Aiming at this problem, combining the extended Kalman filter (EKF) method and multi-rate control theory, the multi-rate EKF algorithm including input and output algorithms is proposed. A Hardware-in-the-loop (HIL) experiment set-up is proposed to validate the proposed method, comparing the state estimation performance between input multi-rate EKF method and traditional EKF methods under different frame period, the comparison verified the multi-rate EKF induction motor state estimation method is real-time, the method can effectively eliminate noise and improve the performance of state estimation and reduce the cost.
     Comparing with the EKF method, strong tracking filter (STF) has better robustness on model uncertainty and better tracking ability about abrupt state changes. In electric traction drive system, the load torque of traction motor changes quickly. Aiming at this problem, the multi-rate STF algorithm is proposed. By extending the single-axle locomotive model, a multi-axle model is proposed to simulate the real locomotive operation, the comparison between the model and actual slipping features verified the accuracy of the model. Using the proposed multi-axle model to validate the method, the method is applied to estimate the state of traction motor which is connected to the wheel-sets occur slipping phenomena, the result show that the multi-rate STF method has satisfactory estimation performance.
     The traction and braking of the electric locomotive is realized by adhesion force between wheel and rail. If the traction/braking force is greater than the available adhesion force between wheel and rail, the wheel-set will slipping/skidding, restricting the utilization of traction/braking force. It also will cause safety hidden trouble such as abrasion of wheel and rail, damage of wheel rim, even train derailment. Adhesion control method is adopted to improve the locomotive adhesion force. The slip/skid detection is the precondition of the adhesion control. To get accuracy rapid and effective slip detection, based on the principle that the response speed of electrical quantities is much faster than mechanical quantities in electric traction system, a slip detection method only based on electrical quantities is firstly proposed. The method is aiming to solve the disadvantage of present widely used adhesion control system in locomotive which is based on mechanical quantities such as wheel axle rotation speed. The electrical quantities based slip phenomena detection rules are designed based on the actual data obtained from the HXD2locomotive and the traction motor load torque multi-rate EKF state estimation method. Using the proposed model to validate the rules, the result show that the rules greatly reduced the slip detection time, avoid the severe loss of traction force, give full play to the locomotive traction power, and improve the overall performance and traction efficiency of the locomotive.
引文
[1 M. Faruque, V. Dinavahi. Hardware-in-the-loop simulation of power electronic systems using adaptive discretization[J]. Industrial Electronics, IEEE Transactions on.2010,57(4):1146-1158.
    [2]U. Baader, M. Depenbrock, G. Gierse. Direct self control (DSC) of inverter-fed induction machine:a basis for speed control without speed measurement[J]. Industry Applications, IEEE Transactions on.1992,28(3):581-588.
    [3]C. Schauder. Adaptive speed identification for vector control of induction motors without rotational transducers[J]. Industry Applications, IEEE Transactions on.1992,28(5):1054-1061.
    [4]B.K. Bose. Modern power electronics and AC drives[M]北京:机械工业出版社,2003.
    [5]杨耕,陈伯时.交流感应电动机无速度传感器的高动态性能控制方法综述[J].电气传动.2001,3(3):3-8.
    [6]T. Kanmachi, I. Taahashi. Sensor-less speed control of an induction motor with no influence of secondary resistance variation[C]. Industry Applications Society Annual Meeting,1993., Conference Record of the 1993 IEEE,1993:408-413.
    [7]G. Yang, T.H. Chin. Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive [J]. Industry Applications, IEEE Transactions on.1993, 29(4):820-825.
    [8]M. Comanescu, X. Longya. Sliding-mode MRAS speed estimators for sensorless vector control of induction Machine[J]. Industrial Electronics, IEEE Transactions on.2005,53(1):146-153.
    [9]F. Peng, T. Fukao. Robust speed identification for speed-sensorless vector control of induction motors[J]. Industry Applications, IEEE Transactions on.1994,30(5):1234-1240.
    [10]L. Zhen, L. Xu. Sensorless field orientation control of induction machines based on a mutual MRAS scheme[J]. Industrial Electronics, IEEE Transactions on.1998,45(5):824-831.
    [11]S. Maiti, C. Chakraborty, Y. Hori, et al. Model Reference Adaptive Controller-Based Rotor Resistance and Speed Estimation Techniques for Vector Controlled Induction Motor Drive Utilizing Reactive Power[J]. Industrial Electronics, IEEE Transactions on.2008,55(2):594-601.
