毛竹冠层叶片光谱及叶绿素荧光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹Phyllostachys pubescens是我国分布面积最广,社会、经济、生态效益较高的竹种,在我国竹产业中占有极其重要的地位。毛竹的生物蓄积量大,成材迅速,干物质的积累是与高效的光合作用密切相关的。本文从叶片水平、冠层水平和年龄水平3个维度研究探讨了近自然状态下毛竹叶片的色素含量,活体条件下的反射光谱、荧光发射光谱特性,以及叶绿素荧光动力学特性。以期能为毛竹林分结构定向调整,推进竹产业升级提供一定的试验依据。主要研究结果如下:
     (1)离体条件下,1龄毛竹阳生叶片的Chl a含量要比阴生叶高28.80%,5龄竹中阳生叶比阴生叶高21.58%,5龄竹中则阴生叶高于阳生叶4.89%;随着冠层高度降低,Chl a的含量逐渐增加,1龄竹下层叶片Chl a含量是上层叶片的1.24倍,3、5龄竹中叶呈现相同的趋势。在弱光环境中生长的叶片Chl b的含量相对较高,1龄竹中阴生叶Chl b的含量是阳生叶1.11倍,中层叶比上层叶高43.84%,下层比中层高50.27%;3、5龄竹中表现有类似的趋势。Chl a/b的值阳生叶>阴生叶;上层叶>中层叶>下层叶。随着竹龄的增加,叶绿素含量呈现先升高后下降的趋势,Chl a/b的值则随年龄增加而逐渐减少。
     (2)活体条件下,通过原始光谱和四阶导数光谱对比分析显示阳生叶Chl a高于阴生叶片,而Chl a的含量随着高度降低而减弱;Chl b的含量阴生叶较高、下层叶>中层叶>上层叶与离体条件下测量结果一致。弱光环境下,类胡萝卜素的含量相对较高,并且色素种类相应增多。
     (3)对毛竹叶片的荧光发射光谱就进行高斯解析显示,毛竹叶片在683nm和730nm处有两个荧光峰,分别反映了PSII和PSI的能量分配过程。弱光环境中的毛竹叶片荧光强度较强,分配至PSI的能量逐渐增多。
     (4)将快速荧光诱导动力学和调制荧光技术相结合能较全面的反映毛竹叶片的叶绿素荧光特性。结果显示在弱光环境下,PSII反应中心吸收捕获光能的能力增强,PSII受体侧PQ库增大,但进入电子传递链过程不同程度受阻,导致QA-还原次数增加大量积累,光合效能降低;在光适应条件下的实际光合能力和Rfd值也有不同程度的下降,相对电子传递速率降低。弱光环境对不同朝向毛竹叶片之间的影响较小,而由于冠层高度不同造成的荫庇对叶片组化生理有显著影响。
     (5)不同朝向的毛竹叶片,阳生叶的光合效能较高;不同冠层高度的叶片,上层叶片的光合效能高,中层次之,下层叶片最低;不同竹龄的毛竹光合效能呈现先增加后下降的变化过程。
Phyllostachys pubescen, one of the most important bamboo species in China, has highly social economic and ecological value. To interpret its gorgeous growing speed and the high-efficient biomass accumulation capability, we ask for the relationship associated with photosynthesis. This study investigated characteristics of P. pubescens leaves in different directions, heights and ages by probing chlorophyll contents in vitro, reflectance spectra, fluorescence emission spectra and chlorophyll fluorescence induced kinetics (FIK) in vivo. The main results are as following:
     (1) In vitro condition, the contents of Chl a in sun leaves was 28.80% higher than that in shade leaves in 1-year-old bamboo; 21.58% higher than shade one in 3-year-old bamboo; in 5-year-old bamboo the contents of Chl a in shade leave was 4.89% higher than that in sun leaves. As the height went down, Chl a accumulated gradually, in 1-year-old bamboo, Chl a of leaves in lower level was 1.24 times of upper one. Similar conditions existed in 3-year-old and 5-year-old bamboos. Leaves in low-light circumstances had higher Chl b contents, in 1-year-old bamboo, the Chl b in shade leaves was 1.11 times of that in sun leaves, middle level was 43.84% higher than upper level and lower level was 50.27% higher than middle level, which was the same with that in 3-year-old and 5-year-old bamboos. Chl a/b sun leaves > shade leaves; upper level>middle level>lower level. As the age increased, the contents of chlorophyll increased and then decreased, while Chl a/b decreased graudually.
