基于叶绿素荧光光谱分析的植物生理信息检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断进步,环境控制系统已得到全面发展,而植物生理信息检测技术和诊断系统发展较为缓慢,因此,快速、准确、无损的植物生理信息检测技术逐渐成为设施农业发展的重点。本论文以现代植物生理学、生物物理学、生物化学理论为基础,以黄瓜和杨树两种植物为研究对象,运用叶绿素荧光光谱分析技术对植物叶片含水率、叶绿素a含量、荧光参数Fv/Fm、净光合速率、蒸腾速率、气孔导度及胞间CO2浓度进行定量分析;并在此基础上结合模式识别算法与叶绿素荧光光谱分析技术相对黄瓜霜霉病、蚜虫病、霜霉蚜虫双染和健康叶片进行定性分析及诊断研究,建立了黄瓜病虫害诊断模型。与此同时,根据叶绿素荧光的产生特点,优选激发及荧光接收装置,构建了激光诱导式叶绿素荧光光谱采集硬件系统并开发了与之相配套的植物生理信息检测软件系统平台,为植物生理信息无损检测技术开辟了新的途径。
Growth and health status of plants can be reflected by detecting their physiological information which is a foundation of intelligent cultivation. A base and key techniques of modern agriculture is how to realize that a new method of quickly, exactly and non-destructive detecting useful information of plant instead of routine way of time-consuming methods, complex analysis courses and high cost. Recent research on non-destructive testing technology of plant physiology information has been given more and more attention in all over the world especially in China. This work is supported by National High Technology Research and Development Program 863“Laser-induced Plant Physiological Information Detection Sensors and Diagnosis”(2007AA10Z203). A laser-induced chlorophyll fluorescence spectrum acquisition system was established firstly. Detection of chlorophyll fluorescence spectroscopy technique, chemometrics techniques combined with modern physical-chemical analysis techniques were applied to research on quantitative models for leaf moisture, chlorophyll content, fluorescence parameter Fv/Fm, net photosynthesis rate, transpiration rate, stomatal conductance and intercellular CO2 concentration for cucumber and poplar as objects. Qualitative models were established for cucumber pests and diseases diagnosis of base on chlorophyll fluorescence spectroscopy technique too.
     The main contents and conclusions in this paper were as follows:
     1. The relationship between chlorophyll fluorescence intensity and laser power was researched. Fluorescence spectrums, which were induced by four power (2.50mW, 5.00mW, 7.50mW, 10.00mW) of center wavelength 473nm and 660nm laser respectively, were analyzed in the experiment. Under this condition, fluorescence intensity variation of center wavelength 685nm and 732nm fluorescence in different plant physiology information (chlorophyll content, water content) were calculated and analyzed by MATLAB software. Results showed that there was a very significant linear correlation between fluorescence intensity of every peak position and laser power(R>0.91); chlorophyll content parameter impacted on the relationship between fluorescence intensity and laser power significantly, and a linear correlation between fluorescence intensity gradient of every peak position and chlorophyll content was found(R>0.86). Based on these results a mathematical model with chlorophyll content parameter of relationship between fluorescence intensity and laser power was established.
     2. Under different excitation conditions, the relationship between leaf chlorophyll content and chlorophyll fluorescence spectrum was analyzed quantitatively with PLSR (Partial Least Squares Regression, PLSR). The results indicated that model accuracy was the best in 473nm and 7.50mW laser, so this exciting condition is optimal.
     3. An acquisition system for plant physiological information determination was set up and the software system was developed in this paper. And based on these we applied an invention patent.
     4. Leaf moisture, chlorophyll content, fluorescence parameter Fv/Fm, net photosynthesis rate, transpiration rate, stomatal conductance and intercellular CO2 concentration of cucumber and poplar leaf samples were analyzed quantitatively by chlorophyll fluorescence spectroscopy technique.
