螺旋桨水动力性能、空泡及噪声性能的数值预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着船舶向大型化和高速化发展,船舶螺旋桨的负荷越来越重,螺旋桨及其后的舵装置都不可避免会发生空泡现象,空泡现象的出现将会降低螺旋桨的性能,产生空化剥蚀,导致船体脉动压力剧增,形成空泡噪声,使螺旋桨噪声成为船舶主要的噪声源。目前舰船声隐身性能成为造船界普遍关注的问题,螺旋桨空泡噪声作为舰船三大噪声源之一已受到越来越多的关注。本论文采用面元法理论结合CFD数值模拟技术系统地对螺旋桨的水动力性能、空泡性能以及噪声性能进行了深入的研究,开展了定常及非定常螺旋桨水动力性能数值计算方法的研究,进行了粘性流场中螺旋桨以及桨-舵之间的性能模拟及流场分析;以面元法和CFD技术为基础分析了螺旋桨的空泡性能,并对螺旋桨的无空泡噪声及空泡噪声进行了探讨。
     论文首先系统地阐述了船舶螺旋桨理论的发展历程,总结了国内外对螺旋桨的水动力性能、空泡性能及噪声性能等的理论、试验研究现状和发展趋势,并分析了计算流体力学软件在船舶螺旋桨相关性能预报方面的应用及前景。
     采用理论方法系统地研究了均匀流场和非均匀流场中螺旋桨的水动力性能预报问题,并编制了相应的数值预报程序。其中螺旋桨的定常水动力性能采用基于速度势的低阶面元法预报,非定常水动力性能采用时域方法进行求解。同时,在计算过程中,为了加快计算进度,螺旋桨的数学模型采用主桨叶方法,其他桨叶上的未知量均可由主叶片按一定相位角推算出来,且非定常性能计算时的每一时间步长的计算方法与定常性能计算基本相同。
     选用整体迭代法结合等压库塔条件预报了螺旋桨在均匀流场和非均匀流场中的空泡性能。计算时用格林公式导出该问题的积分方程,以运动学边界条件、动力学边界条件、无穷远条件、等压库塔条件等作为方程的定解条件。论文中分析了网格划分方式、网格数以及尾涡模型对螺旋桨表面空泡分布预报结果的影响,同时把计算结果与实验结果进行了比较,验证程序的可靠性,在此基础上,计算了非均匀来流中螺旋桨的空泡性能,考察了螺旋桨旋转一周过程中桨叶空泡分布范围的变化。
     采用雷诺时均(RNS)方程的求解技术对粘性流场中螺旋桨敞水性能进行了计算研究。进行螺旋桨敞水性能计算时,把周期性边界条件引入到模型建立和参数设置中。在模型建立时根据螺旋桨桨叶的不同侧斜程度分别采用直切法、斜切法和样条曲线法;同时对螺旋桨单个桨叶通道内的流场和全桨叶通道的流场进行了数值模拟,得出不同桨叶数、不同侧斜度的螺旋桨水动力系数曲线以及不同剖面处的压力系数分布。通过对采用单通道方法与采用全通道方法所得结果的对比,找出周期性边界条件的优缺点,分析了把周期性边界条件运用于螺旋桨性能计算之中的可行性。同时论文中还对CFD不确定度的验证和确认作了相应阐述,分析了CFD模拟中存在的各种误差及不确定度。选用常规螺旋桨P4381作为研究对象,开展网格收敛研究,分析CFD模拟中网格误差及不确定度占主要成分的数值误差及不确定度,并将部分数值结果与试验数据对比进行有效性确认研究。结果表明:CFD模拟的验证研究工作能够将模拟中的部分误差及不确定度量化,从而为CFD工作者改进模拟结果的工作指明方向;计算结果的有效性确认研究则能够将模拟结果与基准数据作比较研究,增强模拟结果的可信度。
     采用滑移网格模型结合多块混合网格划分方法对螺旋桨非定常性能以及桨-舵干扰性能进行了模拟计算。在进行非定常计算时采用边界轮廓(Boundary Profiles)来进行伴流场的试验数据的输入,通过数值计算获得了不同时刻螺旋桨桨叶表面上的压力分布云图、某截面处的压力系数分布曲线、旋转一周中试验点的压力系数变化以及螺旋桨主桨叶在旋转一周时的推力系数和转矩系数,由结果分析可知数值计算结果与试验结果以及Hoshino计算结果具有较好的一致性。通过对粘性流场中螺旋桨、舵组合体的水动力性能计算分析,得出舵的存在会使螺旋桨的推力系数和转矩系数均有相应的增加、桨-舵间距的增大使桨-舵相互干扰作用减小、舵的存在使径向与切向速度分布呈现向上下伸展的分布形状而轴向速度恰恰相反等结论。
     以二维水翼为研究对象,进行翼型定常空泡流的数值模拟,主要分析空泡模型、湍流模型以及壁面函数的选取对计算结果的影响,并对不同空泡数情况下产生的空泡绕流现象与实验值进行了比较分析,通过分析结果获知在进行空泡计算时各种因素参数的合理选择。同时分析了绕三维水翼空泡流动的非定常特性,模拟了空泡的初生、发展、破灭、脱落的过程,获取了空泡发展、演变过程中机翼升力、阻力随时间变化的情况。把基于RANS/LES的混合方法DES (Detached Eddy Simulation)引入到螺旋桨的空泡性能计算中来,进而依据对机翼空泡计算结论选取合适的参数对螺旋桨的空泡现象进行数值模拟计算,分析螺旋桨在均匀和非均匀来流情况下的空泡产生规律。
     基于CFD软件中的声学模块对螺旋桨的噪声性能进行了数值预报和分析。分别计算了螺旋桨的无空泡噪声和空泡噪声,求解了不同位置处声压谱和声功率谱的特性、噪声随距离变化的衰减特性、不同的计算步长对计算结果的影响、来流速度的变化对频谱的影响以及空泡数变化对螺旋桨相关声谱特性的影响等等。
With the development of the large-scale and high speed ship, the load of ship propeller is heavier and heavier. The phenomenon of cavitation inevitably occurs on the surfaces of propeller and rudder, which will reduce the performance of the propeller, result in cavitation and erosion, bring on dramatic increasing in the hull pressure fluctuations and cavitation noise, so that the ship propeller noise becomes a major noise source of the ship. Presently, ship acoustic stealthy technique becomes a popular problem within shipbuilding research. As one of the three major noise sources, the cavitation noise of the ship propeller has become more and more attentive.
