下沉式日光温室土质墙体传热特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,下沉式土质墙体日光温室在我国北方推广迅速,已成为生产中的主流温室,但目前尚缺乏系统的研究,存在着一些结构参数不合理但又缺乏理论依据的现象,适宜的墙体厚度就是一个典型的问题。
     为找出确定适宜墙体厚度的科学依据,本文于2010年元月至2011年6月对郑州地区两栋构造相同、唯墙体厚度不同的下沉式土质墙体日光温室进行了连续2年的室内外气温、地温,室内外地面太阳辐射,室内外墙体表面温度、热流量,室内外风速、风向等环境要素的监测,同时对墙体的热工特性也进行了实际测试。
     对供试温室土质墙体热工测试的结果是:土墙的导热系数为1.32W·m~(-1)·℃~(-1),热阻为0.758㎡·K·W-1,蓄热系数为14.3W·m~(-2)·℃~(-1)。这些数据表明土质墙体有良好的蓄、放热性能,对温室内的热环境,尤其是对夜间温度有足够的影响力。但土墙的导热系数较高,且热惰性指标小,室内温度易受室外低温的影响,即保温隔热性能差,所以单质土墙需要建造到一定的厚度才能有足够的保温能力。
     下沉温室的室内南沿存在着阴影区域,该区域面积大小与下沉深度、地理纬度等因素有关;受阴影的影响,南沿存在着一个低温区。低温区内的气温、土温温度以及低温区的面积等都有明显的日变化和季节变化规律,与同结构的非下沉式温室相比,在相同季节相同时间段,下沉式温室低温区的面积小而温度高。下沉后的室内地面,因向室外土壤横向传导的热流量减少而温度高于非下沉式温室;南沿下沉壁白天从室内吸收热量并向深层传导和储存,夜间再把热量释放出来以提高室内温度,尽管热流量比北墙小得多,但对南沿的低温区的温度提高却有着积极的影响;南沿下沉壁与室外土壤间也存在着热交换,在竖直方向上,壁面温度从上到下依次递增,在水平方向上,从壁面伸向室外土壤中,白天随深度增加而温度依次降低,夜间相反;冬季,距壁面水平深度40㎝处是壁面与室外土壤热交换的平衡点。
     温室北墙是温室夜间热量的一个重要来源。土质墙体具有良好的吸、储、放热性能,冬季,上午9点左右开始吸收热量,下午16点以后开始向外释放。内表面温度高,释放的热流量大,而外表面温度低,向外释放的热流量小。墙体向室内释放的热量对温室夜间温度尤其是前半夜的温度影响很大,起着主导作用;对墙内温度场的实测结果显示,墙体温度在厚度方向、长度方向及高度方向均存在着温差。在厚度方向上,由内表面到外表面,温度递减;墙体的内、外表面温度日变化活跃,越向墙体深处,温度的日变化越趋于缓和;墙内温度的变化与墙面温度相比,存在着滞后现象,越向深层,滞后越明显;在厚度的中心位置,存在热稳定层;热稳定层的厚度、位置均随墙体厚度、季节的变化而变化。热稳定层的存在与否,可以反映墙体的保温蓄热性能的高低。在高度方向上,墙体下部温度高,由下到上,温度递减;在长度方向上,墙体中部温度高,东西两端温度低,但西端的温度与中部很接近,东端稍偏低,温差较小;将温差与长度相比,所得温度梯度更小,所以可以认为沿长度方向没有热交换,土质后墙的热传导是二维的。
     在对墙体的传热特征进行了详细分析的基础上,建立了墙体二维非稳态传热模型,并采用有限差分法对模型进行了数值计算,利用Fluent软件对模型进行了模拟,得到了不同时刻、不同天气条件下墙内温度场,并对模拟数据与试验数据进行对比分析,模拟值与试验值曲线拟和较好。
     综合模型数值计算结果、实测结果及建造成本、土地利用率等因素,本文认为在郑州地区,下沉式日光温室土质墙体的适宜建造厚度为4m。本课题的研究为当地日光温室结构优化及推广应用提供了理论依据和试验范例。
In recent years, sunken soil wall sunlight greenhouses have rapidlyspread in northern China, but till now, its structural parameters are unreasonablebecause of Hack of systematic research, the suitable wall thickness is one typicalproblem.