     After spectra outliers being eliminated by Chauvenet theorem and concentration outliers being eliminated by leverage, student residual testing and COOK distance, the number of samples used for quantitative analysis of leaf moisture, chlorophyll content, fluorescence parameter Fv/Fm, net photosynthesis rate, transpiration rate, stomatal conductance, intercellular CO2 concentration were 194, 151, 149, 144, 143, 145, 148 for cucumber and 146, 146, 147, 147, 151, 143, 148 for poplar respectively.
     Comparison results of PLSR, BP (Back Propagation Neural Network, BP) and LS-SVM (Least Squares-Support Vector Machine, LS-SVM) with five wavelength and five pretreatment methods indicated that: (1) The established LS-SVM model with input was the best by the first ten principal components of 627-826nm combined with SNV (Standard Normal Variate, SNV) for leaf moisture. BP model with input was the best by the first eight principalμcomponent of full-band spectrum combined with SNV for chlorophyll content. LS-SVM with input was the best by the first nine principal component of full-band spectrum with WA (Wavelet Analysis, WA) for fluorescence parameter Fv/Fm. LS-SVM with input was the best by the first eight principal components of 627-864nm combined with WA for net photosynthesis rate. LS-SVM with input was the best by the first ten principal components of full-band spectrum combined with SNV for transpiration rate. BP with input was the best by the first ten principal components of full-band original spectrum for stomatal conductance. PLSR with input was the best by the fist twelve factor components of full-band spectrum combined with FDT (First-order Differential Treatment, FDT) for intercellular CO2 concentration.
     (2) The correlation coefficient of calibration set, root mean square error of calibration set, the correlation coefficient prediction set and root mean square error of prediction set were as follows: a) for cucumber leaf moisture, 0.9640, 0.4520%, 0.9442, 0.6116%, b) for poplar leaf moisture, 0.9546, 0.9941%, 0.9368, 1.2688%, c) for cucumber chlorophyll content, 0.9699, 0.0941mg/kg, 0.9519, 0.1511mg/kg, d) for polar chlorophyll content, 0.9775, 0.0944mg/kg, 0.9665, 0.1396mg/kg, e) for cucumber fluorescence parameter Fv/Fm, 0.9319, 0.0086, 0.9134, 0.0103, f) for poplar fluorescence parameter Fv/Fm, 0.9426, 0.0076, 0.9098, 0.0106, g) for cucumber net photosynthesis rate, 0.9519, 0.4632μmolm-2s-1, 0.9374, 0.5065μmolm-2s-1, h) for poplar net photosynthesis rate, 0.9439, 0.9034μmolm-2s-1, 0.9038, 1.1389μmolm-2s-1, i) for cucumber transpiration rate, 0.9786, 0.0349 mmolm-2s-1, 0.9448, 0.0449 mmolm-2s-1; j) for poplar transpiration rate, 0.9289, 0.3165 mmolm-2s-1, 0.9065, 0.3594 mmolm-2s-1, k) for cucumber stomatal conductance, 0.9378, 1.0123 mmolm-2s-1, 0.9244, 1.0841 mmolm-2s-1, l) for poplar stomatal conductance, 0.9554, 5.8858 mmolm-2s-1, 0.9097, 7.9426 mmolm-2s-1, m) for cucumber intercellular CO2 concentration, 0.9560, 3.1404μmolmol-1, 0.9249, 3.8901μmolmol-1, n) for poplar intercellular CO2 concentration, 0.9430, 5.7503μmolmol-1, 0.9080, 7.2289μmolmol-1.
     5. Two hundred and nineteen cucumber samples were used to discriminate among downy mildew disease, aphid disease, downy mildew and aphid disease and health by analyzing qualitatively:
     Classification results of PCA (Principal Component Analysis, PCA), DA (Discriminant Analysis, DA), DPLS (Discriminant Partial Least Squares, DPLS), BP and LS-SVM, and optimization results of five modeling bands (504-627nm, 627-826nm, 827-900nm, 627-786nm, 504-900nm) and five pretreatment methods (Savitzky-Golay smooth, FDT, FFT, SNV, WA) with input by different principal (factor) components were compared to indicate that established classification correctness model by BP with input by the first seven principal components of full-band spectrum combined with FDT was optimal. The optimal model had accurate rates of 100% for calibration and prediction set.