     In this paper, the hydrodynamic performance, cavitation performance and noise performance of propeller were studied systematically by using the method of integrating the theory of panel method with CFD numerical simulation technology. The numerical method research on steady and the unsteady hydrodynamic performance of the propeller was carried out, and the performance of the propeller and propeller - rudder in the viscous flow field was simulated and analyzed. The cavitation performance of propeller was analyzed and the non-cavitation noise and cavitation noise of propeller were discussed based on the panel method and CFD technology.
     In this paper, the development process of ship propellers was expounded systematically at first, which summed up the theory, experimental research status and development trends of the propeller hydrodynamic performance, cavitation performance and noise performance at home and abroad. Meanwhile, the applications and future prospects of computational fluid dynamics software in the prediction of ship propellers performance were analyzed.
     The prediction problem of propeller hydrodynamic performance in the uniform flow field and non-uniform flow field was studied by theory systematically, and the corresponding numerical procedures was composed, which including the steady hydrodynamic performance prediction and unsteady hydrodynamic performance prediction of propeller. The steady hydrodynamic performance of propeller was solved using low-level panel method based on velocity potential, and the unsteady one was solved using time-domain method. Meanwhile, in order to reduce computing time and reduce the computer's storage capacity, the mathematical model of propeller will be calculated using the method of key propeller blade, the unknown parameter on the other blades can be calculated according to a certain phase angle, and the calculation methods of unsteady performance for each time step are basically the same as the calculation methods of steady performance.
     In the paper, the method of overall iterative combined with the uniform pressure Kutta condition was used to predict the cavity performance of propellers in uniform flow field and non-uniform flow field. The integral equation of the problem was induced by using Green's formula, while the kinematics boundary conditions, dynamic boundary conditions, infinite conditions, uniform pressure Kutta condition were used as the determinate solution conditions. The influence of mesh partition method,mesh number and the wake model were took into account to the forecast results of the cavitation distribution in propeller’s blades. Though the comparison of the calculation results and the experimental results, the reliability of the program was validated. By the basis of comparison, cavitation performance of the propeller in non-uniform flow was calculated and the change of distribution scope on the blades was calculated during a period.
     The open water performance of the propeller in viscous flow field was studied by adopting solve technique of Reynolds average Navier-Stokes(RNS) equations while periodicity boundary conditions were introduced to build the model and set the parameters. Directly Cutting Method, Rake Cutting Method and Spline Curve Method were used respectively in light of different skew angles of the blades. By making numerical simulation on the open water propeller in single blade channel flow field and all blades channel flow field, propulsive performance coefficient curves of different blades and skew angles and the distribution of pressure coefficient in different sections were concluded. The advantages and disadvantages of the periodicity boundary conditions were found out by contrasting the results of single blade channel method and all blades channel method, and the feasibility of applying periodicity boundary conditions to calculate open water performance of the propeller was analyzed. In the paper, validation to the CFD uncertainty was presented and different kinds of error and uncertainty were also analyzed during CFD simulation. General propeller P4381 was chosen to develop grid convergence research and analyze the grid error and numerical error of uncertainty accounting for the bases. At last, some numerical results were compared with experimental results for studying the validity confirmation. Results indicated that the study on validation of CFD simulation could make some errors and uncertainty quantitatively described and show the way clearly for the CFD workers to improve the simulation results. On the other hand, the study of validity confirmation could be used to improve the reliability of the simulation results by comparing them with normal data.
