双三电平PWM变频器低开关频率关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中压大功率变频器的环保节能主要体现为对负载及电网的谐波污染小,能量变换效率高。当功率器件工作电压升高、功率增大,其开关损耗大幅增加,且成为变频装置主要损耗来源。为降低开关损耗,需降低功率器件开关频率(≤500Hz),但会对变频器控制系统、调制算法等造成影响。本文以二极管钳位型双三电平大功率PWM变频器为例,对其展开在低开关频率下的系统建模、调制算法及控制系统设计等方面的研究。
     对低开关频率下的三电平PWM电压源型整流器进行复矢量建模,理论分析低开关频率影响整流器性能的本质原因;设计复矢量电流调节器,基于现代控制理论工具验证其稳定性及有效性。首次对三电平PWM环节输出谐波进行二重傅里叶解析分析,为改善低开关频率下PWM环节的输出性能提供理论基础;在此基础上研究将不对称规则采样与空间矢量脉宽调制相结合的不对称空间矢量脉宽调制算法(asymmetric space vector modulation,ASVM)及其改进方案。
     为使低开关频率下的并网电流满足入网标准,研究一种模型预测控制(modelpredictive control, MPC)与滑动傅里叶(sliding discrete fourier transform, sDFT)相结合的三电平PWM脉冲模式。首先,采用sDFT提取网侧电流的基波和各谐波幅值,并将其作为MPC目标函数的一部分,同时考虑尽量降低开关频率和减少中点电位偏差;然后通过滚动时域优化实现谐波降低、器件开关频率较低和中点电位平衡。该脉冲模式控制方式具有类似特定谐波消除(selective harmonicelimination, SHE)特性,但能实现在线动态调节。为进一步简化算法,基于参考坐标系将三电平矢量调制降阶至两电平,更易于数字实现。
     考虑三电平逆变器带电励磁同步电机负载,首先为简化凸极电励磁同步电机模型、考虑转子不对称性,提出基于复矢量与矩阵相结合的复矩阵建模方法。针对低开关频率造成的电机定子侧电流谐波成分大,常规滤波器在提取基波分量易造成相位滞后、幅值衰减等问题,从经典控制理论入手、结合电机复矩阵模型,提出电机电流内环的基波观测器及复矢量调节的控制策略,实现低开关频率下定子电流磁化分量与转矩分量的有效控制。
     本文针对低开关频率下的分段调制方法,首次根据PWM谐波输出的二重傅里叶解析结果推导其分段调制分界点。针对常规同步对称优化PWM算法只能离线计算、动态性能不佳的缺陷,将滚动时域优化与SHEPWM相结合的模型预测控制优化PWM脉冲模式移植至电励磁同步电机。在研究SHEPWM稳态开关角规律基础上,以定子磁链为跟踪目标,将磁链跟踪误差转化为滚动时域内的伏-秒值以实现对开关角的动态调整,解决优化PWM算法在动态调用时可能会引起的开关角错乱、装置过流以致无法正常运行等问题。
     为进一步提高双三电平PWM变频器系统运行性能,针对低调制度区采用的SVPWM调制算法,研究一种基于桥臂优化选取的中点电位控制方法,只需判断中点电位差、无需引入输出侧电流,从而避免低开关频率下电流畸变严重对中点电流极性判断的影响。针对非理想电网环境,研究一种能同时适用于单相和三相并网系统的基于SHE鉴相的新型锁相环(SHE-phase locked loop, SHE-PLL)技术;与常规PLL相比,该SHE-PLL具有良好跟踪性能的同时较易数字化实现。文末简单给出电网不平衡下三电平整流器在低开关频率下的控制策略。最后,搭建相应实验平台,完成本文研究内容的相关实验验证。
Medium voltage high-power converters have advantages in environmentalprotection and energy savings considering their small harmonic pollution for the loadand the grid, and the high efficiency in energy conversion. The switching frequency ofthe power semiconductors is usually limited to below500Hz to reduce the switchlosses and to improve the output power of the converters. However, a low switchingfrequency affects the control system and the modulation algorithm. Some detailedresearch mainly focusing on system modeling, modulation algorithm and controlstrategy, have been carried out in this dissertation by taking the diode clamped doubleback to back three-level high-power PWM converter as an example.
     Firstly, a complex model is established for the three-level PWM voltage sourcerectifier (VSR) considering the influence from low switching frequency. And then, anovel current controller with complex state variables is proposed to solve thecross-coupling between the idand iq, whose stability and effectiveness are bothverified by the modern control theory. Also, a new modulation strategy combined withasymmetric regular sampling and the space vector PWM (SVPWM) is studied as wellas its improvement, which ia called asymmetric space vector modulation (ASVM),after the first using of a novel double fourier analytic approach to deeply analyze theharmonic output performance of the three-level PWM topology.
     In order to make the output current of high-power grid-connecting convertersmeet the grid standards with a low switching frequency, a novel pulse pattern basedon the combination of model predictive control (MPC) and sliding discrete fouriertransform (sDFT) has been presented. Firstly, extract the current fundamentalamplitude as well as the harmonic components’, and which will be taken as a part ofthe cost function for MPC besides the consideration of switching frequency andneutral point potential balancing issues. This kind of pulse pattern not only has acharacteristic similar with the selective harmonic elimination (SHE), also can realize adynamic regulation. For the further algorithm simplification, a reduced-ordermodulation from three-level to two-level is adopted here by the reference coordinatestheory to realize a simple digital implementation.