     Seven indicators of plant physiological information were analyzed quantitatively by chlorophyll fluorescence spectroscopy technique in this paper. Two kinds of plant sample (cucumber and poplar) were only taken as examples, so the results and conclusions were some specificity. A great variety of plant samples should be added into the models for enhancing accuracy and comprehensiveness in the future. The obtained results in this study indicated the potentiality of chlorophyll fluorescence spectroscopy technique to rapidly detect plant physiological information and discriminate plant diseases and insect pests. The study was a foundation of developing an instrument based on chlorophyll fluorescence spectroscopy technique for rapid detecting plant physiological information.
引文
[1]丁朝霞,刘永泰.数字农业研究进展及发展山西省数字农业的建议[J].科技情报开发与经济, 2006, 16(23): 117-119.
    [2]周国民.数字农业综述[J].农业图书情报学刊, 2004, 15 (18): 5-6.
    [3]俞菊生.上海“数字农业”框架构筑与发展对策[J].上海农业学报, 2002, 18 (2): 1-2.
    [4]王长耀,牛铮,唐华俊,等.对地观测技术与精细农业[M].北京:科学出版社, 2001: 8-11.
    [5]孙大业,郭艳林,马力耕,等.细胞信号传导[M].北京:科学出版社,2001.
    [6]陈丽,詹业宏,熊建文.生物电研究简史[J].工科物理, 1998,8(4):45-47.
    [7]王伯扬.神经电生理学[M].北京:高等教育出版社, 1991:5-110.
    [8]娄成后.高等植物中电化学波的信使传递[J].生物物理学报,1996,12(4):739-745.
    [9]卢善发.植物电信号的传递途径与方式[J].植物学通报,1996,13(4):23-27.
    [10] PICKARD B G. Action potential in higher plants[J]. Bot Rev, 1973,39:172-201.
    [11] PASZEWSKI A, ZAWADZKI T. Action potentials in Lupinus angustifolius shoots 3 Determination of the refractory periods[J]. J Exp Bot,1976,27:369-374.
    [12] SAKAMOTO M, SUMIYA K. The bioelectrical potentials of young woody plants[J]. Wood research, 1984, 70:42-46.
    [13] MWESIGWA J, COLLINS D J, VOLKOV A G. Electrochemical signaling in green plants:effects of 2,4- dinitrophenol on variation and action potentials in soybean[J], Bioelectrochemistry, 2000,(51):201-205.
    [14] PICKARD B G. Action potential resulting from mechanical stimulation of pea epicotyls[J]. Plant, 1971, 97: 106-115.
    [15] PASZEWSKI A, ZAWADZKI T. Action potentials in Lupinus angustifolius shoots[J]. J Exp Bot, 1973, 24: 804-809.
    [16] KSENZHEK O S, VOLKOV A G. Plant Energetics[M]. Academic, SanDiego, 1998.
    [17] VOLKOV A G, HAACK R A. Bioelectrochemical signals in potato plants[J].Russ J Plant Physiol,1995, (42):17-23.
    [18] SANDERSON B. Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula[J]. Proc Roy Soc London, 1873,21:495-496.
    [19] BOSE J C. The physiology of photosynthesis[M]. London: Longman, Green and Co, 1924:30-70.
    [20] BOSE J C. Growth and tropic movement of plants[M]. London: Longmans Green and Co, 1929:46-67.
    [21] Williams W T. Studies in stomata behaviour. I. Stomatal movement induced by heat~shock stimuli, and the transmission of such stimuli across the leaves of Pelargonium zonale[J]. Ann.Bot.N.S.,1948,Ⅻ,35~51.
    [22] GREENHAM C G, MULLER K O. Conductance changes and responses in potato tubers following infection with various strains of phytophthora and with pythium[J]. Aust J Bci, 1956,19:199-212.