     By slipping grid model combined many blocks of mixing mesh method, some numerical simulation was made on the unsteady performance of propeller and the interaction performance of propeller-rudder. In the course of unsteady calculation, Boundary Profiles were used to input the experimental data. The pressure distribution nephogram of the propeller blades at different time, the pressure coefficient distribution curve at a cross-section, the pressure coefficient change of the test point in one period as well as the thrust and torque coefficients of one blade were obtained by numerical calculation. It shows that simulation results and experimental results and Hoshino calculated results have good consistency from the results analysis. Through the hydrodynamic performance calculation and analysis of the propeller and rudder combination in the viscous flow, it can be seen that the presence of the rudder will come to a corresponding increase in both the propeller thrust coefficient and torque coefficient and the increasing of distance between the propeller and rudder will decrease the interaction and the presence of the rudder will make the radial and tangential velocity distributions take on extending up and down while the axial velocity distribution has the opposite conclusion and so on.
     The numerical simulation of the Two-dimensional hydrofoil in steady cavitation flow was made. The impact of cavitation model, turbulence model and wall function selection on the calculation results was analyzed. The comparison between the calculative results in different cavitation number and experimental data was also analyzed. Various factors and parameters selection during cavitation calculation could be obtained though analyzing the results. At the same time, unsteady characteristics of cavitation flow around the three-dimensional hydrofoils were analyzed。The inception, development, burst, shedding process of the cavitation around the three-dimensional hydrofoils was simulated, and the change of wing lift and resistance with time in the course of cavitation development and evolvement was numerical calculated. DES (Detached Eddy Simulation) was introduced into the cavitation performance calculation of the propeller, which is the mixing method based on RANS/LES. The appropriate parameters to made numerical simulation calculation of the propeller cavitation phenomenon was selected in light of the results of aerofoil cavitation calculation. Lastly, the cavitation performance of propeller in uniform and non-uniform flow was analyzed.
     Based on the acoustics module of CFD software, numerical prediction and analyses were made on the noise performance of the propeller. The noise of propeller with and without cavitaion was calculated respectively. The sound pressure level and sound power spectral density in different positions, the noise attenuation characteristics with distance changing, the impact of the different calculation steps on the calculation results, the impact of velocity changes in flow on frequency spectrum as well as the impact of change of the cavitation number on the acoustic spectral characteristics related to the propeller and so on were solved in the paper.
引文
[1] D.罗斯著.水下噪声原理翻译组译.水下噪声原理.海洋出版社,1983.
    [2] Knapp, R .T., et c..空化与空蚀[M].水利出版社,1981年。
    [3] Rankine, J.M.: On the mechanical principles of the action of propellers[C]. TINA, Vol.6, p13, 1865.
    [4]苏玉民,黄胜.船舶螺旋桨理论[M].哈尔滨:哈尔滨工程大学出版社,2003
    [5]王国强,董世汤.船舶螺旋桨理论与应用[M].哈尔滨:哈尔滨工程大学出版社, 2005.
    [6] Hess, J.T., Smith, A.M.: Calculation of Nonlifting Potential Flow about Arbitrary Three Dimentional Bodies[J]. Journal of Ship Research, Vol.8, N0.2, 1964.
    [7] Morino,L. Subsonic Potential Aerodynamics for Complex Configurations, A General Theory[J]. AIAA Journal, Vol.12(2). 1974.
    [8] Morino,L , Chen L. Steady and Oscillatory Subsonic and Supersonic Aerodynamics around complex Configurations[J]. AIAA Journal, Vol.13(3), 1975.
    [9] Lerbs, H.W. Moderately loaded propellers with finite number blades and an arbitrary distribution of circulation[C]. Tran SNAME, 1952
    [10]Pien P.C. The Calculation of Marine Propellers Based on Lifting Surface Theory[C].JSR, 1961, 5(2)
    [11] Yamazaki, H., Ikehata, M. Numerical Analysis of Steady Open Characteristics of Marine Propeller by Surface Vortex Lattice Method[J]. Journal of SNAJ, Vol.172, 1993
    [12]中岛康吉.螺旋桨的升力面理论应用(中译文)[C].日本造船学会论文集,108号,1960年
    [13] Van Gent W, On the Use of Lifting Surface Theory for Moderately and Heavily Loaded Ship Propellers[C]. NSMB pub, No.536
    [14] Morgan,W.B., Silovic,V., Deny,S.B. Propeller Lifting Surface Correction[C],Trans,SNAME,Vol.76,1968
    [15] Kerwin, J., Kinnas, S. and et al. A Surface Panel Method for the Hydrodynamic Analysis of Ducted Propellers[J]. Trans. SNAME, Vol.95, 1987
