混合动力客车控制策略优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合“十一五”国家“863”计划重大项目(2008AA11A140)“一汽解放牌混合动力客车新型整车技术开发”和吉林省、一汽集团、吉林大学联合行动项目“一汽第二代混合动力客车关键技术预研”,对一汽解放牌混合动力客车的整车控制策略进行了优化。全文包括五个方面的研究内容:
     1.提出了驾驶意图模糊识别方法。对驾驶意图进行了分类并且确定了驾驶意图识别参数。阐述了驾驶意图识别的理论基础,并且建立了驾驶意图模糊识别的隶属函数及模糊推理规则。搭建了基于MATLAB/SIMULINK的驾驶意图模糊识别模型。为了验证驾驶意图识别方法识别驾驶意图的准确性,对驾驶意图识别方法进行了实验验证。根据验证结果,运用模糊神经网络对驾驶意图识别模块的部分参数的隶属函数进行了优化,进一步提高了驾驶意图识别模块对驾驶员驾驶意图识别的准确性。
     2.根据驾驶员驾驶意图识别结果,提出了整车需求扭矩模糊计算方法,使整车需求扭矩的计算结果能更符合驾驶员的驾驶需求。针对不同风格的驾驶员制定了不同类型的整车控制策略。整车控制策略可以根据不同风格的驾驶员进行实时调整,使整车控制策略具有自适应性。对整车控制策略进行了仿真实验,结果表明经济型控制策略在动力性没有下降的前提下,经济性比原始控制策略更好。动力型控制策略在经济性没有下降的前提下,动力性比原始控制策略更出色。基于驾驶风格识别的自适应控制策略相比原始控制策略,动力性和经济性均有提高。
     3.提出了基于马尔科夫链的驾驶意图预测方法。通过大量重复实验和对实验数据的观察分析,对车辆运行过程中驾驶员的驾驶意图进行数理统计,得出驾驶意图一步转移概率的统计规律性,得到了驾驶意图马尔科夫链的一步转移概率矩阵。提出了基于驾驶意图预测的随机动态规划混合动力汽车控制算法。根据驾驶意图之间的一步转移概率矩阵对动态规划代价函数“取平均”,对代价函数采取加权平均的方法,使每个驾驶意图都能按其跳转概率对下一阶段的代价函数产生影响。本算法可以不依赖于每一时刻具体的驾驶意图,把驾驶意图的跳转看作是一个随机过程,在已知驾驶意图之间的一步转移概率矩阵的条件下,便可计算出近似最优的一组控制量。通过仿真实验将基于驾驶意图预测的整车控制策略与其它几种控制策略进行了对比。从燃油经济性方面可以看出,基于驾驶意图预测的整车控制策略虽然不能达到最优控制,但可以达到近似最优,使动态规划算法不再需要已知每一时刻的驾驶意图,为动态规划算法能在混合动力汽车整车控制中得到实时应用打下了基础。
     4.对混合动力客车的制动特性进行了分析,得到了混合动力客车制动力分配系数的下限值及在ECE制动法规限制下电机再生制动力的上限值。根据驾驶员制动意图的识别结果优化了期望制动强度的计算方法。提出了基于驾驶员制动意图识别的再生制动控制策略。此控制策略根据驾驶员制动意图的紧急程度,在制动的时候充分利用电机制动,提高了能量回收的比率。
     5.对实验台架进行了功能性的调试,验证了整车控制策略可以使试验台架实现混合动力汽车常用的功能和运行模式。进行了实车实验,在一汽技术中心的重型车辆底盘转毂试验台对实验车进行了动力性和经济性的实验。验证了整车控制策略可以在实车上实现设计的功能和运行模式。在车辆经济性和动力性方面,实车实验结果略逊于仿真实验结果,但要优于一汽第一代混合动力客车。
The control strategy optimization of JieFang Hybrid Electric Bus is studied in thispaper, which is sponsored by the state “863” high-tech program (No.2008AA11A140)“Development of New Vehicle Technologies for the JieFang Hybrid Electric Bus ofFAW”and the jointed action project among Jilin province, FAW, and Jilin university“Pre-research on the Key Technologies for the SecondGeneration Hybrid Electric BUS ofFAW”. There are five parts of contents were proposed in this paper.