     Taking an electrically excited synchronous machine (EESM) as a load ofthree-level converter, a novel complex matrix model based on the combination of thematrix and complex vector methods is proposed considering the rotor asymmetry of an EESM. Owing to the low switching frequency, the harmonic current componentsof the stator are increased and extracting the fundamental content by low-pass filtersproduces a signal delay and amplitude reducing, which can not meet systemrequirements of high dynamic control. To overcome these problems, a novel hybridfundamental current observer at different coordinates for EESMs is designed based onthe observer theory and the complex matrix model. The stability of the fundamentalobserver at different speed or with a parameters mismatch has been analyzed using theclassic control method. Then, a complex current controller is applied to realize thedecoupling between imand it.
     For the subsection modulation with a low switching frequency, the demarcationpoint is firstly given based on the analytical results from double Fourier approach. Forthe disadvantages that the conventional synchronous symmetry optimal PWMalgorithm only being calculated off-line, a novel dynamic performance schemecombining the receding horizon policy and SHEPWM is firstly rolled in the controlstrategy for EESMs. By taking stator flux as the tracking trajectory, the flux trackingerror can be converted to volt-second value in the receding horizon, and the switchangles calculated from SHEPWM can be modified dynamically to meet the suddenchanged conditions.
     In order to make a further performance improvement for the back to backthree-level PWM converters, an approach controlling the neutral point potential isresearched based on the optimal selection of the sub-bridges for low modulation index.This method doesn’t need the output current as a feedback signal, which avoids theeffect from the severe distortion of the output current at low switching frequency. Fornon-ideal grid environment, a new kind of phase locked loop (PLL) both suitable forthe single and three phases is studied. With the characteristics of SHE, the SHE theorycombined with square wave has been adopted to form the novel phase detector, andwhose feasibility is proved by the fourier analysis. Lastly, a control strategy to be usedunder non-deal grid environment is also given.
     Finally, an experimental platform has been set up to complete the verification ofthe cooresponding research contents in this dissertation.
引文
[1]国务院.节能减排―十二五‖规划.2012.
    [2]马小亮.高性能变频调速及其典型控制系统[M].北京:机械工业出版社,2010.
    [3] Oikonmou N. Control of medium-voltage drives at very low switching frequency [M].Wupperta: Logos Verlag,2008.
    [4] Klug R. D, Klaassen N. High power medium voltage drives: innovations, portfolio, trends [C].The European Conference on Power Electronics and Applications (EPE2005), Dresden,Germany, September10-15,2005.
    [5] Bernet S. State of the art and developments of medium voltage converters: an overview [J].Przeglad Elektrotechniczny, Vol.82, No.5, pp.1-10, May2006.
    [6] Franquelo L. G, Rodriguez J, Leon J. I, et al. The age of multilevel converters arrives [J]. IEEEIndustrial Electronics Magazine, Vol.2, No.2, pp.28-39, June2008.
    [7] Bernet J. S, Wu B. Multilevel voltage source converter topologies for industrialmedium-voltage drives [J]. IEEE Transactions on Industrial Electronics, Vol.54, No.6, pp.2930-2945, Dec2007.
    [8] Abu-Rub H, Holtz J, Rodriguez J, et al. Medium voltage multilevel converters-state of the art,challenges and requirements in industrial applications[J]. IEEE Transactions on IndustrialElectronics, Vol.57, No.8, pp.2581-2596, Aug.2010.
    [9]马小亮.概述低开关频率PWM变频的问题及解决办法[J].电气传动,2009,39(5):3-9.
    [10]赵冰洁.三电平不连续调制技术及其低开关频率控制研究[D].中国矿业大学,2011.
    [11] Holtz J, Beyer B. The trajectory tracking approach-a new method for minimum distortionPWM in dynamic high-power drives [J]. IEEE Transactions on Industry Applications, Vol.30,No.4, pp.1048-1057, Jul/Aug1994.
    [12] Siemens A G. Power semiconductors: for medium voltage converters-an overview [C].13thEuropean Conference on Power Electronics and Applications. Spain: EPE,2009:121-134.
    [13] Bose B K. Power electronics and motor drives: advances and trends [M]. Amsterdam:Elsevier/Academic Press,2006:917.
    [14] Powell J D, Emami-Naeini A, Franklin G F. Feedback control of dynamic systems [M].6th ed.Upper Saddle River, NJ: Pearson Prentice Hall,2009.
    [15]张兴,张崇巍. PWM整流器及其控制[M].北京:机械工业出版社,2013.
    [16] Noguchi T, Tomiki H, Kondo S, et al. Direct power control of PWM converter withoutpower-source voltage sensors [J]. IEEE Transactions on Industrial Applications, Vol.34, No.6, pp.473-479, May/Jun1998.
    [17]徐小品,黄进,杨家强.瞬时功率控制在三相PWM整流中的应用[J].电力电子技术,2004,38(2):30-31+44.
    [18] Malinowski M S. Sensorless control strategies for three-phase PWM rectifier [D]. WarsawUniversity of Technology,2001.
    [19] Duarte J L, Van Zwam A, Wijnands C, et al. Renference frames fit for controlling PWMrectifiers [J]. IEEE Transactions on Industrial Electronics. Vol.46, No.3, pp.628-630, Jun1999.