    [16] Lee,J.T. A Potential Based Panel Method for the Analysis of Marine Propellers in Steady Flow[D], Ph.D thesis, Dept. of Ocean Engineering, MIT, 1987
    [17] Yamazaki, H., Ikehata, M. Numerical Analysis of Steady Open Characteristics of Marine Propeller by Surface Vortex Lattice Method[J]. Journal of SNAJ, Vol.172, 1993
    [18] Koyama, K. Application of a Panel Method to the Unsteady Hydrodynamic Analysis of Marine Propellers[C]. Proceedings of the 19th symposium on Naval Hydrodynamics, Seoul, Aug. 1992
    [19] Hoshino, T. Hydrodynamic Analysis of Propellers in Steady Flow Using a Surface Panel Method[J], Journal of SANJ, Vol.165, 1989
    [20] Hoshino, T. Hydrodynamic Analysis of Propellers in Steady Flow Using a Surface Panel Method--2nd Report: Flow Field around Propeller[J]. J. of SNAJ, Vol.166, 1989
    [21] Hoshino, T. Hydrodynamic Analysis of Propellers in Unsteady Flow Using a Surface Panel Method[J], J. of SNAJ, Vol.174, 1993
    [22]叶永兴.升力线理论设计计算程序[J].舰船性能研究.1978(4)
    [23]董世汤.船舶螺旋桨理论[M].上海:上海交通大学出版社,1985
    [24]董世汤.螺旋桨升面理论边值问题的精细化处理[J].CSSRC技术报告.2003
    [25]陈家栋,董世汤.考虑涡分离的螺旋桨升力面理论计算方法[C].第四届全国流体力学学术会议论文集.1989
    [26]王国强,徐立新,杨晨俊.螺旋桨性能预估的非线性涡格法[J].中国造船.1992(2)
    [27]黄胜.船舶螺旋桨升力线理论.哈尔滨[M].哈尔滨工程大学出版社,1996
    [28]苏玉民,黄胜.用面元法预报船舶螺旋桨的定常水动力性能[J].哈尔滨工
    程大学学报.2001,22(2):1-5页
    [29]谭廷寿.面元法预报螺旋桨水动力压力[J].武汉交通科技大学学报.1997.21(9):534-540页
    [30]谭廷寿,熊鹰.螺旋桨面元法数值库塔条件的改进[J].船舶力学.2000,4(2):12-18页
    [31] Tsakonas S,Jacob W R. Unsteady Lifting-surface Theory for a Marine Propeller of Low Pitch Angle with Chord wise Loading Distribution[C], J.S.R, Sep.1965
    [32] Tsakonas S,Chen C Y, Jacob W R. Exact Treatment of the Helicoidally Wake in the Propeller Lifting-surface Theory[C]. J.S.R, Vol11,No.3,Sep.1967
    [33] Tsakonas S,Jacob W R,Rank P H. Unsteady Propeller Lifting-surface Theory with Finite Number of Chord wise Modes[J]. J.S.R, Vol.12,No.1, March,1968
    [34] Tsakonas S, Breslin J, Miller M. Correlation and Application of an Unsteady Flow Theory for Propeller Forces[J], Trans. SNAME, Vol. 75,1967
    [35] Tsakonas S, Jacob W R. An Exact Linear Lifting Surface Theory for a Marine Propeller in a Non-uniform Flow Field[C], Davison Lab, Stevens Institute of Technology, Report SIT-DL-72-1509,Feb.1972
    [36] Tsakonas S, Jacob W R. Application of Unsteady Lifting Surface Theory to the Study of Propeller-Rudder Interaction[C], J.S.R, Sep.1970
    [37]Kerwin J.E,Lee S.C. Prediction of Steady and Unsteady Marine Propeller Performance by Lifting Surface Theory[J].Tran. SNAME, 1978:86
    [38] Kinnas S A, Hsin C Y, Keenan D. A Potential Based Panel Method for the Unsteady Flow Around Open and Ducted Propellers[C].The 18th Symposium on Naval Hydrodynamics, 1991
    [39] Kinnas S, Hsin C Y, Keenan D. A Potential Based Panel Method for the Unsteady Flow Around Open and Ducted Propellers[C]. 18th Symposium on Naval Hydrodynamics, Ann Arbor,Aug.1990:667-684P
    [40] Kinnas S, Hsin C Y. Boundary Element Method for the Analysis of the Unsteady Flow Around Extreme Propeller Geometries[J]. AIAAJournal,Vol.30, No.3,1992,:688-696P
    [41] Maruo H, Ikehata M, Ando M. Theoretical Prediction of Unsteady Propeller Characteristics in Non-Uniform Wake Field[C]. 15th Symposium on Naval Hydrodynamics.1984
    [42] Maruo H, Ikchate, Theoretical Prediction of Unsteady Propeller Characteristics in the Non-Uniform Wake Field[C]. 15th Symposium on Naval Hydrodynamics, 1984
    [43] Murakami M, Kuro M. Practical Quasi-Continuous Method to Estimate Unsteady Characteristics of Propeller[C],Trans.of WJSNA,Vol.84,1992
    [44] Ando J, Maita S, A New Surface Panel Method to Prediction Steady and Unsteady Characteristics of Marine Propeller[C],22nd Symposium on Naval Hydrodynamics, Washington D C,U.S.A,1998:126-138P
    [45]陈家栋.非定常螺旋桨水动力性能升力面预报[J].水动力学研究进展.1992(4)
    [46]王国强,胡寿根.螺旋桨非定常水动力性能计算的升力面方法[J].上海交通大学学报,1989,23(3)
    [47] Wang G Q, Xu L X,Yang C J, Tamashima M, Ogura M, Unsteady Nonlinear Vortex Lattice Method for Prediction of Propeller Performance[A]. The 19th Symposium on Naval Hydrodynamics ,1992
    [48] Feng J Z, Dong S T. A Panel Method for the Prediction of Unsteady Hydrodynamic Performance of the Ducted Propeller with a Finite Number of Blades[A]. Proceeding of the International Symposium on Propeller and Cavitation,1986
    [49] Tang D H, Dong S T, Chen J D. Comparative Calculations of Unsteady Propeller Performance by Panel Method[A]. Propeller RANS/Panel Method Workshop[C],22nd ITTC Propulsion Committee, April 1998
    [50] Su, Y., Huang, S., Ikehata, M, Kai, H. Numerical Calculation of Marine Propeller Hydrodynamic Characteristics in Unsteady Flow by Boundary Element Method[J].中国造船.第42卷,第4期,2001年
    [51] Tan Tingshou, Xiong Ying, Wang Dexun. Prediction of unsteady pressuredistribution on surface of propeller by surface panel method[J]. Supplement of SHIPBUILDING OF CHINA,2000,14:14-22.
