用户名: 密码: 验证码:
基于防屈曲支撑的模拟分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们经济水平的提高和对地震灾害概念的加深,抗震设计作为保障人们生命安全和减少财产损失的一个重要手段,得到了各国学者不断深入的研究。传统的框架结构以其结构形式简洁,适用性较强等特点,在多层及一部分高层建筑中得到了广泛的应用。但由于其本身抗震能力不强,所以人们研究增加斜支撑来增强其抗侧力性能的方法。
     传统的钢支撑在受拉变形中能表现出良好的耗能能力,但当轴向受压时,由于支撑本身的抗整体失稳能力不强,很容易出现失稳屈曲现象,从而降低了支撑的耗能能力,没有发挥出其应有的性能。防屈曲支撑是对传统支撑的改进,在内芯钢板外围增加一圈约束钢框,起到约束内芯钢板变形的作用。从实验的滞回曲线上也能看出,防屈曲支撑受拉受压都能达到钢材的受力屈服点,曲线饱满圆润,抗震性能卓越。
     从20世纪70年代日本学者创造性地提出了防屈曲支撑的概念至今,30多年的发展使得防屈曲支撑无论在理论研究还是实验设计上,都得到了长足的发展。在1994年的美国北岭(Northridge earthquake)和1995年日本阪神(Kobe earthquake)的两次大地震中,防屈曲支撑结构形式的房屋也得到了真实的检验。从震害调查中可知,安装有防屈曲支撑的建筑破坏较小,房屋几乎没有出现倒塌,人员伤亡数量也非常少。
     本文结合防屈曲支撑的实验研究,对其进行了比较细致的ABAQUS有限元分析。这其中包括影响防屈曲支撑耗能性能的几个重要因素的分析,和防屈曲支撑设计方法的研究。在分析中,本文着重研究了对橡胶无粘结层部分的模拟方法,使得模拟结果更符合实验数据。
     其次,对安装有防屈曲支撑的一个实际框架结构进行地震作用下的有限元模拟研究,并和原有的纯框架结构进行耗能性能对比。同时分析了在不用抗震设防烈度下应用防屈曲支撑的建议。
     最后,在整体结构模拟的基础上,给出了安装有防屈曲支撑结构的经济性分析,对其能否适用于建筑上的广泛应用给出了评价。
As the incensement of the economic level and the knowledge on the earthquake disaster, anti-seismic design as an important means to ensure the persons'safety and reduce the loss of property is get more and more research by scholars of most countries. The traditional frame-work for its simple structural form is gained wide application. However, because of its earth-quake resistance is not excellent; people consider strengthening the resistance by setting the braces.
     Traditional steel support can show good dissipation ability, but under the axis pressure, the support is prone to lose its back since its weaker resistance. Buckling-restrained brace (BRB) is the improvement of traditional steel support. From the experiment, BRBs could break under yield stress, and hysteresis curve is full, round as well as anti-seismic perfor-mance excellent.
     From 1970s, Japanese scholars creatively give a concept of BRB; BRBs get a widely re-search and application nowadays. In the Northridge earthquake of 1994 and the Kobe earth-quake of 1995, houses with BRBs were tested in an actual surrounding. From the investiga-tion, BRBs can keep the house against collapsed; and less people died.
     Base on the BRB's experimental studies, a more detailed Abaqus finite element analysis is given, which includes the influence factors for the dissipation ability. In the analysis, an emphasized research is the simulation of rubber, which is unbonded layer of the BRBs.
     Secondly, BRBs are installed on a practical framework, and simulation gives a contrast against the existing framework structure without BRBs.
     Finally, analysis of economy is given on the condition of structure with BRBs, as well as the design advices.
引文
[1]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [2]张腾龙.防屈曲支撑框架结构设计及效能减震效果分析研究[D].北京:北京工业大学硕士学位论文.2009.
    [3]刘建彬.防屈曲支撑及防屈曲支撑钢框架设计理论研究[D].北京:清华大学硕士学位论文.2005.
    [4]刘大海,杨翠如.高楼钢结构设计[M].北京:中国建筑工业出版社,2003.
    [5]李国强,张洁.上海地区高层建筑采用钢结构与混凝土结构的综合经济比较分析[J].建筑结构学报,2000,21(2):75-79.