     1. A driving intention fuzzy identification method was proposed.Driving intentionswere classified and driving intention identification parameters were selected.Thetheoretical basis of driving intention identification was elaborated. The membershipfunctions, fuzzy inference rules and driving intention fuzzy identification model based onSIMULINK were built.To test and verify the driving intention identification method, theexperimental verification was done. According to identification result, someparameters’membership functions were optimized by fuzzy-neural network, whichincreases the identification accuracy of driving intention fuzzy identification model.
     2. A demand torque calculation method of hybrid electric bus was proposed based ondriving intention identification result, which makes demand torque calculation resultaccord with drivers’ demand perfectly.Aiming at drivers of different driving styles,different control strategies of hybrid electric bus were designed which lets control strategyadjust at real time according with the driver’s driving style and makes control strategyhave adaptability.Control strategy simulation was done, which indicates that economycontrol strategy makes the hybrid electric bus’s economy performance better with nodynamic performance decline and dynamic control strategy makes the hybrid electricbus’s dynamic performance better with no economy performance. Comparing withoriginal control strategy, the economy and dynamic performance are better because ofadaptive control strategy based on driving style identification.
     3. Driving intention prediction method based on Markov chain is proposed. Byanalysis of massive experimental data, driving intention has been analyzed statistically inthe process of driving and one-step transition probability matrix of driving intentionMarkov chain has been calculated. A hybrid vehicle control algorithm based on drivingintention prediction stochastic dynamic programming is proposed. Take the average ofdynamic programming cost function, according to driving intention one-step transition probability matrix and adopt weighted average method to calculate the cost function,which make every driving intention has an effect on next stage cost function based ondriving intention one-step transition probability. This algorithm is independent on drivingintentions at every moment and takes driving intention transition as a stochastic process.On the condition that driving intention one-step transition probability matrix is known, agroup of optimal control variables can be calculated. The control strategy based ondriving intention prediction and other control strategies have been contrasted bysimulation. From the fuel economy aspect, control strategy based on driving intentionprediction cannot obtain optimal control, but it is an approximate optimal control strategy.This control strategy makes dynamic programming algorithm don’t need knowing drivingintention at every moment and lay a solid foundation for the real-time using of dynamicprogramming algorithm in hybrid vehicle control strategy.
     4. Braking characteristics of hybrid electric bus were analyzed. The minimal value ofbraking distribution coefficient and the maximal value of motor regenerative brakingforce were calculated.Computing method of braking demand severity was optimizedbased on braking intention identification result. A regenerative braking control strategybased on braking intention identification was proposed. Motor brake is mainly used in thebrake process according to the brake emergency degree, so energy recovery ratio isincreased.
     5. Bench test was done to prove that the bench has functions and operation modes ofhybrid electric vehicles under the control strategy. Dynamic and economic performancetests of prototype vehicle were done on the heavy-duty vehicle chassis dynamometer ofFAW R&D center to prove that prototype vehicle has functions and operation modes thatare preconceived.At dynamic and economic performance aspect, prototype vehicle testresult is not better than simulation result, but is better than FAW first generation hybridelectric bus.
引文
[1] M. Ehsani, Y. Gao, and K. Butler. Application of electric peaking hybrid propulsionsystem to a full size passenger car with simulation design verification [J]. IEEETransaction on Vehicular Technology,48(6):1779-1887, November1999.
    [2] Y. Gao, K. M. Rahman, and M. Ehsani. The energy flow management and batteryenergy capacity determination for the drive train of electrically peaking hybrid [J].Society of Automotive Engineers (SAE) Journal, Paper No.972647, Warrendale, PA,1997.
    [3] Y. Gao, K. M. Rahman, and M. Ehsani. Parametric design of the drive train of anelectrically peaking hybrid vehicle [C]. Society of Automotive Engineers (SAE)Journal, Paper No.970294, Warrendale, PA,1997.
    [4] C. Liang, W. Weihua and W. Qingnian. Energy Management Strategy and ParametricDesign for Hybrid Electric Military Vehicle[C]. SAE paper2003-01-0086.
    [5] P. Pisu, and G. Rizzoni. A comparative study of supervisory control strategies forhybrid electric vehicles [J]. IEEE Transaction on Control Systems Technology,15(3):506-518, May2007.