    [52]胡健.螺旋桨空泡性能及低噪声螺旋桨设计研究[D].哈尔滨工程大学工学博士学位论文,2006,6.
    [53]熊鹰.非均匀流场中螺旋桨空泡及脉动压力的数值和实验研究[D].武汉:武汉理工大学工学博士学位论文,2002.
    [54]叶金铭.推进器水动力性能及空泡预报的数值方法和模型试验研究[D].武汉:海军工程大学工学博士学位论文,2008.
    [55] Lee C S. A Potential-Based Panel Method for the Analysis of a 2-D Partially Cavitating Hydrofoil[J], Journal of the Society of Naval Architects of Korea,1989,26(4)
    [56] Lee C S, Prediction of Transient Cavitation on Marine Propellers by Numerical Lifting-Surface Theory[A],13th Symposium on Naval Hydrodynamics [C],Oct.1980
    [57] Yuasa H, Application of the Vortex Lattice Method to 3-D Theory of a Cavitating Propeller[J],日本造船学会论文集,1984,156
    [58]王国强,杨建民.用升力面方法估算螺旋桨空泡[J].上海交通大学学报,1993(3)
    [59]Uhlman J S, The Surface singularity Method Applied to Partially Cavitation Hydrofoils[J],J.S.R,1987,31,(2)
    [60] Yamazaki, H., Ikehata, M. A Surface Vortex Lattice Method for Calculating Performances of Non-or Super-Cavitating propellers[A]. 20th Symposium on Naval Hydrodynamics[C]. August,1994
    [61] Achkinadze A S, Fridman G M, Artificial Variation Problems Method for Three-Dimensional Lifting Cavity Flow[C],20th Symposium on Naval Hydrodynamics, Santa Barbara, U.S.A, Aug 1994:2121-222P
    [62] Achkinadze A S, Fridman G M, A New Algorithm for Numerical Investigation of Unsteady Cavitating Screw Propeller with Use of Variational Approach[C], Third International Symposium on Cabitation, Grenoble, France, April 1998:279-284P
    [63] Kinnas S A, Cavity Shape Characteristic for Super Cavitating Hydrofoils[R], M.I.T,1984
    [64] Kim Y G,Lee C S,Surface Panel Method for Prediction of Flow around a 3-D steady or Unsteady Cavitating Hydrofoil[A], The Second International Symposium on Cavitation [C],1994
    [65] Kim Y G,Lee C S,Super-Cavitating Flow Problems about 2-D Symmetric Strut[J],Journal of the Society of Naval Architects of Korea,1990,27(4)
    [66] Kim Y G,Lee C S,Lee J T,A Potential-Based Panel Method for the Analysis of A 2-D Super-Cavitating Hydrofoil[J],Transactions of the Society of Naval Architects of Korea,1991,28(2)
    [67]高霄鹏.舰艇水动力噪声的数值分析与拖曳模测试技术研究[D].上海交通大学工学博士学位论文,2007,6.
    [68]赵小龙,熊鹰.预报螺旋桨噪声的方法[J].舰船科学技术,2005, 27(2):42-45.
    [69] John David Muench. Periodic Acoustic Radiation from A Low Aspect Ratio Propeller[D]. Island:the University of Rhode Island,2001.
    [70] Ghanem Farah Oweis. An Experimental Investigation into the Dynamics of Propeller Tip Vortices and the Association Cavitation Noise[D]. Michigan: the University of Michigan,2003.
    [71] Da-Qing Li , Pelle Lundstr?m. Open water and cavitation inception tests of a conventional propeller and a highly skewed propeller[C], Leading Edge Deliverable D3.a, SSPA, Sweden, 2004
    [72] David B Stephens ,Scott C Morris. The Effect of blade loading on sound sources in a ducted rotor[J]. AIAA,2006,268(3): 278-307.