    [20] Park S Y, Chen C L, Lai J S, et al. Admittance compensation current loop control for agrid-tie LCL fuel cell inverter [J]. IEEE Transactions on Power Electronics, Vol.23, No.4, pp.1716-1723, July2005.
    [21] Franklin G F, Powell J D, Naeini A E. Feedback control of dynamic systems [M].6th Edition.New York Prentice Hall,2009:43-55.
    [22]戴鹏,符晓,袁庆庆,伍小杰.基于复矢量调节器的低开关频率PWM整流器研究[J].中国电机工程学报,2011,31(21):25-31.
    [23] Holtz J, Oikonomou N. Estimation of the fundamental current in low-switching-frequency highdynamic medium-voltage drives [J]. IEEE Transactions on Industry Applications, Vol.44, No.5, pp.1597-1605, Sept.-Oct.2008.
    [24]伍小杰,袁庆庆,符晓,戴鹏.基于复矢量调节器的低开关频率同步电机控制[J].中国电机工程学报,2012.32(3):124-129.
    [25]袁庆庆,伍小杰,吴强,朱洪顺.低开关频率下的不对称空间矢量脉宽调制[J].电力电子技术,2013.47(5):4-6+17.
    [26] Rodriguez J, Lai J S, Peng F Z. Multilevel inverters: a survey of topologies, controls, andapplications [J]. IEEE Transactions on Industrial Electronics, Vol.49, No.4, pp.724-738, Aug.2002.
    [27] Lai J S, Peng F Z. Multilevel converters-a new breed of power converters [J]. IEEETransactions on Industrial Applications, Vol.32, No.3, pp.509-517, May1985.
    [28]利德华福.高压变频调速技术在交通与节能领域的应用—利德华福专访游小杰教授[OL].(2008-7-15). http://www.gkong.com/html/news/2008/7/24189.Html.
    [29] Nabae, A, Takahashi I, Akagi H. A new neutral-point-clamped PWM inverter [J]. IEEETransactions on Industry Applications, Vol. IA-17, No.5, pp.518-523, Sept.1981.
    [30]姜小艳.三电平整流器中点点位平衡控制研究[D].中国矿业大学,2010.
    [31] Bhagwat P, Stefanovic V. Generalized structure of a multilevel PWM inverter [J]. IEEETransactions on Industry Applications, Vol. IA-19, No.6, pp.1057-1069, Nov.1983.
    [32]林磊.双三电平供电异步电机直接转矩控制系统研究[D].华中科技大学,2007.
    [33] Tolbert, L, Peng F, Habetler T. Multilevel converters for large electric drives [J].Transactions on Industry Applications, Vol.35, No.1, pp.36-44, Jan/Feb1999.
    [34] Cho G, Jung G, Choi N, et al. Analysis and controller design of static var compensator usingthree-level GTO inverter[J]. IEEE Transactions on Power Electronics, Vol.11, No.1, pp.57-65, Jan1996.
    [35]Ogasawara S, Akagi H. Analysis of variation of neutral point potential inneutral-point-clamped voltage source PWM inverters [C]. Industry Applications SocietyAnnual Meeting, Toronto, Oct2-8,1993:965-970.
    [36] Klabunde M, Zhao Y, Lipo T. Current control of a3-level rectifier/inverter drive system [C].Industry Applications Society Annual Meeting, Oct2-6, Denver,1994:859-866.
    [37] Tan K. K, Gao F, Loh P. C, et al. Enhanced buck-boost neutral-point-clamped inverters withsimple capacitive-voltage balancing [J]. IEEE Transactions on Industrial Applications, Vol.46, No.3,1021-1033, May-June2010.
    [38] Meynard T. A, Foch H. Mutilevel choppers for high voltage applications [C]. ProceedingEuropean Conference Power Electronics and Applications,1992,45-50.
    [39] Yamanaka, K, Hava A, Kirino H, et al. A novel neutral point potential stabilization techniqueusing the information of output current polarities and voltage vector [J]. IEEE Transactionson Industry Application, Vol.38, No.6, pp.1572-1580, Nov/Dec2002.
    [40] Kea, E, Wang F, Nowak J, et al., Multilevel PWM voltage source inverter control at lowoutput frequencies: U.S.6337804[P],2002.
    [41] Yingchao, Z, Zhengming Z, Ting L, et al. A novel control scheme for three-level NPCback-to-back converter [C]. IEEE Vehicle Power and Propulsion Conference (VPPC), Sept.3-5, Harbin,2008:1-5.
    [42] Sirisukprasert S, Huang A, Lai J. Modeling, analysis and control of cascaded-multilevelconverter-based STATCOM [C].IEEE Power Engineering Society General Meeting, July13-17,2003.
    [43] Marchesoni M, Mazzucchelli M, Tenconi S. A nonconventional power converter for plasmastabilization [J]. IEEE Transactions on Power Electronics, Vol.5, No.2, pp.212-219,Apr.1991.
    [44] Ghiara T, Marchesoni M, Puglisi L, et al. A modular approach to converter design for highpower dc drives [C]. Proc.4thEurpen Conference Power Electronics and Applications,1991,477-482.
    [45] Thomas J, Poullain S, Donzel A, et al. Advanced torque control of induction motors fed by afloating capacitor multilevel VSI actutator [C]. IEEE Seminar Advances in Induction MotorControl, London,2000:1-5.