    [6] C.-C. Lin, H. Peng, J. W. Grizzle, and J.-M. Kang. Power management strategy for aparallel hybrid electric truck[J]. IEEE Transactions on Control System Technology,11(6):839-849, November2003.
    [7] C.-C. Lin, J.-M. Kang,J. W. Grizzle, H. Peng. Energy management strategy for aparallel hybrid electric truck[C]. Proceedings of the American Control Conference,Arlington, VA, June25-27,2001.
    [8] C.-C. Lin, H. Peng, S. Jeon, and J.-M. Lee. Control of a hybrid electric truck basedon driving pattern recognition[C]. Proceedings of the2002Advanced Vehicle ControlConference, Hiroshima, Japan, September2002.
    [9] C.-C. Lin, Z. Filipi, L. Louca, H. Peng, D. Assanis, and J. Stein. Modeling andcontrol of a medium-duty hybrid electric truck[J]. International Journal of HeavyVehicle System.11(3/4):349-371,2004.
    [10]张博.可外接充电混合动力汽车能量管理策略研究[D].吉林大学博士学位论文.2009.12.
    [11]于永涛.混联式混合动力车辆优化设计与控制[D].吉林大学博士学位论文.2010.6.
    [12]朱元,田光宇,陈权世等.混合动力汽车能量管理策略的四步骤设计方法[J].机械工程学报,2004,40(8):127-133.
    [13]舒红,刘文杰,袁景敏等.混联型混合动力汽车能量管理策略优化[J].农业机械学报,2009,40(3):31-35.
    [14]欧阳易时,金达锋,罗禹贡.并联混合动力汽车功率分配最优控制及其动态规划性能指标的研究[J].汽车工程,2006,28(2):117-121.
    [15]浦金欢,殷承良,张建武.并联型混合动力汽车燃油经济性最优控制[J].上海交通大学学报,2006,40(6):947-951.
    [16]隗寒冰,秦大同,段志辉.重度混合动力汽车燃油经济性和排放多目标优化[J].汽车工程,2011,33(11):937-941.
    [17]聂天雄.插电式并联混合动力汽车模型预测控制[D].重庆大学硕士学位论文.2011.5.
    [18]高银平.中度混合动力汽车燃油经济性最优控制研究[D].重庆大学硕士学位论文.2008.6.
    [19]舒红,高银平,杨为等.中度混合动力汽车燃油经济性预测控制研究[J].公路交通科技,2009,26(1):149-153.
    [20]舒红,蒋勇,高银平.中度混合动力汽车模型预测控制策略[J].重庆大学学报,2010,33(1):36-41.
    [21]Johnson V H, Wipke K B, Rausen D J. HEV controlstrategy for real-timeoptimization of fuel economy andemissions[C]. SAE Paper2000-01-1543.
    [22]Paganelli G, Tateno M, Brahma A,et al. Control development for a hybrid-electricsport-utility vehicle. Strategy, implementation and field test results[C].Proceedings ofthe American Control Conference, Arlington,2001.
    [23]黄援军,殷承良,张建武.并联式混合动力城市客车最优转矩分配策略[J].上海交通大学学报,43(10):1536-1540.
    [24]T. Hofman, M. Steinbuch, R. van Druten, and A. Serrarens. Rule-based equivalentfuel consumption minimization strategies for hybrid vehicles[C]. Proceedings of the17thIFAC World Congress,2008.
    [25]刘乐.串联混合动力汽车建模与能源管理系统控制策略研究[D].吉林大学博士学位论文.2011.12.
    [26]H.-D. Lee and S.-K. Sul. Fuzzy logic based torque control strategy for parallel typehybrid electric vehicle[J]. IEEE Transaction on Industrial Electronics,45(4):625-632,August1998.
    [27]G. Shi, Y. Jing, A. Xu and J. Ma. Study and simulation of fuzzy logic based parallelhybrid electric vehicles control strategy[C]. Proceedings of the Sixth International onIntelligent Systems Design and Application,2006.
    [28]R. Langari and J.-S. Won. Intelligent energy management agent for a parallel hybridvehicle-part I: System architecture and design of the driving situation identificationprocess[J]. IEEE Transactions on Vehicular Technology,54(3):925-934, May2005.