    [73]张永坤、熊鹰.水中含气量对螺旋桨空泡噪声的试验研究[J].武汉理工大学学报,2009(2):234-237P
    [74] Farzad Taghaddosic, Ramesh K Agarwal. Quadruple Modeling for Prediction of High-speed Impulsive Noise of Propellers[J]. AIAA,2000,208(9) :111-130P
    [75] Seol H, Jung B, Suh J C, Lee S. Prediction of non-cavitating underwater propeller noise[J]. J. Sound Vib.,2002,257(1): 131-156P
    [76] Seol H, Suh J C, Lee S. Development of Hybrid Method for the Prediction of Underwater propeller noise[J]. J. Sound Vib.,2005, 283(3): 345-360P
    [77] Young Zehr Kehr, Jui Hsiang Kao. Numerical Prediction of the Blade Rate Noise Induced by Marine Propellers[J]. Journal of Ship Research, 2004,48(1):1-14P
    [78] Zhou Q, Joseph P. F. A Frequency-Domain Method for the Prediction of Broadband Noise from an Open Rotor[J]. AIAA,2004,303(8):321-354P
    [79] Zhou Q, Joseph P. F. Frequency-Domain Method for Rotor Self-noise Prediction [J]. AIAA,2006,44(6):134-157P
    [80]汤渭霖.螺旋桨涡旋噪声预报[J].船舶力学,1999,3(2):49-57页
    [81]朱锡清,吴武生.螺旋桨负荷噪声研究[J].声学学报,1999,24(3):260-261页
    [82]朱锡清,唐登海,孙红星等.船舶螺旋桨低频噪声研究[J].水动力学研究与进展,2000,15(1):74-77页
    [83]熊鹰,谭廷寿.螺旋桨导边充气对其水动力性能和辐射噪声的影响研究[J].武汉交通科技大学学报,2000,24(4):379-383页
    [84]孙红星,朱锡清.螺旋桨离散谱噪声计算研究[J].船舶力学, 2003(8): 105-109页
    [85]张永坤,熊鹰,赵小龙.螺旋桨无空泡噪声预报[J].噪声与振动控制, 2008(1): 44-47页
    [86]廖国平,刘应中等. 21世纪的船舶性能计算和RANS方程[J].船舶力学.2001, (5).
    [87]沈泓萃. ITTC与实用船舶水动力学技术进展[C].第五届船舶力学学术委员会全体会议专集.四川绵阳,2002,4.
    [88] 25th INTERNATIONAL TOWING TANK CONFERENCE, Edinburg, United Kindom, Sep.4-10,2005.
    [89]王金宝,蔡荣泉等.关于CFD应用性研究的一些认识和思考[C].船舶水动力学学术会议论文集.中国武汉,2004,9.
    [90] FUNENO I, eta1. Analysis of steady viscous flow around a highly skewed propeller[J].J.Kansai Society of Naval Architects,1999,231:1-6页
    [91] FUNEN0 I.Analysis of unsteady viscous flow around a highly skewed propeller[J].J.Kansai Society of Naval Architects,2002,2371:39-45P
    [92] LI Daqing. Validation of RANS predictions of open water performance of a highly skewed propeller with experiments[C] Conference of Global Chinese Scholars on Hydrodynamics, SSPA, Sweden, 2002, 520-528P
    [93] Rhee S, Joshi S. CFD Validation for a Marine Propeller Using an Unstructured Mesh Based RANS Method[C]. Proceedings of FEDSM’03, Honolili, USA,2003.
    [94] Rhee S, Kawamura T. A Study of Propeller Cavitation Using a RANS CFD Method[C].Proceedings of 8th International Conference on Numerical Ship Hydrodynamics, Busan,Korea,2003.
    [95] Rhee S, Koutsavidis E. Unsteady Marine Propulsor Blade Flow-A CFD Validation with Unstructured Dynamic Meshing[C]. Proceedings of the 33rd AIAA Fluid Dynamics Conference, Orlando, USA,2003.
    [96] Watanabe T, Kawamura T, Takekoshi T. Simulation of Steady and Unsteady Cavitation on a Marine Propeller Using a RANS CFD Code[C]. Proceedings of 5th International Symposium on Cavitation, Osaka, Japan:CAV2003,2003.
    [97] Kim S E, Rhee S. Toward High-Fidelity Prediction of Tip-Vortex Around Lifting Surfaces[C]. Proceedings of the 25th Symposium on Naval Hydrodynamics, St. John’s, Canada,2004.