    [12]V.M. Popov. Hyperstability of control system[M].Editura Academiei,1973.
    [13]M. Rashed, A.F. Stronach. A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation [J]. IEE Proceedings-Electric Power Applications.2004,151(6):685-693.
    [14]H.M. Kojabadi, L. Chang, R. Doraiswami. A MRAS-based adaptive pseudoreduced-order flux observer for sensorless induction motor drives[J]. Power Electronics, IEEE Transactions on.2005, 20(4):930-938.
    [15]巫庆辉,邵诚.一种基于锁相环原理的参考模型自适应感应电机转速估计方法[J].自动化学报.2006,32(5):713-721.
    [16]M. Cirrincione, M. Pucci. An MRAS-based sensorless high-performance induction motor drive with a predictive adaptive model[J]. Industrial Electronics, IEEE Transactions on.2005,52(2): 532-551.
    [17]王庆龙,张崇巍,张兴.交流电机无速度传感器矢量控制系统变结构模型参考自适应转速辨识[J].中国电机工程学报.2007,27(15):70-74.
    [18]F. Lin, H. Su. A high-performance induction motor drive with on-line rotor time-constant estimation[J]. Energy Conversion, IEEE Transactions on.1997,12(4):297-303.
    [19]R. Pea, R. Cerdenas, J. Proboste, et al. Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer [J]. Industrial Electronics, IEEE Transactions on. 2008,55(1):330-339.
    [20]R.E. Kalman. A new approach to linear filtering and prediction problems[J]. Journal of basic Engineering.1960,82(1):35-45.
    [21]R.G. Brown, P.Y. Hwang. Introduction to random signals and applied Kalman filtering[M]John Wiley & Sons New York,1992.
    [22]Y. Kim, S. Sul, M. Park. Speed sensorless vector control of induction motor using extended Kalman filter[J]. Industry Applications, IEEE Transactions on.1994,30(5):1225-1233.
    [23]K.L. Shi, T.F. Chan, Y.K. Wong, et al. Speed estimation of an induction motor drive using an optimized extended Kalman filter[J]. Industrial Electronics, IEEE Transactions on.2002,49(1): 124-133.
    [24]M. Menaa, O. Touhami, R. Ibtiouen, et al. Sensorless direct vector control of an induction motor[J]. Control Engineering Practice.2008,16(1):67-77.
    [25]G. Garcia Soto, E. Mendes, A. Razek. Reduced-order observers for rotor flux, rotor resistance and speed estimation for vector controlled induction motor drives using the extended Kalman filter technique[J].1999,146(282-288.
    [26]杨文强,李树广,贾正春.基于降阶推广卡尔曼滤波算法的交流感应电动机无速度传感器矢量控制系统[J].上海交通大学学报.2003,37(9):1362-1365.
    [27]A.V. Leite, R.E. Araujo, D. Freitas. Full and reduced order extended kalman filter for speed estimation in induction motor drives:a comparative study[C]. Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual,2004:2293-2299.
    [28]M. Barut, S. Bogosyan, M. Gokasan. Experimental evaluation of braided EKF for sensorless control of induction motors[J]. Industrial Electronics, IEEE Transactions on.2008,55(2):620-632.
    [29]H. Abootorabi Zarchi, J. Soltani, G. Arab Markadeh. Adaptive input-output feedback-linearization-based torque control of synchronous reluctance motor without mechanical sensor[J]. Industrial Electronics, IEEE Transactions on.2010,57(1):375-384.
    [30]尹忠刚,张瑞峰,钟彦儒,等.基于抗差扩展卡尔曼滤波器的水磁同步电机转速估计策略[J].控制理论与应用.2012,29(007):921-927.
    [31]M. Barut, S. Bogosyan, M. Gokasan. Speed-sensorless estimation for induction motors using extended Kalman filters[J]. Industrial Electronics, IEEE Transactions on.2007,54(1):272-280.
    [32]S. Bogosyan, M. Barut, M. Gokasan. Braided extended Kalman filters for sensorless estimation in induction motors at high-low/zero speed[J]. Control Theory & Applications, IET.2007,1(4): 987-998.
    [33]S.J. Julier, J.K.. Uhlmann. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE.2004,92(3):401-422.