    [29]R. Langari and J.-S. Won. Intelligent energy management agent for a parallel hybridvehicle-part II: Torque distribution, charge sustenance strategies, and performanceresults[J]. IEEE Transactions on Vehicular Technology,54(3):935-953, May2005.
    [30]井济民,王旭东.单轴并联式混合动力汽车能量分配的模糊控制策略研究[J].齐齐哈尔大学学报,26(2):15-18.
    [31]明少民.并联混合动力汽车模糊逻辑控制策略研究.吉林大学硕士学位论文[D].2007.6.
    [32]尧文亮.并联式混合动力汽车能量控制策略研究.湖南大学硕士学位论文[D].2010.5.
    [33]王伟华,王庆年,曾小华.并联混合动力汽车自适应控制策略[J].汽车工程,31(9):834-838.
    [34]熊祖品,王宏,李艾丹等.基于模糊控制理论并联混合动力城市客车控制策略研究[J].客车技术与研究,2008(2):9-12.
    [35]过磊.混合动力电动汽车驱动控制策略与能量控制系统研究[D].广西大学硕士学位论文.2006.6.
    [36]胡先锋.并联混合动力汽车动力系统优化及控制策略研究[D].合肥工业大学硕士学位论文.2009.4.
    [37]付健夫.不同工况下的混合动力汽车的整车性能研究[D].哈尔滨工业大学硕士学位论文.2007.7.
    [38]钱立军,袭著永,赵韩.基于模糊神经网络的混合动力汽车控制策略仿真[J].系统仿真学报,18(5):1384-1387.
    [39]刘家良.基于模糊神经网络的混合动力电动汽车能量管理的研究[D].武汉理工大学硕士学位论文.2003.2.
    [40]陈慧勇,吴光强.混合动力汽车补偿模糊神经网络能量管理策略[J].同济大学学报(自然科学版),37(4):525-530.
    [41]孔庆,崔纳新,吴剑,张承慧.基于神经网络的并联式混合动力汽车控制策略[J].系统仿真学报,2009,21(18):5831-5835.
    [42]吴剑,张承慧,崔纳新.并联式混合动力汽车的BP网络实时能量管理[J].电机与控制学报,2008,12(5):610-614.
    [43]张昕,宋建峰,田毅,张欣.基于多目标遗传算法的混合动力电动汽车控制策略优化[J].机械工程学报,45(2):36-40.
    [44]连志伟,邓亚东,颜超.基于小生境遗传算法的混合动力汽车参数优化[J].武汉理工大学学报,31(5):102-105.
    [45]田毅,张欣,张昕,宋建锋.计及行驶工况影响的混合动力汽车控制策略[J].汽车工程,32(8):659-663.
    [46]吴艳苹,刘旭东,段建民.基于混合遗传算法的混合动力汽车优化设计研究[J].机械设计与制造,2008(9):22-24.
    [47]王婷.混合动力电动汽车控制策略的优化研究[D].北京交通大学硕士学位论文.2009.6.
    [48]浦金欢,殷承良,张建武.遗传算法在混合动力汽车控制策略优化中的应用[J].中国机械工程,16(7):648-651.
    [49]吴剑,张承慧,崔纳新.基于粒子群优化的并联式混合动力汽车模糊能量管理策略研究[J].控制与决策,2008,23(1):46-50.
    [50]周艳.混合动力汽车能量管理系统的模糊控制研究[D].武汉理工大学硕士学位论文.2008.5.
    [51]朱传高.并联混合动力汽车遗传模糊控制策略的优化研究[D].吉林大学硕士学位论文.2009.4.
    [52]吴光强,陈慧勇.基于遗传算法的混合动力汽车参数多目标优化[J].汽车工程,31(1):60-64.
    [53]张旸.混合动力客车动力系统设计及参数优化[D].合肥工业大学硕士学位论文.2010.4.
    [54]何仁,马承广,张涌等.基于驾驶意图的无级变速器目标速比确定方法[J].农业机械学报,40(5):16-19.
    [55]李莺莺,邵善锋,李学忠等.基于智能控制的装载机自动换挡策略[J].机械工程学报,45(8):217-220.
    [56]杨新桦,金国栋.金属带式无级变速器控制任务的分解[J].汽车工程,31(11):1017-1024.