    [98] Lindau, J. W., Boger, D. A., Kunz, R. F. Propeller Cavitation Breakdown Analysis [J]. Journal of Fluids Engineering, 2005,Vol.127, 995–1002P
    [99]唐登海,董世汤.船舶螺旋桨周围粘性流场数值预报与流场分析[J].水动力学研究与进展, Ser.A,1997, 12(4):426- 436页
    [100]龚吕,姚征,吴曼.船舶反弯扭螺旋桨水力特性的数值模拟与分析[J].上海理工大学学报,2007,29(1):65- 69页
    [101]郭春雨,黄胜.螺旋桨与舵附推力鳍相互干扰水动力性能数值计算[J].哈尔滨工程大学学报, 2006, 34(6):684- 687页
    [102]张志荣,李百齐.螺旋桨/船体粘性流场的整体数值求解[J].船舶力学, 2006, 8(5):19- 26页
    [103]蔡荣泉,陈凤明,冯学梅.使用FLUENT软件的螺旋桨敞水性能计算分析[J].船舶力学, 2006, 10(5):41- 48页
    [104]刘志华,熊鹰,叶金铭.基于多块混合网格的RANS方法预报螺旋桨敞水性能的研究[J].水动力学研究与进展, Ser.A,2007,22(4):50- 56页
    [105] Morino,L., Chen,L.T., Suciu,E.O.: Steady and Oscillatory Subsonic and Supersonic Aerodynamics around Complex Configurations, AIAA Journal, Vol.13, Mar.1975;
    [106] Yanagizawa, M., Kikuchi, K.: Finite Element Calculations for Aerodynamic Coefficients of 3-Dimensional Body in Subsonic Flow Using Green's Function Method. Technical Report of National Aerospace Laboratory, 1982;
    [107]谭廷寿.非均匀流场中螺旋桨性能预报和理论设计研究[D].武汉:武汉理工大学工学博士学位论文,2003.
    [108]王国强,胡寿根.螺旋桨性能和压力分布预估方法的改进[J].中国造船.Vol.100 1988
    [109]解学参.吊舱推进器推进及空泡性能的数值模拟[D].哈尔滨工程大学博士学位论文.2009
    [110]胡安康.沪东型船舶螺旋桨的研究与开发[D].哈尔滨工程大学博士学位论文.2001
    [111]王福军.计算流体动力学分析—CFD软件原理与应用[M].清华大学出版社,2004
    [112]陈康.影响船舶CFD模拟的因素分析与三体船阻力计算改进探讨[D].哈尔滨:哈尔滨工程大学工学博士学位论文,2008.
    [113]盛振邦,刘应中.船舶原理[M].上海交通大学出版社,2004:118-123.
    [114]冯学梅,陈凤明.使用FLUENT软件的螺旋桨敞水性能计算和考察[J].船舶,2006,(1):14-19页
    [115] ITTC QM Procedure 7.5-03-01-01[S].2002.
    [116] ITTC QM Procedure 7.5-03-02-01[S].2002.
    [117] Fred Stern, Robert V. Wilson, Hugh W. Coleman, Eric G. Paterson. Verification and validation of CFD simulations[R]. IIHR Report NO.407,1999
    [118] Fred Stern, Robert V. Wilson, Hugh W. Coleman, Eric G. Paterson. Verification and validation of CFD simulations[C]. Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco, California, 1999
    [119] F. Stern, J. Longo, R. Penna, etc. International collaboration on benchmark CFD validation data for surface combatant DTMB model 5415[C]. 23rd symposium on naval hydrodynamics, Val de Reuil, France, 2000. Washington, D.C.:THE NATIONAL ACADEMIES PRESS, 2001:402-422P
    [120] Fred Stern, Robert V. Wilson, Hugh W. Coleman, Eric G. Paterson. Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and procedures[C]. Journal of Fluids Engineering, 2001, 123(4): 793-802P
    [121] Robert V. Wilson, Fred Stern, Hugh W. Coleman, Eric G. Paterson. Comprehensive approach to verification and validation of CFD simulations—Part 2: Application for rans simulation of a Cargo/Container ship[C]. Journal of Fluids Engineering, 2001, 123(4): 803-810P
    [122] Fred Stern, Robert Wilson, Jun Shao. Quantitative V&V of CFD simulations and certification of CFD codes[J]. International Journal for Numerical Methods in Fluids, 2005, 50(11): 1335-1355P
    [123] Claus D. Simonsen, Fred Stern. Verification and validation of RANS maneuvering simulation of Esso Osaka: Effects of drift and rudder angle on forces and moments[J]. Computer & Fluids, 2003, 32(10): 1325-1356P
    [124] Joe Longo, Fred Stern. Uncertainty assessment for towing tank tests with example for surface combatant DTMB model 5415[J]. Journal of Ship Research, March 2005, 49(1): 55-68P
    [125] Wilson, R., Stern, F.. Verification and validation for RANS simulation of a naval surface combatant. Standards for CFD in the Aerospace Industry[A]. Aerospace Sciences Meeting, Reno, Nevada, 2002, AIAA 2002-0904
    [126]全国质量管理和质量保证标准化技术委员会质量体系分技术委员会编译.质量管理和质量保证国际标准最新文件汇编[G].北京:中国标准出版社,1992.
    [127]朱德祥,张志荣,吴乘胜,赵峰.船舶CFD不确定度分析及ITTC临时规程的初步应用[J].水动力学研究与进展,A辑,2007,22(3).
    [128]姚震球,杨春蕾.潜艇非稳态流场计算流体力学不确定度分析[J].船海工程,2009,38(3): 211-224.
    [129]张楠,沈泓萃,姚惠之.阻力和流场的CFD不确定度分析探讨[J].船舶力学,2008,12(4):40-43.
    [130] Coleman H W,Stern F. Uncertainties in CFD code validation[J].ASME J Fluids Eng.,1997,119:795-803.