     Since January2010to June2011, This paper measured the two greenhouseindoor and outdoor temperature, terrestrial solar radiation, wind speed and direction,indoor and outdoor wall surface temperature, heat flux, and other environmentalfactors in Zhengzhou, that structure parameters are same but wall thicknesses aredifferent, at the same time carried on an actual test to the hot work parameters of thesoil wall.
     The test greenhouse soil wall thermal parameters are: coefficient of thermalconductivity is1.32W m-1℃-1, thermal resistance is0.758(m2K)/W, the heatstorage coefficient is14.3W m-2℃-1, these number show that the soil wall has agood stockpile and release heat energy performance, and greatly influences on thegreenhouse thermal environment especially nighttime temperatures. But the indoortemperature in the soil wall greenhouse is vulnerable to outdoor How-temperaturebecause the thermal conductivity of the soil wall is higher wall and the thermal inertiaindex is Hower. So the pure soil wall must be constructed a certain thickness, itsinsulation capacity will be sufficient.
     There is a shaded area along the south edge in sunken greenhouse. The area sizeis decided by the facores like the sunken depth and the position of the sun; affected bythe shadow, the temperature in the area is lower than others, so the area is called low-temperature-region. Its temperature and area have a diurnal and seasonal variation.Compared with the non-sunken greenhouse in the same season and at the same time,the area of the low-temperature-region in the sunken greenhouse decreasedsignificantly and the temperature increased. In sunken greenhouse, the heat fluxconducting from indoor subsidence ground to outdoor soil reduced greatly, the southedge soil temperature and air temperature increased. Another reason is that the southsunken wall constantly released heat to the room. The heat flux is much smaller thannorther wall. In winter, the depth that40cm horizontal direction away from the southsunken wall, is the heat exchange equilibrium point of the south sunken wall andoutdoor soil;
     North wall is an important source of heat in the greenhouse at night. In thedaytime, the soil wall absorbs the sun radiation, but in the nighttime it releases theheat flux to the room, impacts on the indoor night temperature especially beforemidnight. There are temperature differences along the wall in the thickness direction,the length direction and height direction. In the thickness direction, from the innersurface to the outer surface, the temperature decreasing; surface temperature day range is greater than inside, and the more depths in the wall, the more relaxation thetemperature changes; in the center of the thickness, there is a thermal stability layer,its thickness and position change with the wall thickness and the season. It can reflectthe level of the wall heat preservation performance that the thermal stable layer exit ornot and its thickness.In the vertical direction, from bottom to top, the temperaturedecreasing; In the length direction of the wall, not only the temperature difference butalso the temperature gradient is small, so the thermal conductivity of the soil backwall is two-dimensional unsteady state heat conduction;
     Carried out a detailed analysis of the heat conduction characteristics of the wall,and modeled the wall two-dimensional unsteady heat transfer model. The numericalcalculation and simulation by the software Fluent using finite difference method onthe model showed the wall temperature field at different times and in differentweather conditions. Compared the experimental data, the simulation date was higher,but their curve fitted well. Combined with the values of model numerical calculations,the construction costs, land utilization and other factors, the paper concludes that4mis the suitable thickness of sunken sunlight greenhouse soil wall in Zhengzhou area.