    [57]易军,许忠保,邓援超等.履带车辆行驶环境与驾驶意图的模糊特征分析[J].湖北工业大学学报,23(2):86-88.
    [58]孙以泽,王其明.车辆AMT中道路条件及驾驶意图的模糊识别[J].汽车工程,23(6):419-422.
    [59]何仁,刘文光,黄大星.不同道路负荷的AMT车辆起步过程离合器控制策略[J].江苏大学学报,30(5):459-462.
    [60]吴晓刚,王旭东,余腾伟等.车辆起步过程电磁离合器控制策略的研究[J].汽车技术,2009(11):24-29.
    [61]鲁统利,王衍军.基于模糊控制的双离合器式自动变速器起步过程仿真研究[J].汽车工程,31(8):746-750.
    [62]Reza Langari and Jong-Seob Won.A Driving Situation Awareness-Based EnergyManagement Strategy for Parallel Hybrid Vehicles[C].SAE Paper2003-01-2311.
    [63]Hiroshi TAKAHASHI, Kouichi KURODA.A Study on Mental Modelfor InferringDriver's Intention[C].Proceedings of the35thConference on Decision and Control,Kobe, Japan, December1996.
    [64]Fazal U. Syed, Dimitar Filev, and Hao Ying.A Rule-Based Fuzzy DriverGuidanceControl System for Improving Fuel Economy in a Hybrid ElectricVehicle[C].Proceedings of North American Fuzzy InformationProcessing SocietyConference, pp.178-183, San Diego, USA, June24-27,2007.
    [65]Fazal U. Syed, Dimitar Filev, Hao Ying. Real time Advisory Systemfor FuelEconomy Improvement in a Hybrid Electric Vehicle[C].Proceedings of NorthAmerican Fuzzy Information Processing SocietyConference, pp.1-6, New York, NewYork, USA, May19-22,2008.
    [66]Fazal U. Syed, Dimitar Filev, Hao Ying. Adaptive Real-Time Advisory System forFuel Economy Improvement in a Hybrid Electric Vehicle[C].Proceedings of NorthAmerican Fuzzy Information Processing SocietyConference,Cincinnati, Ohio, USA,June14-17,2009.
    [67]Dam Hoang Phucl, Pongsathorn Raksincharoensakl, Masao Nagaiand MasahiroSuzuki.Control Strategy for Hybrid Electric Vehicles Based on Driver VehicleFollowing Model[C].SICE-ICASE International Joint Conference2006,Bexco,Busan, Korea,Otc.18-21,2006.
    [68]Holger Berndt, Jorg Emmert, Klaus Dietmayer.Continuous Driver IntentionRecognition withHidden Markov Models[C].Proceedings of the11th InternationalIEEEConference on Intelligent Transportation SystemsBeijing, China, October12-15,2008.
    [69]Hideomi Amata, Chiyomi Miyajima, Takanori Nishino, Norihide Kitaoka, andKazuya Takeda. Prediction Model of Driving Behavior Based onTraffic Conditionsand Driver Types[C].Proceedings of the12th International IEEE ConferenceonIntelligent Transportation Systems, St. Louis, MO,USA, October3-7,2009.
    [70]Nguyen Van Danand Michitaka Kameyama.Bayesian-Networks-Based MotionEstimation fora Highly-Safe Intelligent Vehicle[C].SICE-ICASE International JointConference2006,Bexco, Busan, Korea,Oct.18-21,2006.
    [71]Nobuyuki Kuge, Tomohiro Yamamura and Osamu Shimoyama.A Driver BehaviorRecognition MethodBased on a Driver Model Framework[C].SAE Paper2000-01-0349.
    [72]石辛民,郝整清.模糊控制及MATLAB仿真[M].北京:清华大学出版社,2008.
    [73]王琦,王花兰.基于熵值法的城市汽车保有量组合预测[J].交通科技与经济,2009,56(6):53-55.
    [74]杜彦斌,曹华军,刘飞等.基于熵权与层次分析法的机床再制造方案综合评价[J].计算机集成制造系统,2011,17(1):84-88.
    [75]贾继德,陈安宇,朱忠奎.基于信息熵的时频参数优化及内燃机轴承磨损监测[J].农业工程学报,2010,26(4):203-207.