    [6]Housner G W, Bergman L A, et al. Structural Control Past Present and Future [J]. Engineering Mechanics,1997,09:1223-1229.
    [7]赵俊贤,吴斌.防屈曲支撑的工作机理及稳定性设计方法[J].地震工程与工程振动,2009,29(3):131-139.
    [8]周云.防屈曲耗能支撑结构设计与应用[M].北京:中国建筑工业出版社,2007.
    [9]刘丹卉.防屈曲支撑及连接的构造研究与抗震性能试验研究[D].北京:北京工业大学硕士学位论文.2008.
    [10]M Wakabayashi, T Nakamura. Experimental study of elasto-plastic properties of precast concrete wall panels with built-in insulating braces [J]. Summaries of Technical Papers of Annual Meeting. Architectural Institute of Japan, Tokyo.1973:1041-1044.
    [11]李妍.防屈曲支撑的抗震性能及子结构试验方法[D].黑龙江:哈尔滨工业大学博士学位论文.1-19,2007.
    [12]S Mochizuki, Y Murata. Experimental study on buckling of unbonded braces under axial forces[J]. Summaries of technical papers of annual meeting. Architectural Institute of Japan.1979:1623-1626.
    [13]S Kuwahara, M Tada, T Yoneyama, K Imai. A study on stiffening eapacity of double-tube members[J]. Journal of Structural and Construction Engineering, Architectural In-stitute of Japan.1993:151-158.
    [14]Iwata M, Kato T, Wada A. Buckl ing-restrained braces as hysteretic dampers [J]. Behaviour of steel structures in seismic areas. STESSA 2000, Balkema,2000:33-38.
    [15]Y Koetaka, H Narihara. Experimental study on buckling restrained braces [J]. Summaries of technical papers of annual meeting, vol. Ⅲ. Architectural Institute of Japan, Structural Engineering.2000:911-914.
    [16]蔡克铨,黄彦智.双管式挫屈束制(屈曲约束)支撑之耐震行为与应用[J].建筑钢结构进展.2005,7(3):118.
    [20]#12
    [21]余邵峰,郑维科,邓长根.新型抑制屈曲支撑构造及稳定性研究[J].结构工程师.2008,24(3):55-59.
    [22]余邵峰,郑维科,邓长根.新型抑制屈曲支撑极限承载力分析[J].结构工程师.2008,24(4):40-43.
    [23]郑维科.新型抑制屈曲支撑在结构工程中应用若干理论问题研究[D].上海:同济大学工学硕士学位论文.2007.
    [24]周云,钱洪涛,褚洪民,邹征敏.新型防屈曲耗能支撑设计原理与性能研究[J].土木工程学报.2009,42(4):64-71.
    [25]殷占忠,王秀丽,李晓东.带接触环的双钢管约束屈曲支撑有限元分析[J].兰州理工大学学报.2008,34(5):122-126.
    [26]殷占忠.带有约束屈曲支撑杆件空间网壳结构抗震性能分析与试验研究[D].甘肃:兰州理工大学博士学位论文.2008.
    [27]郭彦林,江磊鑫.型钢组合装配式防屈曲支撑性能及设计方法研究[J].建筑结构.2010,40(1):30-37.
    [28]高向宇,杜海燕,张惠等.国标Q235热轧钢材防屈曲支撑抗震性能试验研究[J].建筑结构.2008,38(3):91-95.
    [29]王秀丽,陈祥勇,殷占忠.约束屈曲支撑对K6型球面网壳减震效果的分析[J].甘肃科学学报.2007,19(1):122-126.
    [30]王秀丽,高森,潘霞.约束屈曲支撑(BRBs)在单层柱壳振动控制中的应用研究[J].建筑科学.2007,23(7):34-38.
    [31]孔祥雄.新型屈曲约束支撑抗震性能研究[D].北京:中国建筑科学研究院硕士学位论文.2009.
    [32]Aiken I, Kimura I. The use of buckling-restrained braces in the United States[J]. Proceedings of the Japan Passive Control Symposium. Tokyo Institute of Technology, Okohama, Japan,2001.
    [33]Sabelli R, Aiken IU. S. building-code provisions for buckl ing-restrained braced frames: basis and development[J]. proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, B. C, Canada,2004.