引文
[1]孙治强,张绍文主编.日光温室建造与蔬菜栽培[M].郑州:河南科学技术出版社出版,1994:33-38
    [2]张福墁主编.设施园艺学[M].北京:中国农业大学出版社,2001:65-69
    [3]亢树华.鞍山日光温室的沿革和改进[J].农业工程学报,1990,6(2):101-102
    [4]安志信,张福墁,陈端生等编著.蔬菜栽培节能目光温室的建造及栽培技术[M].天津:天津科学技术出版社,1994:1-8
    [5]聂和民.日光温室的结构与发展问题探讨[J].农业工程学报,1990,6(2):100-101
    [6]李天来,何莉莉,印东生编著.日光温室和大棚蔬菜栽培[M].北京:中国农业出版社,1999:2-6
    [7]张真和.我国设施园艺发展对策[R].北京:全国农业技术推广服务中心,2011
    [8]李式军主编.设施园艺学[M].北京:中国农业出版社,2002:39-42
    [9]陈端生,郑海山,张建国.日光温室气象环境综合研究(三)-几种弧型采光屋面温室内宜射光量的比较研究[J].农业工程学报,1992(12):78-82
    [10]孙忠富,吴毅明,曹永华.日光温室中直射光的计算机模拟方法-设施农业光环境模拟研究分析之三[J].农业工程学报,1993,9(1):36-41
    [11]王静,崔庆华,林茂兹.不同结构日光温室光环境及补光研究[J].农业工程学报,2000(7):86-89
    [12]杨振超,邹志荣.不同结构类型节能日光温室内温、湿度比较研究[J].陕西农林科学,2002(3):25-28
    [13]张宏辉.果树日光温室气候环境及其调控技术(上)[J].西北园艺,2003(2):29-30
    [14]范建勋.日光温室冬春保温增温措施[J].农村科学实验,2003(1):15
    [15]孙炬仁.高寒地区节能日光温室的结构改进[J],农村实用工程技术,2003(2):24-25
    [16]]杨仁权,吴松.新型节能日光温室的设计[J].农业机械,2002(3):30-33
    [17]战景仁,陶正平,边鸣镝.不同结构节能型日光温室温光效果比较[J].吉林气象,2001(1):8-9
    [18]宫殿文,赫中利,路学方.本溪节能日光温室优化结构及增光保温措施探讨[J].辽宁农业科学,1999(1):22-25
    [19]丁秀华,王风珍.陈维志.辽宁省节能型日光温室采光面倾斜角优化选择[J].辽宁农业科学,1998(2):28-32
    [20]顾寿康.日光温室的光温性能及其管理[J].淮阴工学院学报,2002,11(5):36-38
    [21]徐刚毅,董天峰.日光温室保温被发展近况[J].蔬菜,1998(5):14-15
    [22]周新群.日光温室新型保温覆盖材料的研究[D].北京:中国农业大学(东校区),1998.
    [23]周长吉,周新群,桂金光.几种日光温室复合保温被保温性能分析[J].农业工程学报,1999,15(2):168-171.
    [24]陈端生,邱建军,王刚.几种日光温室外保温覆盖材料的保温性能[J].农业工程学报,1996,12(增):108-115.
    [25]任艳芳,何俊瑜,温祥珍.温室保温覆盖材料研究现状及进展[J].山西农业大学学报,2005,25(2):183-185.
    [26]徐刚毅,周长吉.日光温室PE发泡自防水保温被的研制与性能测试[J].农业工程学报,2005,21(1):128-131.