    [23] SINYUKHIN A M, BRITIKOV E A. Generation of potentials in the pistils of Incarvillea and Lily in conjunction with movement of the stigma and fertilization[J]. Soviet Plant Physiol, 1967,14:393-403.
    [24] SINYUKHIN A M, BRITIKOVE A. Action potentials in the reproductive system of plants[J]. Nature, 1967,215: 1278-1280.
    [25] HANSTEIN S M, FELLE H H. Nanoinfusion: an integrating tool to study elicitor perception and signal transduction in intact leaves [J]. New Phytologist, 2004,161: 595-606.
    [26] WILDONDC,THAIN J F,MINCKIN P E H,et al.Electrical signaling and systemic proteinase inhibit or induction in the wounded plant[J].Nature,1992, 360:62-65.
    [27] SHVEHSOV A T, MWESIGW A J, VOLKOV A G. Plant electrophysiology: FCCP induces action potentials and excitation waves in soybean[J]. Plant Science, 2001, 161:901-909.
    [28] FAVRE P, GREPPIN H, AGOSTI R D. Repetitive action potentials induced inArabidopsis thalianaleaves by wounding and potassium chloride application [J]. Plant Physiol Biochem, 2001,39:961-969.
    [29]娄成后,邵莉楣,祝宗岭.植物体内刺激的电波传递[J].北京农业大学学报,1959(5):1-12.
    [30]娄成后.高等植物生长发育中物质的运输与信息的传递(二)[J].生物学通报,1991(12):1-3.
    [31]娄成后,冷强.乙酰胆碱在调节植物行为中的作用[J].生命科学,1996,8(2):4-7.
    [32]娄成后.高等植物中电化学波的信使传递[J].生物物理学报,1996,12(4):739-745.
    [33]娄成后,花宝光.植物信号系统—它在功能整合与适应环境中的作用[J].生命科学,2000,12(2):49-51.
    [34]金树德,张世芳.从玉米生理电特性诊断旱情[J].农业工程学报,1999,15(3):91-95.
    [35]王忠义,陈端生,黄岚.利用人工神经网络建立植物电信号与环境因子关系[J].农业工程学报.2001.17(3):142-144.
    [36] Liao J J, Guo H D, Shao Y. Modeling of mierowave dieleetrie Properties of rice growth stages in Zhaoqing test site of Southern China[J]. International Geoseienee and Remote Sensing SymPosium,2002,5:2620-2622.
    [37]鲍一丹,沈杰辉.基于叶片电特性和叶水势的植物缺水度研究[J].浙江大学学报(农业与生命科学版),2005,31(3):341-345.
    [38]李国臣,于海业,李强征,等.植物点位信号采集与处理方法的研究[J].农机化研究, 2006, 28(6):145-148.
    [39]郭文川,伍凌.失水对植物生理特性和电特性的影响[J].西北农林科技大学学报(自然科学版), 2007,35(4):185-188.
    [40]伍凌,郭文川.植物电信息与生理信息的试验研究[J].农机化研究,2007,3:136-138.
    [41]聂敏,聂帅.植物叶片电信号的实验测试与特性分析[J].西北大学学报(自然科学版), 2007,37(2):245-247.
    [42] Seginer I, Elster R T, Goodrum J W, et al. Plant wilt detection by computer vision tracking of leaf tips [J]. Transaction of the ASAE, 1992, 35(5): 1563~1567.
    [43] Howarth M S, Stanwood P C. Measurement of seedling growth rate by machine vision [J]. Transaction of the ASAE, 1993, 36(3): 959~963.
    [44] E.J. Van Henten, J Bontsema. Non-destructive crop measurements by image processing for crop growth control. Agric Engng Res, 1995, 61:97-105.
    [45] Baker B, Olszyk DM, Tingey D. Digital Image Analysis to Estimate Leaf Area[J].Journal of Plant Physiology,1996,148:530-535.