    [46] Meynard T, Foch H. Multi-level conversion: high voltage choppers and voltage-sourceinverters[C].23th Annual IEEE Power Electronics Specialists Conference,29Jun-3Jul,Toledo,1992:397-403.
    [47]李永东.高性能大容量交流电机调速技术的现状及展望[J].电工技术学报,2005,20(2):1-10.
    [48] Peng F, McKeever J, Adams D. A power line conditioner using cascade multilevel invertersfordistribution systems [J]. IEEE Transactions on Industry Application, Vol.34, No.6, pp.1293-1298, Nov/Dec1998.
    [49] Calais M, Agelidis V, Borle L, et al. A transformerless five level cascaded inverter basedsingle phase photovoltaic system,31th IEEE Annual Power Electronics SpecialistsConference, Galway,2000:1173-1178.
    [50] Kazmierkowski M P, Franquelo L G, Rodriguez J, et al. High-performance motor drives [J].IEEE Industrial Electronics Magazine, Vol.5, No.3, pp.6-26, Sept2011.
    [51] Holtz J. Pulsewidth modulation—A survey [J]. IEEE Transactions on Industry Electronics,Vol.39, No.5, pp.410-420, Oct.1992.
    [52] Wu B. High Power Converters and AC Drives [M].New York: IEEE Press/Wiley, Oct.2005.
    [53] Carrara G, Gardella S, Marchesoni M, et al. A new multilevel PWM method: A theoreticalanalysis [J]. IEEE Transactions on Power Electronics, Vol.7, No.3, pp.497-505, July1992.
    [54] Rech C, Pinheiro J R. Hybrid multilevel converters: Unified analysis and designconsiderations [J]. IEEE Transactions on Industry Electronics, Vol.54, No.2, pp.1092-1104,Apr.2007.
    [55] Manjrekar M D, Steimer P K, Lipo T A. Hybrid multilevel power conversion system: Acompetitive solution for high-power applications [J]. IEEE Transactions on IndustrialApplications, Vol.36, No.3, pp.834-841, May2000.
    [56] Mueller O M, Park J N. Quasi-linear IGBT inverter topologies [C]. Conference Proceedingsof Applied Power Electronics Conference and Exposition, Feb13-17, Orlando,1994253-259.
    [57] A. Damiano, M. Fracchia, M. Marchesoni, and I.Marongiu. A new approach in multilevelpower conversion [C]. Proceedings of7th Eurpean Conference Power Electronics andApplications (EPE’97), Sept, Trondheim,1997:4.216–4.221.
    [58]金红元,邹云屏,林磊等.三电平PWM整流器双环控制技术及中点电压平衡控制技术的研究[J].中国电机工程学报,2006,26(20):64-68.
    [59]李永东,肖曦,高跃.大容量多电平变换器—原理·控制·应用[M].北京:科学出版社,2005.
    [60] Franquelo L G, León J I, Prats M M, et al. Space vector modulation techniques for multilevelconverters—A survey [J]. Przeglad Elektrotechniczny, Vol.2006, No.4, pp.56–61,2006.
    [61] Prats M M, Franquelo L G, Portillo R, et.al. A3-D space vector modulation generalizedalgorithm for multilevel converters [J]. IEEE Power Electronics Letters, Vol.1, No.4,pp.110-114,2003.
    [62] Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage sourcePWM converters: A survey [J]. IEEE Transactions on Industry Electronics, Vol.45, No.5,pp.691–703,1998.
    [63] Ozpineci B, Tolbert L M, Chiasson J N. Harmonic optimization of multilevel convertersusing genetic algorithms [J]. IEEE Power Electronincs Letters,Vol.3, No.3, pp.92–95, Sept.2005.
    [64] Du Z, Tolbert L M, Chiasson J N. Active harmonic elimination for multilevel converters [J].IEEE Transactions Power Electronics, Vol.21, No.2, pp.459-469, Mar.2006.
    [65] Li L, Czarkowski D, Liu Y, et al. Multilevel selective harmonic elimination PWM techniquein series-connected voltage inverters [J]. IEEE Transactions on Industrial Applications, Vol.36, No.1, pp.160-170, Jan.2000.
    [66] Franquelo L G, Napoles J, Portillo R, et al. A flexible selective harmonic mitigationtechnique to meet grid codes in three-level PWM converters [J]. IEEE Transactions onIndustry Electronics, Vol.54, No.6, pp.3022-3029, Dec.2007.
    [67] Hava A M, Kerkman R J, Lipo T A. A high-performance generalized discontinuous PWMalgorithm [J]. IEEE Transactions on Industry Applications, Vol.34, No.5, pp.1059-1071,1998.
    [68] Ojo O. The generalized discontinuous PWM scheme for three-phase voltage source inverters[J]. IEEE Transactions on Industrial Electronics, Vol.51, No.6, pp.1280-1289,2004.
    [69] Dalessandro L, Round S D, Drofenik U, et al. Discontinuous space-vector modulation forthree-level PWM rectifiers[J]. IEEE Transactions on Power Electronics, Vol.23, No.2, pp.530-542,2008.
    [70] Rodr′guez J, Mora′n L, Correa P, et al. A vector control technique for medium-voltagemultilevel inverters [J] IEEE Transactions on Industry Electronics, Vol.49, No.4, pp.882–888, Aug.2002.
