组构对花岗质岩石流变影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北克拉通减薄是近年来地学界的热点问题,拆离断层形成与地壳伸展减薄是华北克拉通岩石圈减薄的浅部响应,而拆离断层内岩石的流动及变形机制直接受控于岩石流变学状态。对于华北克拉通地壳流变研究,流变实验和天然样品流变分析多数集中在下地壳,对于与拆离断层对应的中上地壳流变实验研究比较少。目前为止,有关于地壳伸展和拆离断层形成相关的岩石流变实验处于空白状态。
     中地壳岩石经历了变质变形作用,发育有强烈的变形组构。为了研究先存组构对中地壳长英质岩石流变的影响,本论文选择华北克拉通北部辽东拆离断层中具有变形组构的花岗片麻岩和糜棱岩为实验样品,开展了两组样品在实验压缩方向分别平行和垂直面理组构的高温高压流变实验(共4组)。实验条件为温度600-890℃,围压800-1200MPa,应变速率1×10~(-4)/s×10~(-5)/s为主,少量10~(-6)/s。实验数据经过了轴压摩擦力扣除和因样品变形产生面积变化的校正等处理,获得了校正后的力学数据,并求取了流变参数。利用偏光显微镜,扫描电镜对实验样品进行微观结构与变形机制的研究;通过透射电镜能谱与电子探针,分析了熔体的分布和成分特征;采用电子背散射(EBSD)分析获取了岩石中石英C轴组构变化的极图。探讨不同组构方向岩石的力学参数和微观特征以及实验变形对原有组构的构造置换作用。另外为了对比组构的影响,还分析了在温度650℃-1000℃,压力1050-1100MPa条件下均匀样品石英闪长岩高温高压流变后样品的微观结构和熔体特征。为研究地壳拆离断层带形成与演化规律,完善拆离断层带形成演化和地壳伸展减薄模型提供必要的实验室数据。论文获得的主要进展如下:
     (1)先存组构对花岗质岩石的脆塑性转化机制没有影响。糜棱岩和花岗片麻岩样品在600-800℃的低温阶段处于半脆性变形域;800-890℃的高温时转变为塑性变形。
     在半脆性变形域,2组糜棱岩和花岗片麻岩样品中,长石以脆性破裂为主,石英碎裂和动态重结晶作用共存。在塑性变形域,长石含有晶内微破裂,但在部分长石边缘出现动态重结晶形成的亚颗粒;石英表现出以亚颗粒化为主的塑性变形特征,而且随着温度升高,石英亚颗粒化程度增强,石英原有细颗粒条带逐渐被新形成的亚颗粒条带所替代;黑云母、角闪石、绿泥石集合体拉长形成条带,在高温下(800℃以上)黑云母和角闪石出现脱水熔融,熔体边缘发现有淬火形成微晶角闪石和黑云母雏晶。而均匀样品石英闪长岩在低温条件下(650℃)处于脆塑性转化域,长石以脆性变形为主,而石英和黑云母以位错滑移为主。在850℃条件下,长石含有晶内微破裂,发育机械双晶,石英亚颗粒化,角闪石出现脱水熔融。在900-1000℃条件下,长石机械双晶,石英亚颗粒化,大部分角闪石和黑云母出现不同程度的脱水熔融。显然,含先存组构的花岗片麻岩、糜棱岩与均匀样品石英闪长岩的脆塑性转化、塑性变形温度条件,以及主要矿物的变形机制基本相同。
     (2)样品强度和流变参数表明,组构对岩石半脆性—塑性变形的力学强度和激活能有显著影响,但对应力指数影响不大,即组构只影响岩石变形的难易程度,不影响岩石的变形机制和应变方式。
     在塑性变形阶段,两组糜棱岩给出的应力指数平均都为3左右,两组花岗片麻岩的应力指数平均都在2左右。但糜棱岩在垂直面理组构(PER)和平行面理组构(PAR)的激活能分别为Q=438kJ/mol和Q=193kJ/mol,花岗片麻岩在垂直面理方向(PER)和平行面理方向(PAR)的激活能分别为Q=380.0kJ/mol和Q=246.4kJ/mol。显然,在垂直面理组构的岩石的激活能要大一些。在相同的应变速率和温度条件下,糜棱岩和花岗片麻岩样品在压缩方向垂直面理时的强度都比平行面理时的强度要高。
     (3)实验变形组构置换了样品中原有组构。糜棱岩和花岗片麻岩实验变形形成的石英和黑云母、角闪石、绿泥石条带改造了样品原有面理组构,其中,垂直面理组构的样品中新形成的变形组构通过构造置换作用,把原有组构彻底改造;平行面理组构的样品,主体继承了原有组构,这导致垂直面理组构的样品强度高于平行面理组构的样品。表明平行面理组构的岩石更易于变形。在石英闪长岩高温变形实验中,部分样品内含有定向分布的大颗粒斜长石,斜长石长轴方向与最大主应力方向(σ1)大角度相交(接近90°),大颗粒斜长石发生机械双晶和弯曲。样品的这种结构与糜棱岩和花岗片麻岩中的垂直面理组构相类似。显然,组构对岩石强度具有显著的控制作用。这意味着岩石组构与最大主应力方向大角度相交或呈垂直方向时,不利于岩石变形和拆离断层的形成,反之均匀岩石或岩石组构与最大主应力方向小角度相交,有利于岩石变形,容易发育拆离断层。
     (4)实验变形形成的新的石英c轴定向,彻底改造了原有石英c轴组构。EBSD分析表明,实验初始样品中,糜棱岩和花岗片麻岩石英的c轴极密区均位于Z轴附近,底面滑移,为低温底面滑移形成的组构。糜棱岩高温实验变形后新形成的细粒石英组构发生了明显变化,其中,垂直面理组构样品在800℃-840℃-850℃的组构分别为底面—柱面—柱面;平行面理组构样品在840℃-850℃-890℃的组构分别为柱面(菱面)—柱面—柱面,基本符合中温条件下的滑移系规律。花岗片麻岩垂直面理组构样品的石英组构轴极密区位于X轴附近,为柱面滑移;平行面理组构样品的石英组构轴极密区位于Z轴附近,伴有少量的X轴极密,底面滑移和柱面滑移。表明垂直面理组构的样品石英变形改造比平行面理组构的样品更彻底。
     (5)角闪石、黑云母脱水熔融对样品强度有微弱的影响,熔体成分显示脱水熔融为局部非均匀非平衡的部分熔融。
     花岗片麻岩在840℃时和糜棱岩在840-850℃时的应力-应变曲线中出现应变软化行为,即随着实验应变增大,熔体含量增加,熔体对样品变形有弱化的趋势。
     角闪石脱水形成的熔体以团块状分布于角闪石矿物边缘,黑云母脱水形成的熔体以星点状或树枝状分布于黑云母与长石和石英颗粒边缘,显示出熔体的空间分布非均匀。熔体中主要氧化物含量表明熔体成分受参与熔融的矿物成分控制,其中,黑云母周围的熔体主要来源于黑云母本身,但角闪石边缘的熔体除了来自角闪石外,部分石英、钾长石及钛铁矿等参与了熔融,显示出非平衡部分熔融特征。