    [27]乔正卫,邹志荣,杨双晓.一种日光温室保温被的保温性研究[J].农机化研究,2008(6):131-133
    [28]王桂英,康国斌.日光温室环境条件及其回归预测[J].北京农学院学报,1994,9(2):75-84
    [29]孙治强.黄淮改良型日光温室的设计与性能研究[J].农业工程学报,1996,12(增):41-46
    [30]亢树华.鞍山日光温室的沿革和改进[J].农业工程学报,1990,6(2):101-102
    [31]陈端生,郑海山,刘步洲.日光温室气象环境综合研究I-墙体、覆盖物热效应研究初报[J].农业工程学报,1990,6(2):77-81
    [32]陈端生.中国节能型日光温室建筑与环境研究进展[J].农业工程学报,1994,14(1):123-129
    [33] Chen duansheng. Theory and Practice of Energy-saving Solar Greenhouse inChina[J].Transaction of the Chinese society of agricultural engineering,2001,17(1):22-26
    [34]亢树华,房思强,戴雅东.节能型日光温室墙体材料及结构的研究[J].中国蔬菜,1992(6):1-5
    [35]亢树华.日光温室优型结构的研究[J].农业工程学报,1996,12(增):30—35
    [36]杨昊谕,于海业.东北地区日光温室保温性能实验研究[J].内蒙古农业大学学报(自然科学版,2007,28(3):8-10
    [37]佟国红,王铁良,自义奎.日光温室节能墙体的选择[J].可再生能源,2003,04:14-16
    [38]周长吉.日光温室结构优化设计及综合配套技术(四)日光温室围护结构-墙体的保温性能[J].设施西艺,1999(4):7
    [39]刘文合,王铁良,白义奎.辽沈I型日光温室的建造[J].农村实用工程技术,2003(1):8
    [40]孟少春,王铁良.工厂化高效农业示范工程-辽沈I型节能目光温室(二)[J].新农业,1998(11):47-49
    [41]佟国红,王铁良,白义奎.日光温室墙体传热特性的研究[J].农业工程学报,2003,19(3):186-189
    [42]佟国红,王铁良,白义奎.日光温室墙体建筑参数对室内温度环境的影响[J].沈阳农业大学学报,2003,34(3):203-206
    [43]佟国红,王铁良,白义奎.日光温室墙体传热及节能分析[J].农业系统科学与综合研究,2003,19(2):101-105
    [44]徐刚毅,周长吉.外墙聚苯板复合墙体在日光温室中的应用[J].房材与应用,2002,30(1):27-29
    [45]徐刚毅.北京日光温室发展近况[C].北京地区温室产业发展研讨会论文集,北京农业科学(增刊):24-27
    [46]白义奎,王铁良,姜传军.外墙聚苯板复合墙体在日光温室中的应用[J].房材与应用,2002,30(1):27-29
    [47]白义奎,王铁良.东北型节能日光温室-辽沈I型日光温室特点[J].农村实用工程技术2001(11):8
    [48]张真和.高效节能型日光温室的开发进展及问题讨论[J].中国蔬菜,1992(9):1-3
    [49]李小芳,陈青云.墙体材料及其组合对日光温室墙体保温性能的影响[J].中国生态农业学报,2006,14(4):185-189
    [50]郭慧卿,李振海,崔引安.日光温室北墙构造与室内温度环境的关系[J].沈阳农业大学学报,1995,26(2):193-199
    [51]李振海,郭慧卿.日光温室几何参数与室内温度环境的关系[J].沈阳农业大学学报,1995,26(1):58-63
    [52]高志奎,武占会,任士福.经济型节能日光温室的设计与温光性能[J].河北农业大学学报,2004(9):27-30
    [53]张立芸.新材料墙体日光温室的试验研究[D].北京:中国农业大学,2006
    [54]周玮,陈超,薛亚宁.被动式太阳能-相变蓄热温室传热特性的初步研究[R].北京:北京工业大学建筑工程学院,2008
    [55]薛亚宁,陈超,李清清.复合相变蓄热墙体材料应用于日光温室的效果研究[J].北方园艺,2010(15):6-11
    [56]白义奎,刘文合,王铁良等缀铝箔聚苯板空心墙体保温性能的测试与分析[J].新型建筑材料,2003,19(3):190-195
    [57]白义奎,刘文合,王铁良等.缀铝箔聚苯板空心墙体保温性能理论研究[J].农业工程学报,2003,19(3);190-195
    [58]梁建龙,王旭峰.阿拉尔垦区日光温室墙体的保温设计[J].塔里木农垦大学学报,2002,14(1):29-30
    [59]杨建军,邹志荣※,张智.西北地区日光温室土墙厚度及其保温性的优化[J].农业工程学报,2009,25(8):180-185
    [60]陈青云.单屋面温室光照环境的数值实验[J].农业工程学报,1993(9):96-101
    [61]王全.新型组合式节能日光温室[J].农村能源,2000(6):5-6
    [62]宋俊果.日光温室热环境分析指标与建筑参数的研究[D].北京:中国农业大学,1997
    [63]王谦,陈景玲,孙治强.冬季日光温室北墙内表面热流分析[J].中国农业气象,2010,31(2):225-229