     (2) In vivo condition, via comparison between the raw spectral data and reflectance spectrum with 4th order derivative the result showed that sun leaves had higher Chl a content than shade leaves, while Chl a decreased with height going down.Shade leaves had more Chl b, and lower level>middle level>upper level as the same with the results in vitro condition. In low-light condition leaves would have more carotenoid and more sorts of pigments.
     (3) We analyzed fluorescence emission spectra by Gaussian decomposition. The result showed that 2 fluorescent peaks appeared at 683nm and 730nm, which stands for the distribution of energy in PSII and PSI separately. The fluorescence intensity was stronger and the proportion of photon distributed to PSI elevated relatively in leaves under low-light condition.
     (4) The chlorophyll FIK discovered that the capabilities of ABS/RC and TR/RC of leaves in low-light condition were reinforced but on donor side of PSII which had larger PQ pool traped electrons were hardly into the electron transport chain and the accumulated. The performance of photosynthesis deceased. In light adapted leaves, FV’/FM’, Rfd and ETR decreased. Influence caused by altitude level was more significant than that caused by different directions.
     (5) As for the efficience of photosynthesis, sun leaves and upper level leaves were better than shade and lower ones. In different aged P. pubescens the variational trends increased firstly and then dereased.
引文
[1]刘琴,何晓玲,张健康.来自浙江竹乡的报告[N].中国绿色时报. 2010,4.1:B03.
    [2]周芳纯.毛竹竹冠结构的研究[J].南京林产工业学院学报, 1982, 3:46-73.
    [3]许大全,李德耀,邱国雄.毛竹叶光合作用的气孔限制研究[J].植物生理学报, 1987,13(2):154-160.
    [4]杨迪蝶,黄启民,高爱新.毛竹冠层各层次叶片光合速率的变化[J].林业科学研究,1988,1(2):217-223.
    [5]杨迪蝶,黄启民.毛竹实生苗生物量及光合速率的研究[J].林业科学研究,1990, 3(5):461-465.
    [6]陈存及,邱尔发,梁一池. 2001.毛竹不同种源光合特性研究.林业科学,37(6).15-19.
    [7]施建敏,郭起荣,杨光耀.毛竹光合动态研究[J].林业科学研究, 2005,18(5): 551-555.
    [8]陈建华,毛丹,马宗艳.毛竹叶片的生理特性[J].中南林学院学报,2006,26(6):76-80.
    [9]应叶青,郭璟,魏建芬.水分胁迫下毛竹幼苗光合及叶绿素荧光特性的响应[J].北京林业大学学报. 2009,31(6):128-133.
    [10]徐小静,朱向辉,汪芳德.毛竹等11种浙江省碳汇造林树种含碳率分析[J].竹子研究汇刊, 2009,28(1).21-28.
    [11] STRASSER B.J.,STRASSER R.J. Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Mathis, P. (Ed.),Photosynthesis: From Light to Biosphere. Proceedings of the Xth International Photosynthesis Congress. Montpellier, France, 20–25 August 1995. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 977–980.
    [12]许珍,李鹏民,高辉远.玉米不同朝向叶片原初光化学反应日变化的差异[J].作物学报. 2007,33(8):1375-1379.
    [13]高玉,高志奎,张晓慧.通过快速荧光动力学曲线探测白黄瓜光系统Ⅱ的热激胁迫效应[J].生态学报. 2009,29(6):3335-3341.
    [14] MERZLYAK M.N.,MEL T.B.,NAQVI K.R. Effect of anthocyanins,carotenoids,and flavonols on chlorophyll fluorescence excitation spectra in apple fruit:signature analysis,assessment,modelling,and relevance to photoprotection Journal of Experimental Botany[J],2008,59(2):349–359.
    [15] IGOR N., STADNICHUK,EVGENY P. Fluorescence changes accompanying short-term light adaptations in photosystem I and photosystem II of the cyanobacterium Synechocystis sp. PCC 6803 and phycobiliprotein-impaired mutants: State 1/State 2 transitions and carotenoid-induced quenching of phycobilisomes. Photosynth Res. 2009,99:227–241.