The thinning of the lithosphere of North China craton is a focused research topicin recent years. The detachment fault and crustal extension are thought to be theresponse of shallow crust to this process. In the detachment fault, the viscous flow anddeformation mechanism of rocks are controlled by rheology of the middle to lowercrust, where the rocks usually have strongly deformed fabric due to metamorphismand deformation. However, rheological experiments in the literatures have beenperformed using isotropic samples, and experimental data on effects of fabric onrheology of anistropic rocks are still scarce.
     In order to investigate the effect of preexisting fabric on the rheology of felsicrocks in the middle to lower crust, deformation experiments were performed underhigh temperature and high pressure conditions using strongly foliated, fine-grainedgranitic gneiss and mylonite samples collected from the a detachment fault of easternLiaodong in the North China craton. The samples were drilled from natural graniticgneiss and mylonite with the cylinder axis parallel to the foliation and perpendicularto the foliation. The rheological experiments of the two kinds of rocks were carriedout with the compression direction parallel to the foliation and perpendicular to thefoliation at temperatures of600-890℃, confining pressure of800MPa-1200MPa andstrain rate range of1×10~(-4)/s-2.5×10~(-6)/s. The mechanical data were corrected toeliminate axial dynamic friction, as well as stress difference for changing in thecross-sectional area by assuming a constant volume of the sample. Based on thecorrection, stress-strain data were obtained and the flow law parameters werecalculated. The microstructures and deformation mechanisms were studied underoptical microscope and scanning electron microscopy (SEM); melt compositionsproduced by dehydration melting of hornblende and biotite were analyzed with thescanning electron microscopy and Energy-dispersive X-ray spectroscopy (EDAX)microanalyses; and the trends of quartz c-axis orientation of starting samples andexperimental deformed samples were measured using electron backscattereddiffraction (EBSD). To understand the effect of the fabric to rheology of rocks,microstructures and melt characteristics of experimentally deformed quartz dioritesamples with homogeneous texture were also analyzed in this study. The major newresults are obtained as follows:
     (1) Pre-existing fabric has no effect on the deformation mechanism of the graniticrocks. At temperature from600to800℃,the deformation mechanism of myloniteand granitic gneiss samples is in the semi-brittle deformation regime; at temperaturefrom800to890℃, the deformation mechanism of samples is transformed into plastic deformation.