    [64]房树田,高跃春.EPS外保温复合墙体的保温层厚度设计研究[J].黑龙江工程学院学报(自然科学版),2004,18(01):57-59
    [65]郦伟,董仁杰,汤楚.日光温室的热环境理论模型[J].农业工程学报,1997,13(2):160-163
    [66]杨晓光,陈端生,郑海山.日光温室气象环境综合研究(四)-日光温室地温场模拟初探[J].农业工程学报,1994,10(1):150-156
    [67]李元哲.日光温室微气候的模拟与实验研究.农业工程学报,1994,10(1):130-13
    [68]陈青云,汪政富.节能型日光温室热环境的动态模拟[J].中国农业大学学报,1996,1(1):67-72
    [69]郭慧卿,李振海,张振武.日光温室温度环境动态模拟1-数学模型的建立与程序验证[J].沈阳农业大学学报,1994,25(4):438-443
    [70]李小芳.日光温室的热环境数学模拟及其结构优化[J].北京:中国农业大学,2005
    [71]谷欲.新型日光温室的研究[D].北京:北京农业工程大学,1996
    [72]马春生,张静,王双喜.日光温室地温模型及数值模拟[J].山西农业大学学报,2004,24(1):82-84
    [73]李永欣.Venlo型温室自然通风降温的实验研究与CFD模拟[D].北京:中国农业大学,2003
    [74]陈忠购.CFD在机械通风的华北型连栋塑料温室的应用研究[D].北京:中国农业大学,2004
    [75]朱见文.冬季供暖条件下连栋温室夜间热环境的CFD模拟[D].北京:中国农业大学,2005
    [76]佟国红,李保明,David M. Christopher.用CFD方法模拟日光温室温度环境初探[J].农业工程学报,2007,23(7):178-185
    [77]佟国红,David M.Christopher.墙体材料对日光温室温度环境影响的CFD模拟[J].农业工程学报,2009,25(3):153-157
    [78]李本卿.强制通风条件下Venlo型温室内气流场和温度场的CFD数值模拟研究[D].镇江:江苏大学,2009
    [79] Pollet I V,Pieter J G.Condensation and radiation transmittance of greenhouse claddingmaterials,part3:results for gHass plates and plastic films[J].J agric.Engng Res.2000,77(4):419-428
    [80] Kozai T.Direct solar Hight transmission into single-span greenhouses.Agriculturalmeteorology,1977,18:327-338
    [81]高倉直,立花一雄,古在豐树.温室の熱收支[J].農業気象,1968,24(1):7-10
    [82] Smith C V,Kingham H G.A contribution to glasshouse design[J]. AgriculturalMeteorology,1971,8:447-468
    [83] Critten D H. The effect of geometric configuration on the Hight transmission ofgreenhouse[J]. J.agric.EngngRes.1984,29:199-206
    [84] Staley H M,Monk G J,Molnar J M.The influence of thermal curtains on energy utilizationin glass greenhouses[J].J.agric.Engng Res.1986,33:127-139
    [85] Arinze E A,Schoenau G J,Besant R W.A dynamic thermal performance simulation modelof an energy conserving greenhouse with thermal storage[J].TRANSACTIONS of the ASAE,1984:508-517
    [86] Duncan G A,Hoewer O J,CoHHiver Jr D G.Simulation of energy flows in a greenhouse:magnitudes and conservation potentiaH.TRANSACTIONS of the ASAE,1981:1014-1021
    [87] Papadakis G,BriassouHis D,Scarascia G,et a1.Radiometric and thermal properties of, andtesting method for, greenhouse covering materials[J]. J.agric. Engng Res.2000,76:227-236
    [88] Stephenson D G. MitaHas G P. CooHing Hoad calculation by thermal response factorsmethod[J]. ASHRAE Transaction.1967,73(2):1-10