    [34]赵琳,王小旭,薛红香,等.带噪声统计估计器的Unscented卡尔曼滤波器设计[J].控制与决策.2009,24(10):1483-1488.
    [35]潘泉,杨峰,叶亮,等.一类非线性滤波器—UKF综述[J].控制与决策.2005,20(5):481-489.
    [36]X. Ning, J. Fang. An autonomous celestial navigation method for LEO satellite based on unscented Kalman filter and information fusion[J]. Aerospace Science and Technology.2007, 11(2):222-228.
    [37]陈记争,袁建平,方群.基于修正Rodrigues参数和UKF的姿态估计算法[J].宇航学报.2008,29(5):1622-1626.
    [38]袁罡,陈鲸.基于UKF的单站无源定位与跟踪算法[J].电子与信息学报.2008,30(9):2120-2123.
    [39]M.N. Petsios, E.G. Alivizatos, N.K. Uzunoglu. Solving the association problem for a multistatic range-only radar target tracker[J]. Signal Processing.2008,88(9):2254-2277.
    [40]S. Sarkka. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems[J]. Automatic Control, IEEE Transactions on.2007,52(9):1631-1641.
    [41]R. Kandepu, B. Foss, L. Imsland. Applying the unscented Kalman filter for nonlinear state estimation [J]. Journal of Process Control.2008,18(7):753-768.
    [42]Q. Song, J. HAN. An adaptive UKF algorithm for the state and parameter estimations of a mobile robot[J]. Acta Automatica Sinica.2008,34(1):72-79.
    [43]许波,朱烷秋,姬伟,等.改进型平方根无迹卡尔曼滤波及其在无轴承永磁同步电机无速度传感器运行中的应用[J].控制理论与应用.2012,29(01):53-58.
    [44]李洁,钟彦儒.无轨迹卡尔曼滤波器在感应电机转速估计中的应用研究[J].电工技术学报.2006,21(2):45-50.
    [45]赵琳,王小旭,孙明,等.基于极大后验估计和指数加权的自适应UKF滤波算法[J].自动化学报.2010,36(7):1007-1019.
    [46]周东华,席裕庚,张钟俊.一种带多重次优渐消因子的扩展卡尔曼滤波器[J].自动化学报.1991,17(6):689-695.
    [47]D.H. Zhou, P.M. Frank. Fault diagnostics and fault tolerant control[J]. Aerospace and Electronic Systems, IEEE Transactions on.1998,34(2):420-427.
    [48]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [49]周东华.非线性系统的自适应控制导论[M].北京:清华大学出版社,2002.
    [50]吕锋,文成林,安德玺,等.基于强跟踪滤波器的变压器绕组故障实时检测研究[J].电工技术学报.2003,18(3):91-97.
    [51]李雄杰,周东华.基于强跟踪滤波器的模拟电路故障在线诊断方法[J].电工技术学报.2007,22(5):13-17.
    [52]周聪,肖建.基于自适应强跟踪滤波器的汽车行驶状态软测量[J].电机与控制学报.2012,16(2):96-101.
    [53]陆可,肖建.强跟踪延迟滤波算法及其在感应电机无速度传感器控制中的应用[J].自动化学报.2008,34(9):1076-1082.
    [54]陆可.基于强跟踪滤波算法的异步电机参数自适应无速度传感器控制[J].电机与控制应用.2011,38(5):16-21.
    [55]I. Arasaratnam, S. Haykin. Cubature kalman filters[J], Automatic Control, IEEE Transactions on. 2009,54(6):1254-1269.
    [56]孙枫,唐李军Cubature卡尔曼滤波与Unscented卡尔曼滤波估计精度比较[J].控制与决策.2013,28(2):303-308.
    [57]M. Hinkkanen. Analysis and design of full-order flux observers for sensorless induction motors[J]. Industrial Electronics, IEEE Transactions on.2004,51(5):1033-1040.
    [58]L. Harnefors. Globally stable speed-adaptive observers for sensorless induction motor drives[J]. Industrial Electronics, IEEE Transactions on.2007,54(2):1243-1245.
    [59]S. Suwankawin, S. Sangwongwanich. Design strategy of an adaptive full-order observer for speed-sensorless induction-motor drives-tracking performance and stabilization[J]. Industrial Electronics, IEEE Transactions on.2006,53(1):96-119.