     In the semi-brittle deformation regime, the deformation of feldspar grains isaccommodated by brittle fractures, and the quartz grains were deformed by cataclasisand dynamic recrystallization. In the plastic deformation regime, intracrystallinemicro-fractures formed in feldspar grains, and sub-grains formed by dynamicrecrystallization were also found on the grain edge of some feldspar crystals.However, grains of quartz are dominated by sub-grain rotation. With increasingtemperature, more subgrains of quartz appeared, and new quartz subgrain bandsformed in deformed samples, which replaced the original fine-grained quartz bandscompletely. Aggregates of biotite, hornblende and chlorite were elongated and formednew bands. At the high temperature(800℃), dehydration melting appeared in grainboundaries of biotite and hornblende, and some new micro-crystalline hornblendegrains were found in some localities of the melt. Similar to that, the experimentallydeformed samples of quartz diorite with homogeneous texture underwentbrittle-plastic transition at lower temperature(650℃), with feldspar dominated bybrittle fracture, and quartz and biotite dominated by dislocation glide. At850℃,intra-granular micro-fractures and mechanical twins were found in feldspar grains,and subgrains were found in quartz. Dehydration melting was seen in grain rims ofhornblende. At900℃-1000℃, the mechanical twins were the major features forfeldspar and subgrains commonly developed in quartz, and most of hornblende andbiotite grains were dehydrated to different extents. Obviously, it was shown thatcharacteristics of the brittle-plastic transition, temperature condition for plasticdeformation and deformation mechanism of the major minerals in foliated graniticgneiss and mylonite are basically similar to that of the uniform samples of quartzdiorite.
     (2) The strength of samples and flow law parameters indicate that pre-existingfabric of samples has a significant effect on the strength of samples and activationenergy, but it has a negligible effect on the stress exponent. That means pre-existingfabric only controls the degree of difficulty for rock deformation, but probably has noapparent effect on macroscopic deformation modes and deformation mechanisms ofrocks.
     In the plastic deformation regime, averaged stress exponent is3for both of thetwo groups of mylonite, and it is2for two groups of granitic gneiss. However, theactivation energies of mylonite samples with compression direction perpendicular(PER) to the foliation and parallel to the foliation (PAR) are438kJ/mol and193kJ/mol, respectively. The activation energy values of granitic gneiss samples withPER and PAR to the foliation are respectively380.0kJ/mol and246.4kJ/mol. Evidently the activation energy of experimentally deformed samples with PER isapparently higher than that of samples with PAR. So the flow strength of myloniteand granitic gneiss samples with PER is stronger than that with PAR under identicalstrain rate and temperature conditions.
     (3) The new fabric bands developed in the deformation process replaced theoriginal foliation of samples. The quartz bands and aggregates of biotite, hornblendeand chlorite bands which formed during experimental deformation transformed theoriginal foliation of samples. In the deformation process, the original foliation of themylonite and granitic gneiss samples with PER were totally destroyed and replaced bythe new foliation. The deformed zone of the samples with PAR followed the originalfoliation and the shear deformation enhanced the deformation bands which led to thelower flow strength of samples with PAR compared to that of PER samples. In otherwords, the samples with PAR are easier to deform. In the deformation experiments onquartz diorite, some samples contain large feldspar grains of preferred orientation.The orientation of long axis in coarse feldspar grains is nearly perpendicular tomaximum principal stress. Mechanical twinning and bending were found in the largefeldspar grains. It suggests that this kind of structure is similar to mylonite andgranitic gneiss samples with PER. Obviously, the fabric pattern has a significanteffect on the strength of rock. This means that when the foliation of rock isperpendicular to the orientation of maximum principal stress, the deformation of rockand detachment fault development are not favored, while in homogeneous rock or inrocks of foliation with a small angle to the orientation of maximum principalstress, the deformation of rock and detachment fault develop easily.
     (4) C-axis of the new quartz grains formed in the deformation experiment has newlattice preferred orientation, which transformed the original c-axis fabric of preferredorientation in quartz. EBSD measurements showed that the C-axis of quartz instarting mylonite and granitic gneiss samples are localized within Z-max domain forbasal
slip, suggesting the basal slip in low temperature deformation. Theexperimental deformed samples of mylonite show apparent change in quartz fabric.The quartz fabrics in samples with PER are basal slip, prism slip and prism slip respectively at the temperatures of800℃,840℃and850℃. The quartzfabrics in samples with PAR are prism slip(rhomb slip), prism slip andprism slip for temperatures of840℃,850℃and890℃separately. Theresults are consistent with the well-known dominant slip systems under moderatetemperature. The C-axis of quartz in experimental deformed granitic gneiss sampleswith PER localized near the X-axis, indicating prism slip. In the samples withPAR, the C-axis of quartz is localized near Z-axis, accompanied by small amount of C-axis localized near X-axis, indicating basal slip and prism slip. These factsshow the quartz fabric in experimentally deformed PER samples experienced morecomplete structural replecement than that of PAR samples.
     (5) The dehydration melting of hornblende and biotite have a weak influence onthe strength of samples. The composition of melt shows that dehydration melting islocalized, heterogeneous and non-equilibrium partial melting. The stress-strain curveof the granitic gneiss sample shows strain-softening at840℃. Similar softeningoccurred in mylonite samples in the temperature from840℃to850℃. Thesephenomena indicate that with the increase of strain and accumulation of melt content,the dehydration melting has the effect of work softening during deformation ofsamples under high temperature. The melt dehydrated from hornblende is localized inthe grain rims of hornblende, while the melt dehydrated from biotite is localized aspoint-like and thin films at the grain boundaries between biotite, feldspar and quartz.The distribution of partial melt of hornblende and biotite shows strong heterogeneity.The contents of main oxides in the melt show that the composition of melt iscontrolled by the minerals which participated in the partial melting, showingcharacteristics of non-equilibrium partial melting. The compostion of melt near biotiteis exactly similar to that of biotite, showing melt mainly came from grains of biotite.However, the composition of melt in the grain margin of hornblende is different fromthat of hornblende, and it seems that melt came not only from the grains ofhornblende, quartz, feldspar, but also from ilmenite.