    [89] MitaHas G P, Stephenson D.G. Room thermal response factor[J].ASHRAE Transaction,1967,73(2):111-117
    [90] MitaHas G P. Calculation of transient heat flux through walls and roofs[J].ASHRAETransactions,1968,74:182-188
    [91] SpiHter J D,Fisher D E.Development of periodic response factors for Use with the radianttime series method[J].ASHRAE Transactions,1999,105(2):491-502
    [92] Stephenson D G,MitaHas G P.Calculation of heat conduction transfer function formulti-Heights Habs[J].ASHRAE Transactions,1971,77:117-126
    [93] MitaHas G P.Comments on the Z-transfer function method for calculating heat transfer inBuilding[J].ASHRAE Transactions,1978,84:663-667
    [94] Peavy B A.A note on response factors and conduction transfer function[J].ASHRAETransactions.1978,84:688-690
    [95] Harris S M,McOuiston F C.A study to categorize walls and roofs on the basis of thermalresponse[J].ASHRAE Transactions,1988,94(2):688-714
    [96]张峰.下沉式日光温室温度环境模拟与实验研究[D].济南:山东建筑大学,2009
    [97] Sharma.P.K,Tiwari G N.Parametric study of a greenhouse by using Runge-Kutta methodsEnergy Conversion&Management,1999,40:901-912
    [98] Bargach M N A. Heating system using fiat plate collectors to improve the inside greenhousemicroclimate in Morocco[J].RenewabHe Energy,1999,18(3):367-381
    [99] Pieter J G,DeHtour J M. Modeling solar energy input in greenhouses [J]. Solar Energy,1999,67:119-130
    [100] C.Kittas,M.Karamanis,N.KatsouHas.Air temperature regime in a forced ventilatedgreenhouse with rose crop[J].Energy and Buildings2005,37:807-812
    [101] IeaH Iga et a1. Effect of air density variations on greenhouse temperatureModel[J].Mathematical and Computer Modelling,2008,47:855-867
    [102] F Rodriguez,H.J.Yebra,M.Berenguel.Modeling and simulation of greenhouse climateusing dymola[J].15thTriennial World Congress,Barcelona,Spain
    [103] Vollebregt,H.J.M,van de Braak,N.J.Analysis of radiative and convective heat exchangeat greenhouse walls[J].J.Agric.Eng.Res.1995,60(2):99-106
    [104] C.Kittas,T.Bartzanas.Greenhouse microclimate and dehumidification effectiveness underdifferent ventilator configurations[J].Building and Environment,2007,42:3774-3784
    [105]籍秀红.日光温室墙体材料保温蓄热性能的测试与研究[D].北京:中国农业大学,2007
    [106]张峰,张林华.下沉式日光温室土质墙体的保温蓄热性能[J].可弄生能源,2009,27(3):18-20
    [107]孙治强,孙丽,王谦.日光温室土壤温度环境边际效应[J].农业工程学报,2009,25(5):150-155
    [108]孙丽.日光温室边际效应初步研究[D].郑州:河南农业大学,2008
    [109]白义奎.节能日光温室环境及保温性能研究[D].沈阳:沈阳农业大学农业水土工程学院,2003.