    [71] Kouro S, Bernal R, Miranda H, et al. High-performance torque and flux control for multilevelinverter fed induction motors [J]. IEEE Transactions Power Electronics, Vol.22, No.6, pp.2116-2123, Nov.2007.
    [72] Kouro S, Cortes P, Vargas R, et al. Model predictive control-A simple and powerful methodto control power converters [J]. IEEE Transactions on Industry Electronics, Vol.56, No.6,pp.1826-1838, June2009.
    [73] Cortes P, Kouro S, Rocca B L, et al.Guidelines for weighting factors design in modelpredictive control of power converters and drives [C]. Proceedings of IEEE InternationalConferences on Industrial Technology, ICIT, Gippsland, Australia, Feb.10-13,2009:1-6.
    [74] Holtz J, Oikonomou N. Optimal control of a dual three-level inverter system formedium-voltage drives [J]. IEEE Transactions on Industry Applications, Vol.46, No.3, pp.1034-1041,2010.
    [75] Rathore A, Holtz J, Boller T. Synchronous optimal pulsewidth modulation for low switchingfrequency control of medium voltage multi-level inverters [J]. IEEE Transactions onIndustrial Electronics, Vol.57, No.7, pp.2374-2381,2010.
    [76] Kai T, Qiongxuan G, Zhenggang Y, et al. The optimal control strategy for rectifier side of lowswitching frequency back-to-back converter [C]. Twenty-Fifth Annual IEEE Applied PowerElectronics Conference and Exposition (APEC), Feb21-25, Palm Springs,2010:1419-1423.
    [77] Patel H S, Hoft R G. Generalized techniques of harmonic elimination and voltage control inthyristor inverters: Part1-Harmonic elimination [J]. IEEE Transactions on IndustrialApplications, Vol. IA-9, No.3, pp.310–317, May/Jun.1973.
    [78]符晓.电励磁同步电机低开关频率控制技术研究[D].中国矿业大学,2011.
    [79]李瑞夫.同步调制下异步电机矢量控制研究[D].北京交通大学,2011.
    [80]王群京,胡存刚,李国丽.基于遗传算法的三电平逆变器SHEPWM方法的研究[J].中国科学技术大学学报,2009,39(8):848-852.
    [81] Jiang Q, Holmes D G, Giesner D B. A method for linearising optimal PWM switchingstrategies to enable their computation on-line in real-time [C]. IEEE Industry ApplicationsSociety Annual Meeting, Sept28-Oct4, Dearborn,1991:819-825.
    [82]郑春芳,张波,丘东元.基于Walsh变换的多电平逆变器谐波消除技术[J].电工技术学报,2006,21(7):121-126.
    [83] Wells J R, Geng X, Chapman P L, et al. Modulation-based harmonic elimination[J]. IEEETransactions on Power Electronics, Vol.22, No.1, pp.336-340,2007.
    [84] Espinoza J R, Joos G, Guzman J I, et al. Selective harmonic elimination and current/voltagecontrol in current/voltage-source topologies: a unified approach [J]. IEEE Transactions onIndustrial Electronics, Vol.48, No.1, pp.71-81,2001.
    [85]程曙. EOCPWM控制技术研究[J].同济大学学报:自然科学版,2003,31(2):212-216.
    [86]李治典,周秦英,李宏等.实时求解特定消谐方程组的新算法[J].西北工业大学学报,2004,22(1):37-40.
    [87] Himanshu A, Jose I L, Franquelo L G, et al. Model predictive control based selectiveharmonic mitigation technique for multilevel cascaded H-bridge converters [C].37thAnnualConference on IEEE Industrial Electronics Sociey, Nov.7-10, Melbourne,2011:4427-4432.
    [88] Laczynski T, Werner T, Mertens A. Energy-based modulation error control for high-powerdrives with output LC-filters and synchronous optimal pulse width modulation[C].13thEPE-PEMC Power Electronics and Motion Control Conference, Sept1-3, Poznan,2008:649-656.
    [89] IEEE recommended practices and requirements for harmonic control in electrical powersystems[S].
    [90] Napoles J, Portillo R, Leon J I, et al. Implementation of a closed loop SHMPWM techniquefor three level converters[C].34th Annual Conference of IEEE Industrial Electronics, Nov10-13, Orlando,2008:3260-3265.
    [91] Holmes D G, Thomas A. Lipo. Pulse width modulation for power converters: principles andpractice, Wiley Publishing,2003:99-152.
    [92] Vargas R, Cortes P, Ammann U, et al. Predictive control of a three-phaseneutral-point-clamped inverter[J]. IEEE Transactions on Industrial Electronics, Vol.54,No.5, pp.2697-2705,2007.
    [93] Kouro S, La Rocca B, Cortes P, et al. Predictive control based selective harmonic eliminationwith low switching frequency for multilevel converters [C]. Energy Conversion Congressand Exposition, Sept20-24, San Jose,2009:3130-3136.
    [94] Rodríguez J, Morán L, Correa P et al. A vector control technique for medium-voltagemultilevel inverters [J]. IEEE Transactions on Industry Electronics, Vol.49, No.4, pp.882–888, Aug.2002.
    [95]陈伯时.电力拖动自动控制系统—运动控制系统[M].北京:机械工业出版社,2003,172-173.