    [34]胡大柱,尤毓慧,邵宏政.屈曲约束耗能支撑在教学楼加固工程中的应用[J].工程抗震与加固改造.2009.31(6):88-92.
    [35]周建龙,汪大绥,姜文伟等.防屈曲耗能支撑在世博中心工程中的应用研究[J].建筑结构.2009.39(5):29-33.
    [36]李培彬,娄宇,赵广鹏等.屈曲约束支撑在北京银泰中心结构抗震设计中的应用[J].建筑结构.2007.37(11):5-7.
    [37]徐继东,吉小萍,黄坤耀等.组合套管式新型防屈曲耗能支撑试验研究及工程应用[J].建筑结构.2010,40(1):44-46.
    [38]上海蓝科防屈曲支撑产品应用介绍http://www.lankesoft.com/projectqqDetail.php?id=15.
    [39]赵广鹏,李培彬.北京银泰中心钢结构主楼结构设计[J].建筑结构.2007,37(11):1-4.
    [40]孙建华,罗开海,王亚勇,白雪霜.含屈曲约束耗能支撑的高层建筑地震作用效应分析[J].工程抗震与加固改造,2007,29(4):1-12.
    [41]赵俊贤.无黏结内藏钢板支撑剪力墙滞回性能试验及工作性能研究[D].黑龙江:哈尔滨工业大学博士学位论文.1-13,2007.
    [42]丁玉坤,张耀春.无粘结内藏钢板支撑剪力墙滞回性能分析[J].哈尔滨工业大学学报,2008,4(4):521-527.
    [43]张宪江,黄昆.约束屈曲支撑在多层钢框架中的应用研究[J].钢结构.2008,10(23):6-9.
    [44]高向宇,李永梅,张慧等.考虑防屈曲支撑力学参数非对称性的有效阻尼比[J].建筑结构.2008,38(3):96-100.
    [45]KIM J, CHOI H Behavior and design of structures with buckling restrained braces[J]. Engineering Structures.2004,26(6):693-706.
    [46]建筑抗震设计规范.GB50011-2010.
    [47]杨秋鸣.防屈曲支撑框架体系按延性方法设计探讨[J].山西建筑.2008,34(32):97-98.
    [48]上海钢结构建筑设计规程.
    [49]吴勇.一字内芯全钢防屈曲支撑的有限元分析[J].低温建筑技术.2009(9):78-80.
    [50]王华琪,丁洁民,姚兴华.防屈曲支撑理论分析与有限元模拟[J].沈阳建筑大学学报(自然科学版).2008,24(2):191-195.
    [51]王秀丽,苏成江.约束屈曲支撑受力性能及高阶模态分析[J].兰州理工大学学报.2007.33(5):105-108.
    [52]吴勇.一字内芯全钢防屈曲支撑的有限元分析[J].低温建筑技术.2009,9(135):78-80.
    [53]陈煜.一字型截面防屈曲支撑的抗震性能研究[D].长沙:湖南大学硕士学位论文,2006.30-49.
    [55]M Wakabayashi, T Nakamura. Experimental study of elasto-plastic properties of precast concrete wall panels with built-in insulating braces[C]//Summaries of Technical Papers of Annual Meeting. Tokyo:Architectural Institute of Japan,1973,1041-1044.
    [56]YOSHINO T, KARNO Y. Experimental study on shear wall with braces[C]//Summaries of technical papers of annual meeting. Structural Engineering Section. Tokyo:Archi-tectural Institute of Japan.1973,1041-1044.
    [57]李宏男,霍林生.结构多维减震控制[M].北京:科学出版社,2008.
    [58]杨昌民,牧野俊雄,李宏男.防屈曲支撑的研究进展及其工程应用[J].建筑科学与工程学报,已录用.
    [59]杨昌民,李宏男,牧野俊雄,郝晓燕.防屈曲支撑的有限元模拟与滞回性能分析[J].防灾减灾工程学报,已录用。
    [60]杨昌民,李宏男,牧野俊雄,郝晓燕.安装有防屈曲支撑建筑的地震模拟与经济性分析[J].防灾减灾工程学报,已录用.
    [61]http://baike.baidu.com/view/1144405.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700