引文
邓晋福,莫宣学,赵海玲.1994.中国东部岩石圈根/去根作用与大陆‘‘活化’’-东亚型大陆动力学模式研究.现代地质,8(3):349-356
    邓晋福,苏尚国,刘翠,等.2006.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉还是热侵蚀和化学交代.地学前缘,13(2):105-119
    邓晋福,苏尚国,赵海玲等.2003.华北地区燕山期岩石圈减薄的深部过程,地学前缘,10(3):41-50
    樊祺诚,刘若新,李惠民,等.1998.汉诺坝捕掳体麻粒岩锆石年代学与稀土元素地球化学.科学通报,43(2):133-137
    樊祺诚,刘若新.1996.汉诺坝玄武岩中高温麻粒岩捕掳体.科学通报,41(3):235-238
    高山,骆庭川,张本仁,等.1999,中国东部地壳的结构和组成.中国科学(D辑),29(3):203-213
    韩亮,周永胜,何昌荣等.2009.3GPa熔融盐固体介质高温高岩三轴压力容器的温度标定.高压物理学报,23(6):407-415
    韩亮,周永胜,何昌荣等.2011.3GPa熔融盐固体介质高温高岩三轴压力容器的压力标定.高压物理学报,25(3):213-220
    何昌荣,周永胜,桑祖南,等.2002.攀枝花辉长岩半脆性—塑性流变的实验研究[J].中国科学: D辑,32(9):717-726
    嵇少丞,王茜,夏斌,等.2006.广义混合律及其在地球材料流变学中的应用[J].岩石学报,22(7):2067-2080.
    嵇少丞,钟大赉,许志琴,夏斌.2008.流变学:构造地质学和地球动力学的支柱学科.大地构造与成矿学,32(8):257-264
    嵇少丞,许志琴,金振民,王茜.2010.石英-柯石英相变研究中若干问题的讨论.中国科学:地球科学,40(7):822-830
    姜昕,赵志丹,周文戈,等.2007.秦岭造山带若干岩石高温高压脱水熔融的特征及其意义.现代地质,21(4):683-690
    金振民,Green Hw,Zhou Yi,等.1997.熔融流体与上地幔流变强度的关系的实验研究.中国科学D辑,27(5):401-406
    靖晨,周永胜,等.2010.龙门山韧性剪切带主要矿物结构水含量与变形的关系.岩石学报,26(5):1604-1616
    林强,吴福元,马瑞.1993.花岗岩体系的失水熔融及意义.科学通报,38(13):1211-1213
    林强,吴福元.1993.花岗岩块状样品的熔融实验研究.地球化学,24(4):356-362
    刘俊来,纪沫,夏浩然,等.2009.华北克拉通晚中生代壳-幔拆离作用:岩石流变学的约束.岩石学报,25(8):1819-1829
    刘顺,肖晓辉,钟大赉.1997.长英质麻粒岩流变性质的实验研究[J].成都理工学院学报,24(1):42-47
    刘照星,周永胜,刘贵,何昌荣,等.2013.3GPa熔融盐固体介质高温高压三轴压力容器轴压标定,高压物理学报,27(1):19-28
    邵同宾,嵇少丞,王茜.2011.部分熔融岩石流变学.地质论评,57(6):851-869
    王强,邱家骧.1997.熔体在岩石形变中的作用综述-来自实验岩石学的证据.地质地球化学,No.4:114-120
    王永锋,章军锋,金振民,等.2008.下地壳基性麻粒岩流变强度实验研究[J].矿物岩石地球化学通报,27:235-236
    吴福元.1993.花岗岩熔融的局部体系及熔融序列.长春:吉林科学技术出版社,1-202
    吴福元,孙德有.1999.中国东部中生代岩浆作用于岩石圈减薄,长春科技大学学报,29(4):313-318
    吴福元,孙德有,张广良,等.2000.论燕山运动的深部地球动力学本质.高校地质学报,6:379-388
    吴福元,葛文春,孙德有,等.2002.中国东部岩石圈减薄研究中的几个问题.地学前缘,10(3):51-60
    吴福元,杨进辉,柳小明.2005.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报,11(3):305-317
    徐义刚.2004.华北岩石圈减薄的时空不均一特征.高校地质学报,10(3):324-331
    杨晓松,金振民,Huenges E,等.2001.高喜马拉雅黑云斜长片麻岩脱水熔融实验:对青藏高原地壳深熔的启示.科学通报,46(3):246-250
    杨晓志,夏群科,樊祺诚,等.2007.华北新太古代和中生代大陆下地壳中的水:以汉诺坝地区为例[J].地球化学,36(2):120-138
    杨晓志,夏群科,盛英明,等.2005.安徽女山下地壳麻粒岩包体中的水:红外光谱分析[J].岩石学报,21(6):1669-1676
    于洋,许文良.2009.高温高压条件下角闪石榴辉石,橄榄岩反应:初步实验结果及其地质意义.自然科学进展,19(6):644-651
    臧绍先,李旭,宁杰远,等.2002.华北岩石圈三维流变结构的一种初步模型.中国科学:D辑,32(7):588-597
    翟明国,樊祺诚.2002.华北克拉通中生代下地壳置换:非造山过程的壳幔交换.岩石学报,18(1):1-8
    张家声,徐杰,万景林,等.2002.太行山山前中-新生代拆离构造和年代学.地质通报,21(4-5):207-210
    张进江,郑亚东,刘树文.1998.小秦岭变质核杂岩的构造体制、形成机制及构造演化.北京:海洋出版社,1-120
    张晓辉,李铁胜,蒲志平.2000.辽西医巫闾山两条韧性剪切带40Ar-39Ar年龄:中生代构造热事件的年代学约束.科学通报,47(9):697-701
    郑海飞,陈斌,孙樯,谢鸿森.2003.高压下玄武岩浆的不混溶及其对双峰式火山岩的成因意义.岩石学报,19(4):745-751
    郑建平.1999.中国东部地幔置换作用与中新生代岩石圈减薄.北京:中国地质大学出版社
    周文戈,范大伟,万方,邢印锁,刘永刚,谢鸿森.2009.950℃、1.0~3.5GPa下斜长角闪岩脱水熔融——压力和时间对结构的影响.地学前缘,16(1):146-154
    周永胜,何昌荣.1999.用高温高压岩石流变实验解释岩石圈流变是存在的若干问题的讨论.国际地震动态,12:313-317
    周永胜,何昌荣.2001.高围压下周口店石英闪长岩流变学的实验研究.中国地球物理学会,22(2):19-30
    周永胜,何昌荣.2003a.地壳主要岩石流变参数及华北地壳流变性质研究.地震地质,25(1):109-122
    周永胜,何昌荣,桑祖南,金振民.2003b.在塑性变形过程中辉长岩部分熔融的熔体特征.地球物理学报,46(04):482-487
    周永胜,何昌荣.2004.大陆岩石圈流变研究进展与高温高压流变实验现状.地球物理学进展,19(2):246-454
    周永胜,何昌荣,杨晓松,等.2008a.中地壳韧性剪切带中的水与变形机制.中国科学(D),38(7):819-832
    周永胜,何昌荣,李海军,等.2008b.熔体的形态与分布特征对岩石流变的影响.地学前缘,15(3):273-278
    周永胜,何昌荣,黄晓葛,等.2009.基性岩流变复杂性与成分对岩石流变影响的实验研究.地学前缘,16(2):76-87
    Anderson D J,Lindsley D H,Dabidson P M.1993.QUILF:A Pascal program to assessequilibria among Fe-Mg-Mn-Ti oxides,pyroxenes,olivine and quartz.Computers andGeosciences,19:1333-1350
    Bauer P,Palm S,Streit J E,et al.1999.Non—steady state rheology at the brittle to viscoustransition:inferences from the development of shear surfaces in quartz analougue (Norcamphor)preceedings of the lnternational Rheology and Microstructures.66
    Borg I,Handin J.1966.Experimental deformation of crystalline rocks.Tectonophysics,3(1):249-367