    [96] Shih-Liang J, Hsiang-Sung H, Ying-Yu T. A three-phase PWM AC-DC converter with lowswitching frequency and high power factor using DSP-based repetitive control technique
    [C]//29th Annual IEEE Power Electronics Specialists Conference. Fukuoka: IEEE,1998:517-523.
    [97] Silva C, Oyarzun J. High dinamic control of a PWM rectifier using harmonic elimination[C]//32nd Annual Conference on IEEE Industrial Electronics. Paris: IEEE,2006:2569-2574.
    [98]魏克新,汪水明,杜明星等. DSP控制的低开关损耗PWM整流器系统研究[J].电力电子技术,2009,43(5):76-77.
    [99]曾江,叶小军,刘艳等.低开关损耗有源电力滤波器的滞环电流控制[J].华南理工大学学报:自然科学版,2009,(11):76-82.
    [100] Steimel A. Direct self-control and synchronous pulse techniques for high-power tractioninverters in comparison [J]. IEEE Transactions on Industrial Electronics, Vol.51, No.4, pp.810-820,2004.
    [101]周志刚.一种感应电机的解耦控制方法[J].中国电机工程学报,2003,23(2):121-125.
    [102]李崇坚.交流同步电机调速系统[M].北京:科学出版社,2006:229-232.
    [103]马小亮.大功率交-交变频调速及矢量控制技术[M].北京:机械工业出版社,2003:97-122.
    [104] Kovaca P K, Racz I. Transient phenomena in electrical machines [J]. Verlag derUngarischen Akademie der Wissenschaften, Budapest,1959:23-35(in German).
    [105] Holtz J. The representation of AC machine dynamics by complex signal flow graphs [J].IEEE Transactions on Industrial Electronics, Vol.42, No.3, pp.263-271,1995
    [106] Dai Ke, Liu Peiguo, Xiong Jian, et al. Comparative study on current control for three-phaseSVPWM voltage-source converter in synchronous rotating frame using complex vectormethod[C]//The3rd International Workshop on Compatibility in Power Electronics. Poland:IEEE,2003:695-700.
    [107] Qing-qing Yuan, Xiao-jie Wu, Peng Dai, et al. Control of electrically excited synchronousmotors with a low switching frequency [J]. Journal of Power Electronics, Vol.12, No.4, pp.615-622,2012.
    [108] Holtz J, Beyer B. Fast current trajectory tracking control based on synchronous optimalpulsewidth modulation [J]. IEEE Transactions on Industry Applications, Vol.31, No.5, pp.1110-1120,1995.
    [109] Oikonomou N, Holtz J. Closed-loop control of medium-voltage drives operated withsynchronous optimal pulsewidth modulation [J]. IEEE Transactions on IndustryApplications, Vol.44, No.1, pp.115-123,2008.
    [110] Jie Shen, Schroder S., Rosner R., et al. A comprehensive study of neutral-pointself-balancing effect in neutral point clamped three level inverters [J]. IEEE Transactions onPower Electronics, Vol.26, No.11, pp.3084-3095,2011.
    [111]姜卫东,王群京,陈权等.考虑中点电压不平衡的中点箝位型三电平逆变器空间矢量调制方法[J].中国电机工程学报,2008,28(30):20-26.
    [112] Holtz J, Oikonomou N. Neutral point potential balancing algorithm at low modulation indexfor three-level inverter medium-voltage drives [J]. IEEE Transactions on IndustrialApplications, Vol.43, No.3, pp.761-768,2007.
    [113] Pou J, Pindado R, Boroyevich D. Evaluation of the low-frequency neutral-point voltageoscillations in the three-level inverter [J]. IEEE Transactions on Industrial Electronics,Vol.52, No.6, pp.1582-1588,2005.
    [114] Busquets-Monge S, Bordonau J, Boroyevich, D, et al. The nearest three virtual space vectorPWM-a modulation for the comprehensive neutral-point balancing in the three-level NPCinverter [J]. Power Electronics Letters, Vol.2, No.1, pp.11-15,2004.
    [115] Steinke J K. Switching frequency optima PWM control of a three-level inverter [J]. IEEETransactions on Power Electronics, Vol.7, No.3, pp.487-492,1992.
    [116]刘纪畅,袁庆庆,戴鹏等.基于虚拟空间矢量的中点电压平衡控制[J].电力电子技术,2013,47(5):15-17.
    [117] H. du Toit Mouton. Natural balancing of three-level neutral-point-clamped PWM inverters[J]. IEEE Transactions on Industrial Electronics, Vol.49, No.5, pp.1017-1025,2002.
    [118]薄保中,刘卫国,苏彦民.三电平逆变器PWM控制窄脉冲补偿技术的研究[J].中国电机工程学报,2005,25(10):60-64.
    [119]薄保中,刘卫国,罗兵等.三电平逆变器窄脉冲补偿方法研究[J].电力自动化设备,2004,24(8):25-28.
    [120]金舜,钟彦儒,明正峰等.一种控制中点电位并消除窄脉冲的三电平PWM方法[J].中国电机工程学报,2003,23(10):115-119.
    [121]金舜.一种“中点控制+窄脉冲消除+死区补偿”的三电平PWM控制算法[D].西安理工大学,2003.
    [122]朱连成.无锁相环电压全周期过零检测电路的仿真与设计[J].现代电子技术,2007,(9):87-89.
    [123] Svensson J. Synchronization methods for grid-connected voltage source converters [C].IEEE Proceedings on International Electrical Engineering. Generation, Transmission,Distribution,2001,148(5):229-335.