    [46] Singh N, Casady W W, Costello T A. Machine-vision-based nitrogen management models for rice [J]. Transaction of the ASAE, 1996, 39(5): 1 899~1 904.
    [47] Hemming J, Rath T. Computer-vision-based weed identification under field conditions using controlled lighting [J]. Journal of Agricultural Engineering Research, 2001, 78(3): 233~243.
    [48] Chien CF, Lin TT. Leaf Area Measurement of Selected Vegetable Seedlings Using Elliptical Hough Transform [J].Transactions of the ASAE,2002,45:1669-1677.
    [49]陈晓光,成洪.应用图像处理技术进行蔬菜苗特征量识别[J].农业工程学报,1995,11(4),23~26.
    [50]文新亚.农情监测点布局和信息获取的理论方法与技术研究.北京:中国农业大学,2001.
    [51]徐贵力,毛罕平,李萍萍.缺素叶片彩色图像颜色特征提取的研究[J].农业工程学报, 2002, 18(4): 150-154.
    [52]胡春华,李萍萍.计算机图像处理在缺素叶片颜色特征识别方面的应用[J].计算机测量与控制, 2004, 12 (9) : 859-862
    [53]吴聪玲,滕光辉,李长缨.黄瓜幼苗生长信息的无损监测系统的应用与验证[J].农业工程学报.2005,21(4):109-112.
    [54]陈鼎才,王定成,查金水.基于机器视觉的现实叶片面积测量方法的研究[J].计算机应用,2006,26(5): 1226-1228.
    [55]张静,王双喜.温室植物病害图像处理技术中图像分割方法的研究[J].内蒙古农业大学学报,2007,28(3): 19-22.
    [56]岑喆鑫,李宝聚.基于彩色图像颜色统计特征的黄瓜炭疽病和褐斑病的识别研究[J].园艺学报,2007,34(6):1425-1430.
    [57]马德贵,邵陆寿.水稻稻瘟病及水稻纹枯病病害程度图像检测[J].农业工程科学,2008,24(9): 485-489.
    [58]孙瑞东,于海业.基于图像处理的黄瓜叶片含水量无损检测研究[J].农机化研究, 2008,7:87-89.
    [59]贺鹏,黄林.植物叶片特征提取及识别[J].农机化研究2008,6:168-170.
    [60] Thomas J R, Namken L N, Oerther G F et al. Estimating Leaf Water Content by ReflectanceMeasurement[J]. Agronomy Journal, 1971, 63:845—847.
    [61] Thomas, J R, G F Oerther. Estimating Nitrogen Content of Sweet Pepper Leaves by Reflectance Measurements[J]. Agronomy Journal, 1972,64:11—13.
    [62] Al-Abbas A H, Barr R, Hall J D et al. Spectra of normal and nutrient deficient maize leaves[J]. Agronomy J., 1974, 66: 16-20.
    [63] Thomas J R. Gausman HW. leaf reflectance vs. leaf chlorophyll and corticoid concentration for eight crops [J]. Agro. J., 1977, 69: 799-802.
    [64] Shibayama-M, Akiyama-T. A Spectroradiometer for Field Use. VII. Radiometric Estimation of Nitrogen Levels in Field Rice Canopies[J]. Japanese Journal of Crop Science, 1986, 55(4): 439—445.
    [65] Penuelas J, Filella I, Biel C, et al., The reflectance at the 950~970 nm region as an indicator of plant water status[J]. Int. J. Rem. Sen., 1993, 14(10): 1887-1905.
    [66] Ceccato P, Flasse S, Tarantola B,et al.. Detecting vegetation leaf water content using reflectance in the optical domain[J].Rem. Sen. Environ., 2001, 77: 22-23.
    [67] Osborne S L, Schepers J S, Francis D D, Schlemmer M R. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements[J]. Agronomy J., 2002, 94: 1215-1221.
    [68] Huang Chengwei, Huang Chunchi, Wu Tehui, et al. Determination of Nitrogen Content in Rice Crop Using Multi-Spectral Imaging[C]. Paper Number 031132, 2003 ASAE Annual Meeting. Las Vegas, Nevada, USA, July, 2003.