    [60]L. Harnefors, M. Hinkkanen. Complete stability of reduced-order and full-order observers for sensorless IM drives[J]. Industrial Electronics, IEEE Transactions on.2008,55(3):1319-1329.
    [61]M. Hinkkanen, L. Harnefors, J. Luomi. Reduced-order flux observers with stator-resistance adaptation for speed-sensorless induction motor drives[J]. Power Electronics, IEEE Transactions on.2010,25(5):1173-1183.
    [62]M. Montanari, S.M. Peresada, C. Rossi, et al. Speed sensorless control of induction motors based on a reduced-order adaptive observer[J]. Control Systems Technology, IEEE Transactions on. 2007,15(6):1049-1064.
    [63]V.I. Utkin. Sliding mode control design principles and applications to electric drives[J]. Industrial Electronics, IEEE Transactions on.1993,40(1):23-36.
    [64]路强,沈传文,季晓隆,等.一种用于感应电机控制的新型滑模速度观测器研究[J].中国电机工程学报.2006,26(18):164-168.
    [65]廖永衡,冯晓云,王珍.基于定子磁链滑模观测器的异步电机空间矢量调制直接转矩控制[J].中国电机工程学报.2012,32(18):88-97.
    [66]程帅,姜海博,黄进,等.基于滑模观测器的单绕组多相无轴承电机无位置传感器控制[J].电工技术学报.2012,27(7):71-77.
    [67]M.S. Zaky, M.M. Khater, S.S. Shokralla, et al. Wide-speed-range estimation with online parameter identification schemes of sensorless induction motor drives[J]. Industrial Electronics, IEEE Transactions on.2009,56(5):1699-1707.
    [68]A. Derdiyok. Speed-sensorless control of induction motor using a continuous control approach of sliding-mode and flux observer[J]. Industrial Electronics, IEEE Transactions on.2005,52(4): 1170-1176.
    [69]周熙炜.基于扩展卡尔曼滤波算法的异步电机参数辨识[D].西安:西安理工大学,2003.
    [70]B. Karanayil, M.F. Rahman, C. Grantham. Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks[J]. Energy Conversion, IEEE Transactions on.2005,20(4):771-780.
    [71]H.A. Toliyat, M. Wlas, Z. Krzemiriski. Neural-network-based parameter estimations of induction motors[J]. Industrial Electronics, IEEE Transactions on.2008,55(4):1783-1794.
    [72]B. Karanayil, M.F. Rahman, C. Grantham. Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive [J]. Industrial Electronics, IEEE Transactions on.2007,54(1):167-176.
    [73]M.G. Simoes, B.K. Bose. Neural network based estimation of feedback signals for a vector controlled induction motor drive[J]. Industry Applications, IEEE Transactions on.1995,31(3): 620-629.
    [74]L. Ben-Brahim, S. Tadakuma. Speed control of induction motor without rotational transducers[C]. Industry Applications Conference,1998. The 1998 IEEE Thirty-Third IAS Annual Meeting,1998: 625-632.
    [75]S. Kim, T. Park, J. Yoo, et al. Speed-sensorless vector control of an induction motor using neural network speed estimation[J]. Industrial Electronics, IEEE Transactions on.2001,48(3):609-614.
    [76]R.M. Bharadwaj, A.G. Parlos, H.A. Toliyat. Neural speed filtering for sensorless induction motor drives[J]. Control engineering practice.2004,12(6):687-706.
    [77]M. Cirrincione, M. Pucci, G. Cirrincione, et al. Sensorless control of induction machines by a new neural algorithm:The TLS EXIN neuron[J]. Industrial Electronics, IEEE Transactions on. 2007,54(1):127-149.
    [78]冬雷,李永东.无速度传感器异步电动机极低转速下的矢量控制[J].清华大学学报(自然科学版).2003,43(9):1169-1172.
    [79]J. Holtz, J. Quan. Drift-and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors[J]. Industry Applications, IEEE Transactions on.2003,39(4):1052-1060.
    [80]T. Matsuo, T.A. Lipo. A rotor parameter identification scheme for vector-controlled induction motor drives[J]. Industry Applications, IEEE Transactions on.1985,3):624-632.
    [81]B.P. McGrath, D.G. Holmes. An analytical technique for the determination of spectral components of multilevel carrier-based PWM methods[J]. Industrial Electronics, IEEE Transactions on.2002,49(4):847-857.