    [124] Masoud K G, Reza I M. A method for synchronization of power electronic converters inpolluted and variable-frequency environments [J]. IEEE Transactions on Power Systems,Vol.19, No.3, pp.1263-1270,2004.
    [125]袁庆庆,戴鹏,符晓等.单相电力锁相环技术综述[J].变频器世界,2010(7):43-45.
    [126] Santos F R M, Seixas P F, Contizo P C, et al. Comparison of three single-phase PLLalgorithm for UPS applications [J]. IEEE Transactions on Industrial Electronics, Vol.55,No.8, pp.2923-2932,2008.
    [127] Naji Rajai Nasri Ama, Fernando Ortiz Martinz, Lourenco Matakas, et al. Phase-locked loopbased on selective harmonics elimination for utility applications [J]. IEEE Transactions onPower Electronics, Vol.28, No.1, pp.144-153, Jan.2013.
    [128]周扬忠,胡育文,黄文新.低转矩磁链脉动型电励磁同步电机直接转矩驱动系统研究[J].中国电机工程学报,2006:26(7):152-157.
    [129]周二磊.低定子频率下电励磁同步电机矢量控制系统研究[D].中国矿业大学,2012.
    [130]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.
    [131]周晓峰.交-直-交同步电机矢量控制系统研究[D].中国矿业大学,2007.
    [132]杨文强.交流感应电机矢量控制系统的滑模变结构控制及相关问题研究[博士后学位论文].上海:上海交通大学,2004.
    [133] Tursini M, Petrella R, Parasiliti F. Adaptive Sliding Mode Observer for Speed-SensorlessControl of Induction Motors [J].IEEE Transactions on Industry Applications, Vol.36, No.5,pp.1380-1387, Sept.-Oct.2000.
    [134] Rashed M, Stronach AF. A Stable Back-EMF MRAS-Based Sensorless Low-SpeedInduction Motor Drive Insensitive to Stator Resistance Variation [J]. IEEE ProceedingsElectric Power Applications, Vol.151, No.6, pp.685-693, Nov.2004.
    [135]吴青华,蒋林.非线性控制理论在电力系统中应用综述.电力系统自动化,2001,1:01-10.
    [136]陈伟,瞿文龙,陆海峰.一种基于MRAS的异步电机速度辨识方法.电工电能新技术,2006,25(2):52-55.
    [137]张兴华,牛兴林,林锦国.基于EKF感应电机无速度传感器逆解耦控制.系统仿真学报,2006,18(4):982-988.
    [138] Kung Y S, Liaw C M. Adaptive Speed Control for Induction Motor Drives Using NeuralNetworks[J]. IEEE Trans on Inductrial Electronics, Vol.42, No.1, pp.25-32,1998.
    [139]王永骥,涂健.神经元网络控制[M].北京:机械工业出版社,1998.
    [140] Soltani J, Hajian M, Abdo Y. Robust speed sensorless control of universal field orientedinduction motor drive with on-line stator resistance tuning [C]. The Fifth InternationalConference on Power Electronics and Drive Systems, Nov17-20,2003:193-198.
    [141] Seong-Hwan K, Tae-Sik P, Ji-Yoon Y. Speed-Sensorless Vector Control of An InductionMotor using Neural Network Speed Estimation [J]. IEEE Transactions on IndustrialElectronics, Vol.48, No.3, pp.609-614, June.2001.
    [142] Cerruto E, Consoli A, Raciti A. Fuzzy Adaptive Vector Control of Induction Motor Drives[J].IEEE Transactions on Power Electronics, Vol.12, No.6, pp.1028-1040, Nov.1997.
    [143] Hasse K. Drehzahlgelverfahren fur schnelle Umkehrantriebe mit strom-richtergespeistenAsynchron-Kurzchlusslaufermotoren [J]. Reglungstechnik, Vol.20, No.2, pp.60-66,1972.
    [144] Blaschke F. The principle of field-orientation as applied to the transvector closedloopcontrol system for rotating-field machines [J]. Siemens Rev., Vol.34, No.1, pp.217-220,1972.
    [145]付凤超.电励磁同步电机矢量控制系统研究[D].中国矿业大学,2012.
    [146] Grzesiak L M, Kazmierkowski M P. Improving flux and speed estimators for sensorless ACdrives [J]. IEEE Industrial Electronical Magzines, Vol.1, No.3, pp.8-19, Fall2007.
    [147] Holtz J. Sensorless control of induction machines—With or without signal injection?[J].IEEE Transactions on Industry Electronics, Vol.53, No.1, pp.7–30, Feb.2006.
    [148] Depenbrock M. Direct self control of high dynamic performance of inverter feed acmachines [J]. ETZ Archive,1985,7:211-218.
    [149] Casadei D, Serra G, Tani A. Performance Analysis of a Speed-Sensorless Induction MotorDrive Based on a Constant-Switching-Frequency DTC Scheme[J]. IEEE Transactions onIndustry Applications, Vol.39, No.2, pp.476-484,2003.
    [150] Boldea I, Nasar S A. Electric Drives [M].2nd ed. Boca Raton, FL: CRC,2006.
    [151] Buja G S, Kazmierkowski M P. Direct torque control of PWM inverter-fed AC motors—Asurvey [J]. IEEE Transactinos on Industry Electronics, Vol.51, No.4, pp.744–757, Aug.2004.