    [69] Hyun kwon Noh, Qin Zhang, Beom-Soo Shin, Shufeng Han. Muti spectral Imaging Sensor for Detection of Nitrogen Deficiency in Corn by Using an Empirical Line Method Assessment[C]. Paper number 031135, 2003 ASAE Annual Meeeting.
    [70] Hyun Kwon Noh, Qin Zhang, Shufeng Han. A Neural Network Model of Nitrogen Stress Assessment using a Multispectral Corn Nitrogen Deficiency Sensor[C]. Paper number 041132, 2004 ASAE Annual Meeting.
    [71] Hyun Kwon Noh, Qin Zhang, Shufeng Han, et al. Dynamic Calibration And Image Segmentation Methods For Multispectral Imaging Crop Nitrogen Deficiency Sensors[C]. Trans of ASAE. 2005, 48(1):393-401.
    [72] Hyun Kwon Noh, Qin Zhang, Shufeng Han, et al. Neural Network Model of Maize Crop Nitrogen Stress Assessment for a Multi-spectral Imaging Sensor[J]. Biosystems Engineering. 2006, 94(4):477-485.
    [73]牛铮,陈永华,随洪智,等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报, 2000, 4(2): 125-129.
    [74]田庆久,宫鹏,赵春江.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报, 2000, 45 (4): 2645-2650.
    [75]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(1):104-107.
    [76]程一松,胡春胜,王成,等.养分胁迫下的夏玉米生理反应与光谱特征[J].资源科学,2001, 23(6):54-58.
    [77]金震宇,田庆久,惠凤鸣,等.水稻叶绿素浓度与光谱反射率关系研究[J].遥感技术与应用[J].2003, 18(3):134-137.
    [78]刘宏斌,张云贵,李志宏,等.光谱技术在冬小麦氮素营养诊断中的应用研究[J].中国农业科学.2004, 37(11):1743-1748.
    [79]冯雷,方慧,周伟军,等.基于多光谱视觉传感技术的油菜氮含量诊断方法研究[J].光谱学与光谱分析.2006,26(9):1749-1952.
    [80]蒋焕煜,应义斌.尖椒叶片叶绿素含量的近红外检测分析实验研究[J].光谱学与光谱分析, 2007, 27(3): 499.
    [81]乔欣,马旭,张小超,等.大豆叶绿素和钾素信息的冠层光谱响应[J].农业机械学报.2008, 39(4):108-111,116.
    [82] Lichtenthaler, H.K., Stober, F., Lang, M.: The nature of the different laser-induced fluorescence signatures of plants[J]. EARSeL Adv. Remote Sens. 1992, 1:20~32.
    [83] Hartley, R.D. Carbohydrate esters of ferulic acid as components of cell walls of Lolium multiflorum[J]. Phytochemistry, 1973, 12:661~665.
    [84] Harris, P.J., Hartley, R.D. Detection of bound ferulic acid in cell walls of the gramineae by ultraviolet fluorescence microscopy[J]. Nature, 1976, 259: 508~510.
    [85] Lichtenthaler, H.K., Schweiger, J. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants[J]. J. Plant Physiol, 1998, 152:272~282.
    [86] Gitelson,A.A., Buschmann,C., & Lichtenthaler,H.K. Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements[J]. Journal of Plant Physiology, 1998, 152(2–3): 283–296.
    [87] Gitelson,A.A., Buschmann,C., & Lichtenthaler,H.K. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants[J]. Remote Sensing of Environment, 1999, 69(3): 296– 302.
    [88] Narayanan Subhash, Oliver Wenzel. Changes in Blue-Green and Chlorophyll Fluorescence Emission and Fluorescence Ratios during Senescence of Tobacco Plants[J]. Remote Sensing of Environment, 1999, 69(3): 215-223.