    [82]Z. Gao, T.G. Habetler, R.G. Harley, et al. A sensorless rotor temperature estimator for induction machines based on a current harmonic spectral estimation scheme [J]. Industrial Electronics, IEEE Transactions on.2008,55(1):407-416.
    [83]D.S. Zinger, F. Profumo, T.A. Lipo, et al. A direct field-oriented controller for induction motor drives using tapped stator windings[J]. Power Electronics, IEEE Transactions on.1990,5(4): 446-453.
    [84]J. Jiang, J. Holtz. High dynamic speed sensorless AC drive with on-line model parameter tuning for steady-state accuracy[J]. Industrial Electronics, IEEE Transactions on.1997,44(2):240-246.
    [85]J.M. Aller, T.G. Habetler, R.G. Harley, et al. Sensorless speed measurement of AC machines using analytic wavelet transform[J]. Industry Applications, IEEE Transactions on.2002,38(5): 1344-1350.
    [86]H.A. Toliyat, E. Levi, M. Raina. A review of RFO induction motor parameter estimation techniques[J]. Energy Conversion, IEEE Transactions on.2003,18(2):271-283.
    [87]A. Lima, C.B. Jacobina. Parameter estimation for induction machines via non-linear least squares method[C]. Industrial Electronics, Control and Instrumentation,1991. Proceedings. IECON'91., 1991 International Conference on,1991:639-643.
    [88]M. Cirrincione, M. Pucci, G. Cirrincione, et al. A new experimental application of least-squares techniques for the estimation of the induction motor parameters [J]. Industry Applications, IEEE Transactions on.2003,39(5):1247-1256.
    [89]K. Wang, J. Chiasson, M. Bodson, et al. A nonlinear least-squares approach for identification of the induction motor parameters[J]. Automatic Control, IEEE Transactions on.2005,50(10): 1622-1628.
    [90]X. Yu, M. W. Dunnigan, B.W. Williams. A novel rotor resistance identification method for an indirect rotor flux-orientated controlled induction machine system[J]. Power Electronics, IEEE Transactions on.2002,17(3):353-364.
    [91]V. Vasic, S.N. Vukosavic, E. Levi. A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives[J]. Energy Conversion, IEEE Transactions on.2003, 18(4):476-483.
    [92]H. Kubota, K. Matsuse. Speed sensorless field-oriented control of induction motor with rotor resistance adaptation[J]. Industry Applications, IEEE Transactions on.1994,30(5):1219-1224.
    [93]金海,黄进.基于模型参考方法的感应电机磁链的自适应观测及参数辨识[J].电工技术学报.2006,21(1):65-69.
    [94]D.P. Marcetic, S.N. Vukosavic. Speed-sensorless AC drives with the rotor time constant parameter update[J]. Industrial Electronics, IEEE Transactions on.2007,54(5):2618-2625.
    [95]王高林,杨荣峰,张家皖,等.一种感应电机转了时间常数MRAS的在线辨识方法[J].电工技术学报.2012,27(04):48-53.
    [96]T. Iwasaki, T. Kataoka. Application of an extended Kalman filter to parameter identification of an induction motor[C]. Industry Applications Society Annual Meeting,1989., Conference Record of the 1989 IEEE,1989:248-253.
    [97]DJ. Atkinson, P.P. Acarnley, J.W. Finch. Observers for induction motor state and parameter estimation[J]. Industry Applications, IEEE Transactions on.1991,27(6):1119-1127.
    [98]M. Menaa, O. Touhami, R. Ibtiouen. Estimation of rotor resistance of an induction motor using extended Kalman filter and spiral vector theory:Control Applications,2003. CCA 2003. Proceedings of 2003 IEEE Conference on[Z]. IEEE,2003:2,1262-1266.
    [99]M. Menaa, O. Touhami, R. Ibtiouen. Estimation of the rotor resistance in induction motor by application of the spiral vector theory associate to extended Kalman filter:System Theory,2003. Proceedings of the 35th Southeastern Symposium on[Z]. IEEE,2003211-216.
    [100]K. Radhakrishnan, A. Unnikrishnan, K..G. Balakrishnan. EM based extended Kalman filter for estimation of rotor time-constant of induction motor[C]. Industrial Electronics,2006 IEEE International Symposium on,2006:2434-2438.