    [76]李元年.基于熵理论的指标体系区分度测算与权重设计[D].南京:南京航空航天大学,2008.
    [77]王铁,苏向东,张国忠.基于信息熵与现场数据的汽车零部件可靠性计算[J].中国工程机械学报,2007,5(2):138-141.
    [78]郭海龙,潘伟荣,邓书涛.基于熵权和综合评判的汽车维修企业顾客满意度研究[J].广东交通职业技术学院学报,9(4):56-60.
    [79]张兵,邓卫.基于信息熵理论的公路网物元评价方法[J].公路交通科技,2009,26(10):117-120.
    [80]田八林,李华星,张中荃.补偿模糊神经网络在模糊规则训练中的应用[J].计算机仿真,2006,23(10):11-13.
    [81]王冰泉,谢维达.机车故障诊断中征兆隶属度函数的研究[J].电力机车与城轨车辆,2004,27(6):9-11.
    [82]张金龙.电控发动机怠速模糊神经网络控制[J].智能控制技术,2004,26(6):25-26.
    [83]丁思敏,吴军基.改进模糊神经网络在负荷预测中的应用研究[J].电力学报,2009,24(2):101-104.
    [84]宋红英,纪威,李波.基于模糊神经网络的发动机故障诊断专家系统的研究[J].山东内燃机,2004,(5):9-11.
    [85]杨煌普,许晓鸣,张钟俊.基于模糊神经网络的控制规则获取及置信度估计问题[J].模式识别与人工智能,1994,7(1):53-58.
    [86]刘玉兵,张宗扬,谭华.基于模糊神经网络发动机状态监测警报系统的建立[J].润滑与密封,2009,34(7):74-76.
    [87]王庆年,唐先智,王鹏宇等.基于神经网络的混合动力汽车驾驶意图识别方法[J].农业机械学报,43(8):32-36.
    [88]施仁杰.马尔科夫链基础及其应用[M].西安电子科技大学出版社,1992.
    [89]胡迪鹤.随机环境中的马尔可夫过程[M].高等教育出版社,2011.
    [90]孙洪祥.随机过程[M].机械工业出版社,2008.
    [91]樊平毅.随机过程理论与应用[M].清华大学出版社,2005.
    [92]田铮.随机过程与应用[M].科学出版社,2007.
    [93]盖春英,裴玉龙.公路货运量灰色模型-马尔可夫链预测方法研究[J].中国公路学报,2003,16(3):113-116.
    [94]夏乐天,朱元甡,沈永梅.加权马尔可夫链在降水状况预测中的应用[J].水利水电科技进展,2006,26(6):20-23.
    [95]夏乐天.马尔可夫链预测方法及其在水文序列中的应用研究[D].河海大学博士学位论文,2005.
    [96]苗作华,刘耀林,王海军.耕地需求量预测的加权模糊-马尔可夫链模型[J].武汉大学学报,2005,30(4):305-308.
    [97]张启义,周先华,王文涛.基于灰色马尔可夫模型的柴油机磨损趋势预测[J].润滑与密封,2007,32(9):145-147.
    [98]朱元,吴志红,田光宇.基于马尔可夫决策理论的燃料电池混合动力汽车能量管理策略[J].汽车工程,2006,28(9):798-802.
    [99]许海华,吴云溪.灰色马尔可夫模型在交通事故预测中的应用[J].道路交通事故,2011,(4):83-85.
    [100]周勇有.基于马尔可夫预测的混合动力汽车控制策略[D].吉林大学硕士学位论文,2009.
    [101] Paganelli G,Santin J-J,Guerra T M,et al.Conception and control of parallel hybridcar powertrain[C]. Proc of the15th International Electric Vehicle Symposium,Brussels,Belgium,1998.
    [102] Gino Paganelli,Yann Guezennec,Giorgio Rizzoni.Optimizing Control Strategy forHybrid Fuel Cell Vehicle[C].SAE Paper2002-01-0102.
    [103] Cristian Musardo,Giorgio Rizzoni,Benedetto Staccia. An AdaptiveAlgorithm forHybrid Electric Vehicle Energy Management[C].Proceedings of the44thIEEEConference on Decision and Control,and the European Control Conference2005.