    [89] Hartmut K. Lichtenthalera. Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence [J]. Plant Physiol. Biochem. 2000,38: 889-895.
    [90] Thomas D S, Turner D W. Banana (Musasp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding[J]. SciHortic, 2001, 90: 93~108.
    [91] A. Calatayud, D. Roca. Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging [J]. Plant Physiology and Biochemistry, 2006, 44: 564-573.
    [92]王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报,1997,13(2):273-278.
    [93]郭培国,陈建军,郑燕玲.氮素形态对烤烟光合特性影响的研究[J].植物学通报,1999,16(3): 262-267.
    [94]张旺锋,勾玲,王振林.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898.
    [95]鞠正春,于振文.追施氮肥时期对冬小麦旗叶叶绿素荧光特性的研究[J].应用生态学报,2006,17(3):395-398.
    [96]赵丽英,邓西平,山仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J].中国生态农业学报,2007,15(1):63-66.
    [97]杨虎青,周存山,霍艳荣,等.利用叶绿素荧光预测水蜜桃果实冷害的研究[J].园艺学报,2008,35(7):945-950.
    [98]章志敏.激光诱导叶绿素荧光接收传感器的研究[D].吉林大学硕士学位论文,2009,5.
    [99]沈丽.激光诱导叶绿素荧光光谱分析[D].吉林大学硕士学位论文,2009,6.
    [100] KRAUSE GHWEIS F. Chlorophyll fluorescence and photosynthesis: The Basic[J]. Ann Rev Plant Physiol Plant Mol Biol, 1991, 42: 313-349.
    [101] Hartley R D. Carbohydrate esters of ferulic acid as components of cell walls of Lolium multiflorum[J]. Phytochemistry, 1973, 12:661-665.
    [102] Harris P J, Hartley R D. Detection of bound ferulic acid in cell walls of the gramineae by ultraviolet fluorescence microscopy[J]. Nature, 1976, 259: 508-510.
    [103] Lichtenthaler H K, Schweiger J. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants[J]. Journal of Plant Physiology, 1998, 152:272-282.
    [104]王强,束炯,尹球.高光谱图像光谱域噪声监测与去除的DSGF方法[J].红外与毫米波学报,2006,25(1):29-32.
    [105]高荣强,范世福,严衍禄,等.近红外光谱的数据预处理研究[J].光谱学与光谱分析,2004,24(12):1563-1565.
    [106]王硕,徐可欣.牛奶成分近红外光谱数据的预处理研究[J].红外.2006,27(11):27-30.
    [107] Guo Q., Wu W., Massart D.L.. The robust normal variate transform for pattern recognition with near-infared data[J]. Analytica Chimica Acta. 1999, 382:87-103.
    [108]陆婉珍.现代近红外光谱分析技术(第二版)[M].北京:中国石化出版社.2007,1.
    [109]魏广芬,唐祯安,余隽.基于主成分分析和BP神经网络的气体识别方法研究[J].传感器学报,2001,4:292-298.
    [110]马氏距离.百度百科. http://baike.baidu.com/view/1236162.htm.
    [111]人工神经网络.百度百科. http://baike.baidu.com/view/19743.htm.
    [112]唐长波,陈敏艳,彭玉魁,等.人工神经网路与近红外光谱分析[J].农产品加工·学刊,2000,20(2): 134-142.
    [113]林亚萍,金继红.人工神经网络研究进展及其在光谱分析中的应用[J].化学分析计量,2004,13(3): 52-55.
    [114] Vapnik V N. The Nature of Statistical Learning Theory[J]. New York: Springer-Verlag, 1955.
    [115]陈果,周伽.小样本数据的支持向量机回归模型参数及其预测区间研究[J].计量学报,2008,29(1): 92-96.
    [116] SVM.百度百科. http://baike.baidu.com/view/960509.htm.
    [117]孙德山.支持向量机分类与回归方法研究[D].中南大学博士学位论文.2004,4.
    [118]虞科,程翼宇.一种基于最小二乘支持向量机算法的近红外光谱判别分析方法[J].分析化学.2006, 34(4): 561-564.