    [101]L. Zai, C.L. DeMarco, T.A. Lipo. An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives[J]. Industry Applications, IEEE Transactions on. 1992,28(1):96-104.
    [102]M. Barut, S. Bogosyan, M. Gokasan. Switching EKF technique for rotor and stator resistance estimation in speed sensorless control of IMs[J]. Energy Conversion and Management.2007, 48(12):3120-3134.
    [103]汪镭,周国兴,吴启迪.基于Hopfield神经网络的线性系统参数辨识方案及在鼠笼式电机传动系统参数辨识中的应用研究[J].中国电机工程学报.2001,21(1):9-11.
    [104]黄开胜,童怀,郑泰胜.遗传算法在异步电动机动态模型参数识别中的应用[J].中国电机工程学报.2000,20(8):37-41.
    [105]B. Abdelhadi, A. Benoudjit, N. Nait-Said. Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters[J]. Energy Conversion, IEEE Transactions on.2005,20(2):284-291.
    [106]D.C. Aliprantis, S.D. Sudhoff, B.T. Kuhn. Genetic algorithm-based parameter identification of a hysteretic brushless exciter model[J]. Energy Conversion, IEEE Transactions on.2006,21(1): 148-154.
    [107]J.Q. Puma, D.G. Colome. Parameters identification of excitation system models using genetic algorithms[J]. Generation, Transmission & Distribution, IET.2008,2(3):456-467.
    [108]P. Pillay, R. Nolan, T. Haque. Application of genetic algorithms to motor parameter determination for transient torque calculations[J]. Industry Applications, IEEE Transactions on. 1997,33(5):1273-1282.
    [109]R. Nolan, P. Pillay, T. Haque. Application of genetic algorithms to motor parameter determination[C]. Industry Applications Society Annual Meeting,1994., Conference Record of the 1994 IEEE,1994:47-54.
    [110]P. Vas. Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines[M].Oxford University Press on Demand,1993.
    [111]G. Kranc. Input-output analysis of multirate feedback systems[J]. Automatic Control, IRE Transactions on.1957,3(1):21-28.
    [112]M.G. Kranc. Compensation of an error-sampled system by a multirate controller[J]. American Institute of Electrical Engineers, Part Ⅱ:Applications and Industry, Transactions of the.1957, 76(3):149-159.
    [113]R.E. Kalman, J.E. Bertram. A unified approach to the theory of sampling systems[J]. Journal of the Franklin Institute.1959,267(5):405-436.
    [114]M. Araki, K. Yamamoto. Multivariable multirate sampled-data systems:state-space description, transfer characteristics, and Nyquist criterion[J]. Automatic Control, IEEE Transactions on.1986, 31(2):145-154.
    [115]L.F. Godbout, D. Jordan, I.S. Apostolakis. Closed-loop model for general multirate digital control systems[J].1990,137(329-336.
    [116]M. ARAKI, T. HAGIWARA. Pole assignment by multirate sampled-data output feedback[J]. International Journal of Control.1986,44(6):1661-1673.
    [117]H.M. Al-Rahmani, G.F. Franklin. A new optimal multirate control of linear periodic and time-invariant systems[J]. Automatic Control, IEEE Transactions on.1990,35(4):406-415.
    [118]L. Qin, T. Chen. Multirate sampled-data systems:all Hoo suboptimal controllers and the minimum entropy controller[J]. Automatic Control, IEEE Transactions on.1999,44(3):537-550.
    [119]T. Chen, L. Qiu. H∞ design of general multirate sampled-data control systems[J]. Automatica. 1994,30(7):1139-1152.
    [120]L. Qiu, T. Chen. H2-optimal design of multirate sampled-data systems[J]. Automatic Control, IEEE Transactions on.1994,39(12):2506-2511.
    [121]B. Hu, A.N. Michel. Some qualitative properties of multirate digital control systems[J]. Automatic Control, IEEE Transactions on.1999,44(4):765-770.
    [122]L. Hou, A.N. Michel, H. Ye. Some qualitative properties of sampled-data control systems[J]. Automatic Control, IEEE Transactions on.1997,42(12):1721-1725.
    [123]肖建.多采样率数字控制系统的函数空间模型[J].控制理论与应用.2000,17(2):296-299.
    [124]肖建.多采样率数字控制系统的输出反馈特征结构配置[J].控制与决策.1996,11(5):596-600.