    Borges F S,White S H,et al.1980.Microstructural and chemical studies of sheared anorthosites,Roneval,South Harris.Journal of Structural Geology,2:237-280
    Burgmann R, Dresen G,et al.2008. Rheology of the Lower Crust and Upper Mantle: Evidencefrom Rock Mechanics,Geodesy and Field Observations. Annu. Rev. Earth Planet. Sci,36:531-67
    Bystricky M,Kunze K,Burlini L,Burg J.2000.High shear strain of olivine aggregates:rheological and seismic consequences.Science,290:1564-1567
    Carter N L,Anderson D A,Hansen F D,Kranz R L.1981.Creep and creep rupture of graniterocks,in Mechanical Behavior of Rocks.Geophys Monogr Ser,vol.24,AGU,WashingtonD C,61-82
    Chen X D,Lin C Y,Shi L B.2007.Rheology of the lower crust beneath the northern part of NorthChina:Inferences from lower crustal xenoliths from Hannuoba basalts, Hebei ProvinceChina.Science China Series D: Earth Science,50(8):1128-1141
    Christoffersen R, Kronenberg A K.1993.Dislocation interactions in experimentally deformedbiotite.J Struct Geol,15:1077-1095
    Cooper R F, Kohlstedt D L.1986.Rheology and structure of olivine–basalt partial melts.JGeophys Res,91(B9):9315-9323
    Daines M J,Kohlstedt D L,et al.1997.Influence of deformation on melt topology in peridotites.JGeophys Res,102:10257-10271
    Davis G A.2003.The Yanshan belt of North China:Tectonics adakitic magmatism and crustalevolution.Earth Science Frontiers,10(4):373-384
    De Ronde A A,Stünitz H,Tullis J and Heilbronner R.Reaction-induced weakening of plagioclase–olivine composites.Tectonophysics.,2005,409:85-106
    Dell`Angelo L N,Tullis J,et al.1988.Experimental deformation of partially melted graniticaggregates.J Metamorphic Geol,6:495-515
    Dell`Angelo L N,Tullis J,et al.1996.Textural and mechanical evolution with progressive strainin experimentally deformed aplite.Tectonophysics,256:57-82
    Dell`angelo L N,Tullis J,Yund R A.1987.Transition from dislocation creep to melt-enhanceddiffusion creep in fine-grained granitic aggreagates.Tectonophysics,139:325-332
    Deng JF,Mo XX,Zhao HL.2004.A new model for the dynamic evolution of Chinese lithosphere:Continental roots-plume tectonics.Earth Sci Reviews,65(3):223-275
    Dimanov A,Dresen G,Wirth R.1998.High-temperature creep of partially molten plagioclaseaggregates.Jour. of Geoph. Res,103(B5):9651-9664
    Dimanov A, Dresen G,Xiao X,Wirth R.1999.Grain boundary diffusion creep of syntheticanorthite aggregates: The effect of water.Jour. of Geoph. Res,104(B5),10483-10497
    Dimanov A,Wirth R,Dresen G.2000.The effect of melt distribution on the rheology of feldsparrocks. Tectonophysics,328,307-327
    Dimanov A,Lavie M P,Dresen G,Ingrin J,et al.2003.Creep of polycrystalline anorthite anddiopside.Journal of Geophysical Research,108(B1):2061,doi:10:1029
    Dimanov A,Dresen G,et al.2005.Rheology of synthrtic anorthite-diopside aggregates:Implications for ductile shear zones.Journal of Geophysical Research,VOL,110:07203
    Dimanov A,Rybacki E,Wirth R,Dresen G.2007.Creep and strain-dependent microstructuresof synthetic anorthite-diopside aggregates.Journal of Geophysical Research,Vo29,6:1049-1069
    Donath FA.1961. Experimental study of shear failure in anisotropic rocks.Bull Geol Soc Am,72:985-990
    Donath FA.1964.Strength variation and deformational behavior in anisotropic rock.In:State ofStress in the Earth's Crust (edited by Judd, W. R.),American Elsevier,New York,281-298
    Druiventak A,Trepmann C A,Renner J,et al.2011.Low-temperature plasticity of olivine duringhigh stress deformation of peridotite at lithospheric conditions—An experimental study.Earthand Planetary Science Letters,311,199-211