    [119]冯予.随机删失非参数固定设计回归模型的统计分析[D].南京理工大学硕士学位论文. 2008,10.
    [120]李艳春.基于CCD的农药光纤荧光光谱测量系统的研究[D].燕山:燕山大学,2005.
    [121]王庆有.CCD应用技术[M].天津大学出版社,2000:30-38.
    [122]曾延安,梁阴中.CCD在光谱分析系统中的应用研究[J].光学技术.1998.4:3-4.
    [123]王兴莲,汪尊伟.CCD光栅光谱仪与光谱分析[J].安徽电子信息职业技术学院学报,2004.5:20-25.
    [124]田承雷.CCD光谱测量系统研究[J].矿业科学技术, 2004,32(2):45-48.
    [125]哈元清,钟先琼,杨经国,等.多道检测-激光诱导荧光光谱分析装置研究[J].原子与分子物理学报.2000,17(4):17-21.
    [126]杨丙成,关亚风,黄威东,等.一种共聚焦激光诱导荧光检测器的研制[J].色谱,2002,20(4):332-334.
    [127]黄俊煌,闫卫平.芯片毛细管电泳激光诱导荧光检测系统的设计[J].工业仪表与自动化装置, 2005,2:26-28.
    [128]李伟.共聚焦式激光诱导荧光检测装置的研究[D].辽宁:大连理工大学,2006.
    [129] Ling CHEN, Jie SHEN, Ling QIN, Hongjian CHEN. An Improved Ant Colony Algorithm in Continuous Optimization. Systems Science and Systems Engineering.2003,12(2):224-235.
    [130]朱若波.微型光谱仪及其软件系统的研究[D].浙江:浙江大学,2006.
    [131]程梁.微型光谱仪系统的研究及其应用[D].浙江:浙江大学,2008
    [132]刘华生.光谱仪控制、采集部分的改进设计及荧光光谱技术用于肝病诊断的研究[D].大连:大连理工大学,2002.
    [133]闫慧.基于CCD的近红外光谱仪的测控系统设计[D].吉林:吉林大学,2005
    [134]杨桂荣.微型光谱仪的光谱信号采集及处理[D].重庆:重庆大学,2002.
    [135]王希望,于华丽,刘丽娟,等.基于VB的USB通信系统在智能温湿度检测仪中的应用[J].仪表技术与传感器,2007,10:16-17,32.
    [136]徐袭,杨志红,吴汉松.基于VB的USB设备检测通信研究[J].计算机应用研究,2002, 11: 109-111.
    [137]汪胜,时亚弘.USB2.0技术概述[J].计算机应用研究,2001:4-6.
    [138]桂万如,卢结成.基于VB6.0的光谱数据实时采集系统设计[J].江南大学学报,2004,3(5): 445-447.
    [139]李湘江,彭建.基于VB的实时数据采集程序设计[J].测控自动化,2003,19(10):38-39,65.
    [140]关维娟,陈清华.利用VB编程实现实时数据曲线绘制[J].信息技术, 2005, 10:76-78.
    [141]黎启柏,张升义.用VB6实现计算机实时测试动态显示的技巧[J].机床与液压,2003: 116-117.
    [142]胡亚琦,夏宝华.数据采集在VB编程中的实现[J].甘肃联合大学学报.2004,18(4):25-27.
    [143]黄风山,钱惠芬,方忆湘,等.在VB中用动态链接库技术实现工程数据的采集[J].河北科技大学学报,2002,23(3):68-71.
    [144]黄凤坡.对动态链接库的初探[J].赤峰学院学报,2007,4:17 38.
    [145]张苗.Windows中动态链接库的分析及应用[J].新乡师范高等专科学校学报,2005,19(5): 40-41.
    [146]朱向荣,王一鸣,张小超,等.最小二乘支持向量机算法与紫外光谱法用于鉴别清开灵注射液四混中间体.分析化学,2008,36(6):770-774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700