    [110]刘建,周长吉.日光温室结构优化的研究进展与发展方向[J].内蒙古农业大学学报(自然科学版),2007,28(03):264-268
    [111]张立芸,徐刚毅,马承伟.日光温室新型墙体结构性能分析[J].沈阳农业大学学报,2006,37(03):459-462
    [112]曲继松,张丽娟,冯海萍.宁夏干旱风沙区夯土砖土复合墙体日光温室保温性能初步研究[J].西北农业学报,2010,19(1):158-163
    [113]佟国红,李天来,王铁良.大跨度日光温室室内微气候环境测试分析[J].华中农业大学学报,2004,35(12):67-73
    [114]周玮.相变蓄能墙体材料在日光温室节能应用中的可行性研究[D].北京:北京工业大学土木工程,2010
    [115]陈福广.墙体材料行业发展低碳经济之路[J].砖瓦,2010(8):18-20
    [116]杨艳超.不同结构复合墙体的传热特性[J].能源与环境,2005(03):38-41
    [117]庞丽萍,王浚,张艳红.复合保温墙体传热研究[J].低温建筑技术,2003(04):67-69
    [118]李有,赵勇,董中强.日光温室增温系数及其时空变化规律[J].华中农业大学学报,2002,21(2):172-174
    [119]贾永英,刘晓燕,戴萍.复合墙体热传递过程的计算与分析[J].大庆石油学院学报,2003,27(3):80-82
    [120]杨仁全,马承伟,刘水丽.日光温室墙体保温蓄热性能模拟分析[J].上海交通大学学报(农业科学版),2008,26(5):449-453
    [121]蒋志刚,龙剑.复合外墙内外保温的传热特性研究[J].制冷,2006,25(2):44-47
    [122]魏玲,童艳,陈桂英.加气混凝土墙体非稳态传热的数值模拟[J].南京工业大学学报,2003,25(02):53-56
    [123]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006:34-197
    [124] Harmanto,H.J. Tantau,V.M. Salokhe.Microclimate and air exchange rates in greenhousescovered with different nets in the humid tropics[J].Biosystem Engineering,2006,94(2):239-253
    [125] A. Baille,J.C. Hópez,S. BonacheHa.Night energy balance in a heated How-cost plasticgreenhouse[J].Agricultural and Forest Meteorology,2006,137(1-21):107-118
    [126] J.C. Roy,T. Boulard,C. Kittas. PA—Precision Agriculture: Convective and VentilationTransfers in Greenhouses,Part1: the Greenhouse considered as a Perfectly Stirred Tank[J].Biosystem Engineering,2002,83(1):1-20
    [127] MathaHa J G,Pitam C. Effect of greenhouse design parameters on conservation of energyfor greenhouse environmental controH [J].Energy,2002,27(8):777-794
    [128] Amar M. Khudhair,Mohammed M. Farid.A review on energy conservation in BuildingappHications with thermal storage by Hatent heat using phase change materials[J].EnergyConversion and Management,2004,45(2):263-275
    [129] American Society of Heating,Refrigerating and Air-Conditioning Engineers.ASHRAEHandbook, Fundamentals Volume[M].Atlanta,GA:American Society of Heating,Refrigeratingand Air-Conditioning Engineers,Inc.,2001
    [130]李军,杨世宏.日光温室保温墙体的厚度确定和成本概算[J].宁夏农林科技,2002(4):28-29
    [131]李建设,白青,张亚红.日光温室墙体与地面吸放热量测定分析[J].农业工程学报,2010,26(4):231-236
    [132]王晓冬,马彩雯,吴乐天.日光温室墙体特性及性能优化研究[J].新疆农业科学,2009,46(5):1016-1021
    [133]白青,张亚红,刘佳梅.日光温室土质墙体内温度与室内气温的测定分析[J].西北农业大学学报,2009,18(6):332-337
    [134]董瑞.沙荒地日光温室墙体传热性能研究[D].济南:山东建筑大学,2007
    [135]于威,王铁良,任冰洁.辽沈I型日光温室内热平衡的建立及数值模拟[J].节能,2005,(8):22-24
    [136]彦启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社,1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700