    Evans JP.1988.Deformation mechanisms in granitic roks at shallow crustal levels.J Struct.Geol,10(5):l437-443
    Gao S,Rudnick PL,Carlson RW,M cDonough WF,Liu YS.2002.Re-Os evidence forreplacement of ancient mantle lithosphere beneath the North China craton.Earth and PlanetaryScience letters,198:307-322
    Gao Shan, Ben-Ren Zhang, Zhen-Ming Jin, Hartmut KernTing-Chuan Luo, Zi-DanZhao.1998.How mafic is the lower continental crust? Earth and Planetary Science Letters,161(1–4):101–117
    Gao Shan,Tingchuan Luo,Benren Zhang,Hongfei Zhang,Yinwen Han,Zidan Zhao,HartmutKern.1999.Structure and composition of the continental crust in East China.Science in ChinaSeries D:Earth Sciences,42(2):129-140
    Gapais D.1989. Shear structures within deformed granites: Mechanical and thermalindications.Geology,17:1144-1147
    Gates A E,Glover L,et al.1989.Alleghanian tectono-thermal evolution of the dextral transcurrent hylas zone,Virginia Piedmont,USA.Journal of Structural Geology,1:407-419
    Gleason G C,Desisto S,et al.2008.A natural example of crystal-plastic deformation enhancingthe incorporation of water into quartz.Tectonophysics,446(1/4):16-30
    Gleason G C,Tullis J.1993.Improving Flow Laws and Piezometers for Quartz and FeldsparAggregates.Geophysical Research Letters,20(19):2111-2114
    Gleason G C,Tullis J.1995.A Flow Law for Dislocation Creep of Quartz Aggregates Determinedwith the Molten Salt Cell.Tectonophysics,247(1-4):1-23
    Gottschalk R R,Kronenberg A K,Russell J E and Handin J.1990.Mechanical anisotropy ofgneiss: Failure criterion and textural sources of directional behavior.J Geophys Res,95:21613-21634
    Green H W,Borch R S.1989.A New Molten Salt Cell for Precision Stress Measurement at HighPressures.European Journal of Mineralogy,1(2):213
    Hacker B R,Christie J M,et al.1990.Brittle/ductile and plastic/cataclastic transition inexperimentally deformed and metamorphosed amphibolite.in The Brittle-Ductile Transition inRocks,Geophys Monogr Ser,edited by A GDuba, Durham WB, Handin JW,Wang H F,56:127-147,AGU,Washington D C
    Handy MR,Wissing SB,Streit LE.1999.Frictional-viscous flow in mylonite with variedbimineralic composition and its effect on lithospheric strength.Tectonophysics,303:175–191
    Handy MR.1994. Flow laws for rocks containing two non-linear viscous phases: aphenomenological approach.J Struct Geol,16:287–301
    Hansen FD,Carter NL.1983.Semibrittle creep of dry and wet Westly granite at1000MPa.USSymp.On Rock Mechanics,24th,Texas A and M Univ,College Station,429-44
    Hansen FD,CarterNL.1982.Creep of selected crustal rocks at1000MPa.Eos Tran Am GeophysUnion,63:437
    Hay R S,Evans B,et al.1987.Induced grain boundary migration in calcite:Temperaturedependence,phenomenology and possible applications to geologic systems.Contributions toMineralogy and Petrology,97:77-87
    He C R, Zhou Y S, Sang Z.2003. An experimental study on semi-brittle and plastic rheologyof panzhihua gabbro.Science in China(D),46(7):730-742
    Herwegh M,Handy M R,Heilbronner R.1997.Temperature and strain-rate-dependentmicrofabric evolution in monomineralic mylonite: evidence from in situ deformation ofnorcamphor.Tectonophysics,280(1):83-106
    Heilbronner R,Tullis J.2002.The effect of static annealing on microstructure and crystallographicpreferred orientation of quartzites experimentally deformed in axial compression andshear.Geological Society Special Publication,200:191-218
    Hirth G,Tullis J,et al.1992.Dislocation creep regimes in quartz aggregates. Journal ofStructural Geology,14:145-159
    Hirth G and Kohlstedt DL.1995a.Experimental constraints on the dynamics of the partiallymolten upper mantle:Deformation in the diffusion creep regime.J Geophys Res,100:1981-2001