    [16]彭涛,姚广,高辉远.植物叶片和冠层光化学反射指数与叶黄素循环的关系[J].生态学报2009,29(4).1987-1993.
    [17] LICHTENTHALER H.K. The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics[J].Photosynthetica 1992,27: 45-55.
    [18] STRASSER B.J. and STRASSER R.J. Measuring fast fluorescence transients to address environmental questions: The JIP-test. In: Mathis P(ed) Photosynthesis: from Light to Biosphere. Kluwer Aeademic Publishers,Dordrecht,1995,5 :977-980
    [19] STRASSER R.J.,SRIVASTAVA A.,TSIMILL-MIEHAEL M. The fluorescence transient as a tool to characterize and screen Photosynthetic samples. In: Yunus M,Pathre U and Mohanty P(eds)Probing Photosynthesis: Mechanism,Regulation and Adaptation. London,Taylor and Francis,,2000:445-483.
    [20] STRASSER R.J.,TSIMILL-MIEHAEL M.,SRIVASTAVA. Analysis of the chlorophyll a fluorescence transient.In: Papageorgiou G and Govindjee (eds) Advances in Photosynthesis and Respiration. Berlin,Springer,2004:321-362.
    [21] KRAUSE G.H. and WEIS E. Chlorophyll fluorescence and Photosynthesis: the basis. Annual Review of Plant Physiology and Plant Molecular Biology 1991,42:313-349.
    [22] STRASSER R.J. FJ at about 2 ms and FI at about 30 ms. 1995.
    [23] STRASSER B.J. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transient. Photosynthesis Research. 1997,52:147-155.
    [24] SRIVASTAVA A and STRASSER RJ. Stress and stress management of land plants during a regular day. Journal of Plant physiology. 1996,148:445-455.
    [25] JIANG C.D.,GAO H.Y.,ZOU Q. Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica 2003,41:267-271.
    [26] BUSSOTTI F.,STRASSER R.J.,SCHAUB M. Photosynthetic behavior of woody specie under high ozone exposure probed with the JIP-test:A review[J]. Environmental Pollution 147(2007)430-437.
    [27] STRASSER R.J,STRIVASTAVA A and GOVINDGEE. Polyphasic chlorophyll a fluorescence transients. Photosynthesis Research 1997,52:147-155.
    [28] LICHTENTHALER H.K.,MIEHE J.A. Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci. 1997,2: 316–320.
    [29] JIANG C.D.,JIANG G.M.,WANG X.Z..Increased photosynthetic activities and thermostability of photosystemII with leaf development of elm seedlings (Ulmus pumila) probed by the fast fluorescence rise OJIP[J].Environmental and Experimental Botany. 2006,58:261–268.
    [30] LI P.M.,CHENG L.L.,GAO H.Y. Heterogeneous behavior of PSII in soybean(Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments[J].Journal of Plant Physiology . 2009,166 : 1607—1615.
    [31] HALDIMANN P.,FRACHEBOUD Y.,STAMP P. Photosynthetic performance and resistance to photoinhibition of Zea mays L. leaves grown at sub-optimal temperature[J]. Plant Cell Environ. 1996,19:85–92.
    [32] BRUCE D.,VASIL’EV S. Excess light stress: multiple dissipative processes of excess excitation. In: Papageorgiou,G.C.,Govindjee (Eds.),Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration,2004,19: 497–523.
    [33] HAUPT-HERTING S.,FOCK,H.P. Exchange of oxygen and its role in energy dissipation during drought stress in tomato plants. Physiol. Plant. 2000,110,489–495.
    [34] BUKHOV N.G.,CARPENTIER R.. Effects ofwater stress on the photosynthetic efficiency of plants. In: Papageorgiou, G.C., Govindjee (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, 2004,19:623–635.
    [35] POPOVIC R., DEWEZ D., JUNEAU P., Applications of chlorophyll fluorescence in ecotoxicology: heavy metals, herbicides, and air pollutants. In:DeEll, J.R., Toivonen, P.M.A. (Eds.), Practical Applications of Chlorophyll Fluorescence in Plant Biology. 2003:151–184.