    [131] Stern F, Wilson R V, Coleman H W, Paterson E G. Comprehensive approach to verification and validation of CFD simulations-Part I: methodology and procedures[J].J Fluids Engineering,2001,123:793-802.
    [132] Wilson R V, Stern F, Coleman H W, Paterson E G. Comprehensive approach to verification and validation of CFD simulations-Part II: application for RANS simulations of a cargo/container ship[J].J Fluids Engineering, 2001,123:803-810.
    [133] Wilson R, Stern F. Verification and validation for RANS simulations of a naval surface combatant[Z].AIAA Paper 2002-0904,2002.
    [134] Simonsen C D, Stern F. Verification and validation of RANS maneuvering simulation of Esso Osaka: effects of drift and rudder angle forces and moments[J].Computers and Fluids,2003,32:1325-1356.
    [135] Van S-H, Kim J, Park I-R, Kim W-J. Calculation of turbulence flows around a submarine for the prediction of hydrodynamic performance[C]//Proc.8th Int. Cont. Numerical Ship Hydrodynamics.Busan,Korea,2003.
    [136] Weymouth G D, Wilson R V, Stern F. RANS CFD predictions of pitch and heave ship motions in head seas[C]//Proc.8th Int. Conf. Numerical Ship Hydrodynamics.Busan,Korea,2003.
    [137] Bull P, Verkuyl J B, et al. Prediction of high Reynolds number flow around naval vessels[C]//Proc.24th Symp. Naval Hydrodynamics.Fukuoka,Japan,2002.
    [138] Larsson L, Stern F, Bertram V. Benchmarking of computational fluid dynamics for ship flows: the Gothenburg 2000 Work-shop[J].J Ship Research,2003,47(1):63-81.
    [139] Roache P J. Overview of Workshop on CFD Uncertainty Analysis,21-22 October,2004[C]//Instituto Superior Técnico,Lisbon,Portugal,2004.
    [140] The Resistance Committee. Final report and recommendations to the 24th ITTC[C]//Proceedings of the 24th ITTC-Volume I.UK,2005.
    [141]黄胜.桨舵干扰的理论与实验研究[M].哈尔滨工程大学出版社,1999.
    [142] Fluent软件用户使用手册[K].
    [143] Hoshino,T.,Data for 22th ITTC98’Workshop on Panel Method and RANS Solution,1998
    [144]蒋少剑.螺旋桨-舵相互干扰水动力性能研究[M].上海交通大学博士学位论文,1997.
    [145]森山文雄,山崎隆介.プロペラの舵におよぼすえいきょうについて.西部造船会会报.1981,(第61号).
    [146]赵静,张嘉钟,魏英杰.应用DES方法模拟非定常空泡流动[J].哈尔滨工程大学学报,2009,30(1):23-26.
    [147] Spalart P R. Trends in turbulence treatments[ R] . AIAA- 00-2306 , 2000.
    [148] James R F. Detached eddy simulation of a supersonic axisymmetric base flow with an unstructured solver [ R] . AIAA-00-2410 , 2000.
    [149] Strelets M. Detached eddy simulation of massively separated flows[ R] . AIAA-01-0879 ,2001.
    [150] Morton S. DES and RANS simulations of delta wing vertical flows[ R] . AIAA-02-0587 , 2002.
    [151]韩省思.超声速燃烧中湍流模型的研究[D].合肥,中国科技大学工学博士论文,2009.
    [152] Ashok K.Singhal,et al. Mathematical Basis and Validation of the Full Cavitation Model[J]. Journal of Fluids Engineering, 2002,124: 617-624.
    [153] KUBOTA .A, KATO H, YAMAGUCHI H. A new modeling of cavitatingflows: a numerical study of unsteady cavitation on a hydrofoil section[J]. J. Fluid Mech., 1992, 240: 59-96.
    [154] MERKLE C, FENG J, BUELOW P. Computational modeling of the dynamics of sheet cavitation[C]. Proceedings of 3rd International Symposium on Cavitation, Grenoble, France, 1998, 307-311.
    [155] Launder B E , Spalding D B. The Numerical Computation of Turbulent Flows[J ]. Computer Methods in Applied Mechanics and Engineering, 1974 , 3 :269.
    [156] Kim S. E, Choudhury D. A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient [J]. ASME FED , 1995 , 217 :1 1411
    [157]钱忠东,黄社华.四种湍流模型对空化流动模拟的比较[J].水科学进展,2006,17(2):203-208.
    [158] YAKHOT V.0RSZAG S A. Renormalization group of turbulence.1.Basic theory[J].Science Computation,1:3,1986.
    [159] B. Kader. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers[J]. Int. J. Heat Mass Transfer, 24(9):1541-1544, 1993.
    [160]季斌,洪方文,彭晓星.二维水翼局部空泡脱落特性数值分析[J].水动力学研究与进展,2008,23(4):412-418.
    [161] YAMAGUCHI. Cloud cavitation on foil sections[C]. Proceedings of 6th International Symposium on Cavitation, Wageningen,The Netherlands,2006,1-2.
    [162]高霄鹏.舰艇水动力噪声的数值分析与拖曳模测试技术研究[D].上海交通大学工学博士学位论文,2007,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700