    [104] Volkan Sezer,Varlk Klc,Murat Yldrm.Maximizing Overall Efficiency Strategy forPower Split Control of a Parallel Hybrid Electric Vehicle.SAE Paper2008-01-2682.
    [105] Bruno Jeanneret,Tony Markel. Adaptive Energy Management Strategy for Fuel CellHybrid Vehicles[C].SAE Paper2004-01-1298.
    [106] Gino Paganelli,Yann Guezennec,Giorgio Rizzoni.Optimizing Control Strategy forHybrid Fuel Cell Vehicle[C].SAE Technical Paper2002-01-0102,2002.
    [107]胡红斐,黄向东,罗玉涛等.HEV实时等效能量消耗最小控制策略[J].汽车工程,2006,28(6):516-521.
    [108]石英乔,何彬,曹桂军等.燃油电池混合动力瞬时优化能量管理策略研究[J].汽车工程,2008,30(1):30-35.
    [109] Gino Paganelli, Gabriele Ercole, Avra Brahma et al.General supervisory controlpolicy for the energy optimization of charge-sustaining hybrid electricvehicles[J].JSAEReview,22(2001):511-518.
    [110] Antonio Sciarretta, Michael Back, Lino Guzzella. Optimal Control of ParallelHybrid Electric Vehicles[J].IEEE TRANSACTIONS ON CONTROL SYSTEMSTECHNOLOGY,12(3):352-263,2004.
    [111]朱庆林.基于瞬时优化的混合动力汽车控制策略研究[D].吉林大学博士学位论文.2009.12.
    [112]耿聪,刘溧,张欣.EQ6110混合动力电动汽车再生制动控制策略研究[J].汽车工程,2004,26(3):253-256.
    [113]王军,熊冉,杨振迁.纯电动大客车制动能量回收系统控制策略研究[J].汽车工程,2009,31(10):932-937.
    [114]陈泳丹,席军强,陈慧岩.单轴并联式混合动力城市客车再生制动挡位决策[J].北京理工大学学报,2012,32(4):370-376.
    [115]顾洪建,李腾腾,秦孔建.混合动力客车道路滑行试验研究[J].拖拉机与农用运输车,2010,37(6):73-76.
    [116]吕奉阳.纯电动客车再生制动与气压制动协调控制策略研究[D].吉林大学硕士学位论文,2009.
    [117]朱雅君.混合动力商用车再生制动及防抱死集成控制系统的研究[D].吉林大学硕士学位论文,2007.
    [118]赵国柱,杨正林,魏民祥.基于ECE法规的电动汽车再生制动控制策略的建模与仿真[J].武汉理工大学学报,32(1):149-152.
    [119]李玉芳,林逸,何洪文.电动汽车再生制动控制算法研究[J].汽车工程,2007,29(11):1059-1062.
    [120]李鹏,周云山,王楠.并联式混合动力再生制动系统控制策略研究[J].计算机仿真,2011,28(12):361-364.
    [121]张京明,崔胜民,宋宝玉.一种改进的再生制动控制策略优化[J].江苏大学学报,2009,30(3):246-250.
    [122]李国斐,林逸,何洪文.电动汽车再生制动控制策略研究[J].北京理工大学学报,2009,29(6):520-524.
    [123]秦大同,李江,杨阳.全轮驱动混合动力汽车再生制动系统控制策略[J].重庆大学学报,2008,31(9):971-976.
    [124] Y.Gao, L.Chen, and M.Ehsani. Investigation of the effectiveness of regenerativebraking for EV and HEV[C].SAE paper No.1999-01-2901,1999.
    [125] H.Gao, Y.Gao, and M.Ehsani. Design issues of the switched reluctance motor drivefor propulsion and regenerative braking in EV and HEV[C].SAE paperNo.2001-01-2526,2001.
    [126] Y.Gao and M.Ehsani. Electronic braking system of EV and HEV—integration ofregenerative braking, automatic braking force control and ABS[C].SAE paperNo.2001-01-2478,2001.
    [127] Y.Gao, L.Chu, and M.Ehsani. Design and control principle of hybrid brakingsystem for EV, HEV and FCV[C].2007IEEE VPPC,Arlington, TX,9-12Sept.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700