    Hirth G and Kohlstedt DL.1995b.Experimental constraints on the dynamics of the partiallymolten upper mantle:Deformation in the dislocation creep regime.J Geophys Res,100:15441-15450
    Hirth G,Tullis J.1994.The brittle-plastic transition in experimentally deformed quartzaggregates.J Geophys Res,99:11731-11747
    Holtzman BK,Kohlstedt DL,Zimmerman ME,Heidelbach F,Hiraga T and Hustoft J.2003.Meltsegregation and strain partitioning: implications for seismic anisotropy and mantleflow.Science,301:1227-1230
    Holyoke Iii C W, Kronenberg A K.2010.Accurate Differential Stress Measurement Using theMolten Salt Cell and Solid Salt Assemblies in the Griggs Apparatus with Applications toStrength,Piezometers and Rheology.Tectonophysics,
    Jaeger JC.Shear failure of anistropic rocks.Geological Magazine,1960,97(1):65-72
    Ji S C,Wirth R,Rybacki E,Jiang Z T.2000.High temperature plastic deformation of quartz—plagioclase multilayers by layer—normal compression.Journal of Geophysical Research,105(B7):16651-16664
    Ji SC and Xia B.2002.Rheology of polyphase earth materials.Montreal:PolytechnicInternational Press,260
    Ji SC.2004.Generalized means as an approach for predicting Youngs moduli of multiphasematerials.Materials Science and Engineering,366:195-201
    JohannesW,Holtz F.1996.Petrogenesis and experimental petrology of granitic rocks.SpringerBerlin,335
    Kelemen P B,Hirth G,Shimizu N,et al.1997.A review of melt migration processes in theadiabatically upwelling mantle beneath oceanic spreading ridges.Philosophical Transactions ofthe Royal Society London,Ser A355:283–318
    King D S H,Zimmerman M E,Kohlstedt D L.2010.Stress-driven melt segregation in partiallymolten olivine-rich rocks deformed in torsion.J Petrol,51:21–42
    King D S H,Hier-Majumder S,Kohlstedt D L.2011.An experimental study of the effects ofsurface tension in homogenizing perturbations in melt fraction.Earth and Planetary ScienceLetters,307:349–360
    Kirby S H,Kronenberg A K,et al.1984.Deformation of clinopyroxenite:Evidence for a transitionin flow mechanisms and semibrittle behavior.J Geophys Res,89:3177-3192
    Kohlstedt DL and Zimmerman ME.1996.Rheology of partially molten mantle rocks.AnnualReview of Earth and Planetary Sciences,24:41-62
    Kohlstedt D L.2002.Partial melting and deformation.In Plastic Deformation in Minerals andRocks.Reviews in Mineralogy and Geochemistry,51:105-125
    Kohlstedt D L,Holtzman B K,et al.2009.Shearing melt out of the earth: an experimentalistsperspective on the influence of deformation on melt extraction.Annual Review of Earth andPlanetary Sciences,37:561-593
    Kurtz W,Fritz H,Tenczer V,et al.2002.Tectonometamorphic evolution of the KoralmComplex(Eastern Alps): Constrains from microstructures and textures of the ‘Palttengneis’shear zone.J Struct Geol,24:1957-1970
    Lafrance B,John Barbara E,Frost B R.1998.Ultra high-temperature and subsolidus shear zones:Examples from the Poe Mountain anorthosite,Wyoming.Journal of Structural Geology,20:945-955
    Law D,Searle M R,Simpson RL.2004.Strain,deformation temperatures and vorticity of flowat the top of the Greater Himalayan Slab,Everest Massif,Tibet.J Geol Soc London,161:305-320
    Lister GS,Snoke AW.1984.S–C mylonites.J Struct Geol,6:617-638
    Liu J L,Davis G A,Lin Z Y,et al.2005.The liaonan metamorphic core complex,southeasternliaoning provience,North China:a likely contributor to Cretaceous rotation of eastern liaoning,Korea and contiguous areas.Tectonophysics,407:65-80
    Lund M D,Piazolo S,Harley S L.2006.Ultrahigh temperature deformation microstructures infelsic granulites of the Napier Complex,Antarctica.Tectonophysics,427(1/4):133-151