    [36] APPENROTH K.J.,STOCKEL J,Multiple effects of chromate on the photosynthetic apparatus of spirodela polyrhiza as probed by OJIP chlorophyll a fluorenscence measurements[J]. Enviroment Pollution 2001,115:49-64.
    [37] MüLLER M.,LI XP and NIYOGI KK. Non-Photochemical quenching. A response to excess 1ightenergy[J]. Plantphysiology. 2001,125:1558?1566.
    [38] SCHREIBER U. Pulse-amplitude (PAM) fluorometry and saturation pulse method. In: G. Papageorgiou and Govindjee,Editors,Chlorophyll fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration Series,Kluwer Academic Publishers,Dordrecht,The Netherlands 2004.
    [39] SCHREIBER U.,BILGER W and NEUBAUER C.Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D and Caldwell MM(eds) Ecophysiology of Photosynthesis,2004,10:49-70.
    [40] BJ?RKMAN O. Low-temperature chlorophyll fluorescence in leaves and its relationship to photon yield of photosynthesis in photoinhibition[J]. Photoinhibition,1987:123-144
    [41] SCHINDLER C.,LICHTENTHALER H.K.: Photosynthetic CO2-assimilation,chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day.– J. Plant Physiol. 1996,148: 399-412.
    [42] NESTERENK T.V.,TIKHOMIROV A.A.,SHIKHOV V.N. Ontogentic approach to the assessment of plant resistance to prolonged stress using chlorophyll fluorescence induction method[J]. PHOTOSYNTHETICA 2006,44(3): 321-332.
    [43]卢从明,张其德,匡廷云.水分胁迫对小麦光系统Ⅱ的影响[J].植物学报.1994,36(2): 93-98.
    [44]杨晓青,张岁岐,梁宗锁.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报. 2004,24(5):812-816.
    [45]张云华,王荣富,阮龙.水分胁迫对甘薯叶绿素荧光和光合特性的影响[J].中国农学通报. 2005.,21(8)208-210.
    [46]薛国希,高辉远,李鹏民.低温下壳聚糖处理对黄瓜幼苗生理生化特性的影响[J].植物生理与分子生物学学报. 2004,30(4):441-448.
    [47]郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响[J].植物学报. 2000,42(7):673-678.
    [48]汪炳良,徐敏,史庆华.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响[J].中国农业科学. 2004,37(8):1245-1250.
    [49]范燕萍,余让才,陈建勋.氮素营养胁迫对匙叶天南星生长及光合特性的影响[J].园艺学报2000,27 (4) : 297-299.
    [50]张可炜,王贤丽,李坤朋.低磷胁迫对耐低磷玉米自交系幼苗光合特性的影响[J].山东大学学报(理学版). 2007,42(3):1-4.
    [51]彭海欢,翁晓燕,徐红霞.缺钾胁迫对水稻光合特性及光合防御机制的影响[J].中国水稻科学(ChineseJ Rice Sci). 2006,20(6):621~625.
    [52] GUPTA A S.,Berkowitz G.A. Development and use of chlorotetracycline fluorescence as a measurement assay of chloroplast envelop-bound Mg2+[J].Plant Physiol. 1989,89:753-761.
    [53] KNIPLING E.B. Physical and physiological basis for the reflectance of visible and near 3/infrared radiation from vegetation [J]. Remote Sensing of Environment. 1970,1: 155-159.
    [54] THOMAS J.R.,Gausman H.W. Leaf reflectance vs. leaf chlorophyll and carotenoid concentration for eight crops[J]. Agronomy J. 1977,69: 799-802.
    [55] BLACKMER T.M.,Schepers J.S.,Varvel G.E. Light reflectance compared with other nitrogen stress measurements in corn leaves[J]. Agronomy J. 1994,86: 934-938.
    [56] MCMURTREY J.E.,CHAPPELLE E.W.,KIM M.S. et al. Distinguishing nitrogen fertilization levels in field corn with actively induced fluorescence and passive rReflectance measurements[J]. Remote Sensing of Enviornment. 1994,47: 36-44.
    [57] HONG S.,RIM S.,LEE J.,KIM J. Remote sensing for estimating chlorophyll amount in rice canopies[A]. Int. Proc Geoscience and Remote Sensing Symposium[C]. Singapore,1997..