    [125]肖建,徐志根.多采样率数字控制系统综述[J].信息与控制.2003,32(5):436-441.
    [126]肖建,唐磊.输入多采样率数字控制系统的同时极点配置[J].控制理论与应用.2002,19(4):595-598.
    [127]肖建.多采样率数字控制系统[M].北京:科学出版社,2003.
    [128]P. Khargonekar, K. Poolla, A. Tannenbaum. Robust control of linear time-invariant plants using periodic compensation[J]. Automatic Control, IEEE Transactions on.1985,30(11):1088-1096.
    [129]B.A. Francis, T.T. Georgiou. Stability theory for linear time-invariant plants with periodic digital controllers[J]. Automatic Control, IEEE Transactions on.1988,33(9):820-832.
    [130]P.T. Kabamba, C. Yang. Simultaneous controller design for linear time-invariant systems[J]. Automatic Control, IEEE Transactions on.1991,36(1):106-111.
    [131]T. Hagiwara, M. Araki. Design of a stable state feedback controller based on the multirate sampling of the plant output[J]. Automatic Control, IEEE Transactions on.1988,33(9):812-819.
    [132]H.M. Al-Rahmani, G.F. Franklin. Multirate control:A new approach[J]. Automatica.1992,28(1): 35-44.
    [133]M.E. Sezer, D.D. Siljak. Decentralized multirate control[J]. Automatic Control, IEEE Transactions on.1990,35(1):60-65.
    [134]R. Ciferri, S. Longhi. Decentralized control of multirate sampled-data systems[C]. Decision and Control,2002, Proceedings of the 41st IEEE Conference on,2002:584-585.
    [135]K.V. Ling, K.W. Lim. A state space GPC with extensions to multirate control[J]. Automatica. 1996,32(7):1067-1071.
    [136]I. Izadi, Q. Zhao, T. Chen. An H∞ approach to fast rate fault detection for multirate sampled-data systems[J]. Journal of process control.2006,16(6):651-658.
    [137]K.G. Arvanitis, G. Kalogeropoulos, E.A. Santas. Adaptive pole positioning in MIMO linear systems by periodic multirate-input controllers[J]. Journal of mathematical analysis and applications.1999,237(2):464-504.
    [138]Sergeant V.,吴胜红.影响粘着利用的因素[J].变流技术与电力牵引.2000,(4):11-15.
    [139]张卫华,周文祥,陈良麒,等.高速轮轨粘着机理试验研究[J].铁道学报.2000,22(2):20-24.
    [140]孙翔.机车的传动,驱动,控制与粘着[J].铁道学报.1994,(A06):8-16.
    [141]金学松,沈志云.轮轨滚动接触力学的发展[J].力学进展.2001,31(1):
    [142]赵红卫.机车粘着自适应控制系统的研究[J].中国铁道科学.1998,19(4):33-40.
    [143]李江红,马健,彭辉水.机车粘着控制的基本原理和方法[J].机车电传动.2002,(6):4-8.
    [144]王德志,詹斐生,余也艺.轮轨粘着机制和粘着控制[J].铁道部科学技术情报研究所,1990.
    [145]Schreiber R.,王渤洪.建立在粘着特性曲线斜率基础上的优化三相交流机车粘着利用的控制[J].电力牵引快报.1995,(12):13-18.
    [146]K. Ohishi, Y. Ogawa, I. Miyashita, et al. Adhesion control of electric motor coach based on force control using disturbance observer[C]. Advanced Motion Control,2000. Proceedings.6th International Workshop on,2000:323-328.
    [147]A. Kawamura, K. Takeuchi, T. Furuya, et al. Measurement of tractive force and the new maximum tractive force control by the newly developed tractive force measurement equipment[J]. Electrical Engineering in Japan.2004,149(2):49-59.
    [148]D. Park, M. Kim, D. Hwang, et al. Hybrid re-adhesion control method for traction system of high-speed railway[C], Electrical Machines and Systems,2001. ICEMS 2001. Proceedings of the Fifth International Conference on,2001:739-742.
    [149]S. Kadowaki, K. Ohishi, I. Miyashita, et al. Re-adhesion control of electric motor coach based on disturbance observer and sensor-less vector control[C]. Power Conversion Conference,2002. PCC Osaka 2002. Proceedings of the,2002:1020-1025.