    [152] Xu L, Fu M. A sensorless direct torque control technique for permanent magnetsynchronous motors [C]. Proceedings of IEEE Industrial Applications Conference,1999,Vol.1. pp.159–164.
    [153] Tripathi A, Khambadkone A M, Panda S K. Stator flux based space vector modulation andclosed loop control of the stator flux vector in overmodulation into six-step mode [J]. IEEETransactions on Power Electronics, Vol.19, No.3, pp.775–782, May2004.
    [154] Takahashi I, Takahashi I, Noguchi T. A new quick response and high-efficiency controlstrategy of an induction motor [J]. IEEE Transactions on Industrial Applications, Vol. IA-22,No.5, pp.820–827, Sept./Oct.1986.
    [155]李发海,朱东起.电机学[M].北京:科学出版社,2003:200-203.
    [156]许大中.交流电机调速理论[M].浙江:浙江大学出版社,1997:23-108.
    [157] Lyon W V. Transient analysis of alternating current machinery [M]. New York, John Willy&Sons, Inc.1954
    [158] Burgos R P, Wiechmann E P, Holtz J. Complex state variables modeling and nonlinearcontrol of PWM voltage-and current-source rectifiers [C]//34th Annual Conference of theIEEE Industrial Electronics Society. Florida: IEEE,2002:187-192.
    [159] Holtz J, Quan J T, Pontt J, et al. Design of fast and robust current regulators for high-powerdrives based on complex state variables, IEEE Transactions on Industrial Applications,Vol.40, No.5, pp.1388-1397, Sept./Oct.2004.
    [160]马小亮.交直交变频器的IGBT(IGCT)整流/回馈电源.电气传动,2012,42(10):3-8.
    [161]王颖杰. LCL滤波的三相变换器并网关键技术研究[D].中国矿业大学,2012.
    [162]周锦诚.傅里叶级数与广义函数论[M].北京:科学出版社,1983.
    [163]景巍.大功率三电平变频器功率器件损耗研究[D].中国矿业大学,2011.
    [164] Di Zhang, Fred Wang, Said El-Barbari, et al. Improved asymmetric space vector modulationfor voltage source converters with low carrier ratio [J]. IEEE Transactions on PowerElectronics, Vol.27, No.3, pp.1130-1140, March2012.
    [165]王艳芬,王刚,张晓光等.数字信号处理原理及实现[M].北京:清华大学出版社,2003.
    [166] Jacobsen E, Lyons R. An update to the sliding DFT [J]. Signal Processing Magazine, Vol,21,No.1, pp.110-111,2004.
    [167] Jansen P L, Novotny R D. A Physically Insightful Approach to the Design and AccuracyAseessment of Flux Oberservers for Field Oriented Induction Machine Drives [J].IEEETractions On Industrial Applications,Vol30, No.1, pp.101-109,1994.
    [168] Jansen P L, Lorenz R D. Novotny D W. Observer-based Direct Field Orientation: Analysisand Comparison of Alternative Methods [J]. IEEE Transactions on Industry Applications,Vol.30, No.4, pp.945-953, July-Aug.1994.
    [169] Blanco F B, Degner M W, Lorenz R D. Dynamic Analysis of Current Regulators for ACMotors Using Complex Vectors [J].IEEE Transactions on Industry Applications, Vol.35, No.6, pp.1424–1432, Nov/Dec.1999.
    [170] Verghese G C, Sanders S R. Observers for Flux Estimation in Industrial Machines [J]. IEEETransactions on Industrial Electronic, Vol.35, No.1, pp85-94,1988.
    [171] Xu D, De R. Doncker, et al. A Stator Flux Oriented Induction Machine Drive [C]. PowerElectronics Specialists Conference, April1988:870–876.
    [172] Gataric S, Garrigan N R. Modeling and Design of Three-phase Systems Using ComplexTransfer Functions [C]. Power Electronics Specialists Conference,1999:691–697.
    [173] Kim J H, Choi J W, Sul S K. Novel Rotor-flux Observer using Observer CharacteristicFunction in Complex Vector Space for Filed-Oriented Induction Machine Drives [J].IEEETransctions on Industry Applications, Vol.38, No.5, pp.1334-1343,2002.
    [174]戴鹏.全数字交交变频双定子绕组同步电机调速系统的研究与实现[D].中国矿业大学,2004.
    [175] Tobias Geyer, Nikolaos Oikonomou, Georgios Papafotiou, et al. Model predictive pulsepattern Control [J]. IEEE Transactions on industry applications, Vol.48, No.2, pp.663-676,March/April2012.
    [176]谢桂林,黄章,刘允紘.矿山电力拖动与控制[M].中国矿业大学出版社,1986.
    [177] Se-kyo C. A phase tracking system for three phase utility interface inverters [J]. IEEETransactions on Power Electronics, Vol.15, No.3, pp.431-438,2000.
    [178] Sang-joon L, Jun-koo K, Seung-ki S. A new phase detecting method for power conversionsystems considering distorted conditions in power system [C].34thProceeding of IndustryApplications Conference, Seoul,1999.
    [179] Rodriguez P, Teodorescu R, Candela, et al. New positive-sequence voltage detector for gridsynchronization of power converter under faulty grid condition[C].37thPower ElectronicsSpecialists Conference, Spain,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700