    [58] BLACKMER TM,SCHEPERS J S,VARVEL G E. Light reflectance compared with other nitrogen stress measurements in corn leaves[J]. Agronomy J.,1994,86: 934-938.
    [59]勾玲,闫洁,韩春丽.氮肥对新疆棉花产量形成期叶片光合特性的调节效应[J].植物营养与肥料学报,2004,10(5):488-493.
    [60] SCHEPERS J.S.,FRANCIS D.D.,VIGIL M.F.. Comparisons of corn leaf nitrogen concentration and chlorophyll meter readings[J]. Communications in Soil Science and Plant Analysis,1992,23: 2173-2187.
    [61] YANG W.H.,PENG S.B.,HUANG J.L.. Using leaf color charts to estimate leaf nitrogen status of rice[J]. Agronomy J,2003,95: 212-217.
    [62] EVANS J.R. Nitrogen and photosynthesis in the flag leaf of wheat[J].Plant Physiology,1983,72: 297-302.
    [63] BLACHMER T.M. SCHEPERS J.S. Techniquesformonitoring crop nitrogen status in corn[J]. Communications in Soil Science and Plant Analysis,1994,25: 1791-1800.
    [64]彭涛,姚广,高辉远. 2009.植物叶片和冠层光化学反射指数与叶黄素循环的关系[J].生态学报29(4).1987-1993.
    [65]李艳菊.元宝枫叶片色素吸收光谱研究[J] .西北林学院学报,2004,19(2):28-30.
    [66]李凤秀,张柏,刘殿伟.湿地小叶章叶绿素含量的高光谱遥感估算模型[J].生态学杂志. 2008,27(07):1077-1083.
    [67]朱西存,赵庚星,董芳.基于高光谱的苹果花磷素含量监测模型[J].应用生态学报. 2009,20(10):2424-2430.
    [68]雷彤,赵庚星,朱西存.基于高光谱和数码照相技术的苹果花期光谱特征研究[J].中国农业科学. 2009,42(7):2481-2490.
    [69] BABAR M.A., REYNOLDS M.P., VAN GINKEL M. Spectral Reflectance to Estimate Genetic Variation for In-Season Biomass,Leaf Chlorophyll,and Canopy Temperature in Wheat. 2006.
    [70]易时来,何绍兰,邓烈.温洲蜜柑叶片光谱反射率与叶绿素含量的相关性[J].西南大学学报(自然科学版). 2007,29(03):90-93.
    [71]张晓喻,黄春萍,张宏.枇杷花中重金属残留量的光谱测定[J].现代科学仪器. 2007,06:96-99.
    [72]刘素红,刘新会,侯娟.植物光谱应用于白菜铜胁迫响应研究[J].中国科学(E辑:技术科学). 2007,37(05):693-699.
    [73]迟光宇,陈欣,史奕.水稻叶片光谱对亚铁胁迫的响应[J].中国科学C辑:生命科学. 2009. 39(4):413~419.
    [74] ANA MIJOVILOVICH,BARBARA LEITENMAIER,WOLFRAM MEYER-KLAUCKE,Complexation and Toxicity of Copper in Higher Plants. II. Different Mechanisms for Copper versus Cadmium Detoxification in the Copper-Sensitive Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Plant Physiology, 2009,151:715–731.
    [75] CAMPBELL P.K.E., MIDDLETON E.M., MCMURTREY J.E., CORP L.A.,and CHAPPELLE E.W. Assessment of Vegetation Stress Using Reflectance or Fluorescence Measurements.
    [76]李民赞,韩东海,王秀.光谱分析技术及其应用[M].科学出版社. 2006.
    [77] GITELSON A.A.,BUSCHMANN C.,LICHTENTHALER H.K. the chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chloroohyll content in plants[J]. Remote Sensing of Environment,1999,69(3):296-302.
    [78]杨昊谕,于海业,张蕾.基于激光诱导荧光光谱分析的黄瓜叶片叶绿素含量测量[J].农业机械学报. 2009,40(10):169-172.
    [79]段洪涛,张柏,刘殿伟.查干湖水体光谱荧光峰特征与叶绿素_响应关系研究[J].红外与毫米波学报. 2006,25(5):355-359.