    [150]T. Hata, H. Hirose, S. Kadowaki, et al. Anti-slip re-adhesion control based on speed sensor-less vector control and disturbance observer for electric multiple units, series 205-5000 of East Japan Railway Company[C]. Industrial Technology,2003 IEEE International Conference on,2003: 772-777.
    [151]S. Kadowaki, K. Ohishi, T. Hata, et al. Antislip readhesion control based on speed-sensorless vector control and disturbance observer for electric commuter train—Series 205-5000 of the East Japan Railway Company[J]. Industrial Electronics, IEEE Transactions on.2007,54(4):2001-2008.
    [152]T. Gajdar, I. Rudas, Y. Suda. Neural network based estimation of friction coefficient of wheel and rail[C]. Intelligent Engineering Systems,1997. INES'97. Proceedings.,1997 IEEE International Conference on,1997:315-318.
    [153]M. Garcia-Rivera, R. Sanz, J.A. Perez-Rodriguez. An antislipping fuzzy logic controller for a railway traction system[C]. Fuzzy Systems,1997., Proceedings of the Sixth IEEE International Conference on,1997:119-124.
    [154]A.D. Cheok, S. Shiomi. Combined heuristic knowledge and limited measurement based fuzzy logic antiskid control for railway applications[J]. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on.2000,30(4):557-568.
    [155]王辉,肖建.机车模糊粘着控制及其仿真研究[J].机车电传动.2002,(3):19-23.
    [156]王辉.基于多分辨率分析的模糊系统理论及其在机车粘着控制中的应用[D].成都:西南交通大学,2003.
    [157]黄景春,肖建.基于二维云模型的机车粘着控制及其仿真研究[J].机车电传动.2007,(1):1 1-14.
    [158]张卫华,周文祥,陈良麒,等.高速轮轨粘着机理试验研究[J].铁道学报.2000,22(2):20-24.
    [159]夏超英.交直流传动系统的自适应控制[M].北京:机械工业出版社,1998.
    [160]李华德,杨立永.交流电动机矢量控制变压变频调速系统[J].变频器世界.2006,(12):107-111.
    [161]邢雷.异步电机矢量控制及其数字化实现的研究[D].沈阳:东北大学,2005.
    [162]S. Abourida, C. Dufour, J. Belanger. Real-Time and Hardware-In-The-Loop Simulation of Electric Drives and Power Electronics:Process, problems and solutions[C]. Proceedings of the International Power Electronics Conference (IPEC-Niigata 2005), Niigata, Japan,2005:
    [163]陆可.感应电机状态估计和参数辨识若干新方法研究[D].成都:西南交通大学,2008.
    [164]周爱军.基于视频的车辆目标检测与跟踪技术研究[D].扬州:扬州大学,2008.
    [165]周金祥.多传感器数据融合及其在移动机器人中的应用[D].北京:北方工业大学,2006.
    [166]石高峰.基于多学科级虚拟样机的粘着控制方法仿真与试验研究[D].成都:西南交通大学,2012.
    [167]连级三.电力牵引控制系统[M].北京:中国铁道出版社,1994.
    [168]王俭朴.机车车辆轮轨黏着-蠕滑问题研究[J].中国铁路.2010,(03):61-63.
    [169]沈志云,张卫华,金学松,等.轮轨接触力学研究的最新进展[J].中国铁道科学.2001,22(2):1-14.
    [170]金学松,张立民.高速机车单轮对牵引力矩数值分析[J].机械工程学报.1999,35(6):56-60.
    [171]金雪岩,刘启跃,王夏秋.轮轨粘着-蠕滑特性试验研究[J].铁道学报.2000,22(1):36-39.
    [172]邱存勇,廖双晴.电力机车粘着控制现状与展望[J].信息与电子工程.2008,6(4):301-306.
    [173]张曙光.HXD2型电力机车[M].北京:中国铁道出版礼,2009.
    [174]张子林,徐文娟,杨光.单相PWM整流器瞬态直接电流控制的仿真研究[J].变频器世界.201 1,(12):67-71.
    [175]张忠玉.HXD3电力机车交流传动系统设计研究[D].大连:大连交通大学,2008.
    [176]冯晓云.电力牵引交流传动及其控制系统[M].北京:高等教育出版社,2009.
    [177]郑树选,李中浩.8K型电力机车的防空转、防滑行系统及粘着利用[J].机车电传动.1989,32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700