    [80]吴荣,张崇静,朱永豪.植物在不同形态和不同状态下的荧光光谱特征研究[J].环境遥感. 1992,9:43-50.
    [81]姬茜茹,刘晓,贺俊芳.黄化玉米幼苗类囊体膜稳态荧光光谱分析[J].光子学报. 2008,37(12):2486-2491.
    [82]杨昊谕,于海业,刘煦.叶绿素荧光PCA-SVM分析的黄瓜病虫害诊断研究[J].光谱学与光谱分析. 2011,30(11):3018-3021.
    [83]卢璐,苏荣国,王修林.基于四阶导数的浮游植物叶绿素荧光激发光谱特征研究[J].光谱学与光谱分析.2007,27(11):2307-2312.
    [84]武浩,朱拓,孔艳.基于径向基函数神经网络的荧光光谱技术在菌种识别中的应用[J].物理学报. 2010,59(04):2396-2399.
    [85] ARNON D.I.. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiol,1949,24(1):1-15.
    [86] TSIMILLI-MICHAEL,M.,KRUGER,G.H.J.,STRASSER,R.J., About the perpetual state changes in plants approaching harmony with their environment. Archs.Sci. 1996,49:173–203.
    [87] APPENROTH K.J. STOCKEL J.. "Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements." Environment Pollution. 2001,115(1): 49-64.
    [88] THACHLE B., SHAPCOTT A.. "The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses." Photosynth Res. 2007, 94(2-3): 423-436
    [89] HK LICHTENTHALER F BABNI G LANGSDORE. Measurement of different in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging[J].PHOTOSYNTHETICA. 2000,38(4):521-529.
    [90] NESTERENK TV,TIKHOMIROV AA,SHIKHOV VN. Ontogentic approach to the assessment of plant resistance to prolonged stress using chlorophyll fluorescence induction method[J]. PHOTOSYNTHETICA. 2006,44 (3):321-332.
    [91]周武.叶绿素a的光谱分析[J].山东师大学报(自然科学版),1998.13(2):228-232.
    [92] BELL G.E., DANNEBERGERB T. K. and MCMAHONB M. J.. Spectral irradiance available for turfgrass growth in sun and shade[J]. Crop Science,2000,40,189–195.
    [93] ATANASOVA L. Comparative characteristics of growth and photosynthesis of sun and shade leaves from normal and pendulum walnut (Juglans regia L.) trees[J]. Photosynthetica,2003,41,289–292.
    [94]孙小玲,许岳飞,马鲁沂.植株叶片的光合色素构成对遮阴的响应[J].植物生态学报, 2010,34 (8): 989–999.
    [95]周冬琴,田永超,姚霞.水稻叶片全氮浓度与冠层反射光谱的定量关系[J].应用生态学报, 2008,(02):337-344.
    [96]苏新宏,韦凤杰,张学林.旺长期遮光及光照转换对不同肥料条件下烟草叶片光合特性的影响[J].生态学报, 2010,30(20): 5592- 5600.
    [97]朱蕾.玉米黄色素的分离提取及四种类胡萝卜素测定方法研究[D].北京:中国农业大学食品科学与营养工程学院,2005.
    [98] TAKAYAMA K., SAKAI Y., NISHINA H. Chlorophyll Fluorescence Imaging at 77 K for Assessing the Heterogeneously Distributed Light Stress Over a Leaf Surface[J]. Environment Control in Biology. 2007,45(1):39-46.
    [99] LICHTENTHALER H.K.,BABANI F.,LANGSDORF G. Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees[J]. Photosynth Res. 2007.
    [100]谢海平.竹类植物叶片衰老机理研究[D].南京:南京林业大学,2004.
    [101]KHARUK V.I.,MORGUN V.N.,ROCK B.N.,et al.:Chlorophyll fluorescence and delayed fluorescence as potential tools in remote sensing: a reflection of some aspects of problems in comparative analysis.– Remote Sens. Environ. 1994,47: 98-105.
    [102]朱剑秋.毛竹钩梢浅析[J].浙江林业科技, 1988,8(5):29-31.
    [103]林名康.幼竹摇梢[J].江西农业大学学报, 1982,(4):81-84.
    [104]金爱武.现代毛竹培育技术及其传播:问题和方法[M].中国农业出版社. 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700