    Mackwell S J,Zimmerman M E,et al.1998.High-temperature deformation of dry diabase withapplication to tectonics on Venus.J Geophys Res,103:975-984
    McCabe W M,Koerner R M.1975.High pressure shear strength investigation of an anisotropicmica schist rock.Int.J.Rock Mech.Min.Sci and Geomech.Abs,12:219-228
    McLamore R,Gray K E.1967.The mechanical behavior of anisotropic sedimentary rocks.JEngng Ind,89:62-76
    Mecklenburgh J,Rutter E H,et al.2003.On the rheology of partially molten syntheticgranite.Journal of Structural Geology,25(10):1575-1585
    Mei S,W Bai,T Hiraga,Kohlstedt D L.2002.Influence of melt on the creep behavior ofolivine-basalt aggregates under hydrous conditions.Earth Planet Sci Lett,201:491–507
    Mercier J C,Anderson D A,Carter N L.1977.Stress in the lithosphere:Inferences fromsteady-state flow of rocks.Pure Appl. Geophys,115:199-226
    Paquet J,Francois P.1980.Experimental deformation of partial melted granitic rocks at600-900℃and250MPa confining pressure.Tectonophysics,68:131-146
    Paquet J,Francois P,Nedelec A.1981.Effect of partial melting on rock deformations:experimental and nature evidences on rocks of granitic compositions.Tectonophysics,78:545-565
    Passchier CW,Trouw R A J.2005.Microtectonics.Berlin: Springer
    Paterson M S,Weiss L E.1966.Experimental deformation and folding in phyllite.Geological SocAmerica Bulletin,77(4):343-374
    Paterson M S.2001. A granular flow theory for the deformation of partially moltenrock.Tectonophysics,335:51-56
    Patino Douce A E, Beard JS.1995.Dehydration-melting of biotite gneiss and quartz amphibolitefrom3to15kbar.Journal of Petrology,36(3):707
    Pec M,Stünitz H,Heilbronner R.2012.Semi-brittle deformation of granitoid gouges in shearexperiments at elevated pressures and temperatures.J Struc Geol,38:200-221
    RabinowitzH,Skemer P Mitchell T,et al.2012.Experimrntal reactivation of pseudotachylitebearing faulted rocks.Gordon research Conference on Rock. Deformation,Feedback Processesin Rock Deformation,Post,No13,Proctor Academy Andover,NH.
    Rosenberg C L.2003.Deformation and recrystallization of plagioclase along a temperatureGradient:An example from the Bergell tonalite.Journal of Structural Geology,25:389-408
    Ross J V,Wilks K R,et al.1995.Effects of a third phase on the mechanical and microstructuralevolution of a granulite.Tectonophysics,241:303-316
    Rutter E H,Neumann D H K,et al.1995.Experimental deformation of partially molten Westlygranite under fluid-absent conditions,with implications for the extraction of granitic magmas.JGeophy Res,100(B8):15697-15715
    Rutter E R, Brodie K H,et al.2004.Experimental grain size-sensitive flow of hot-pressedBrazilian quartz aggregates.Journal of Structural Geology,26:2022-2023
    Rutter E R, Brodie K H,et al.2006.Experimental intracrystalline plastic flow in hot-pressedsynthetic quartzite prepared from Brazilian quartz crystal,Journal of Structural Geology,26:259-270
    Rutter EH,Brodie KH,Irving DH.2006.Flow of synthetic, wet, partially molten “granite”under undrained conditions:an experimental study.J Geophys Res,111(B06407),17
    Rybacki E,Renner J,Konrad K,et al.1998.A Servo hydraulically-Controlled DeformationApparatus for Rock Deformation Under Conditions of Ultra-High PressureMetamorphism.Pure and Applied Geophysics,152(3):579-606.
    Rybacki E.2000.Dislocation and diffusion creep of synthetic anothite aggregates,J GeophysRes,Vol.105,No.B11,PP26017-26036
    Rybacki E, Dresen G, et al.2004. Deformation mechanism maps for feldsparrocks.Tectonnphysics,38:2173-187
    Rybacki E,Paterson M S,Wirth R, Dresen G.2006.Influence of water fugacity and activationvolume on the flow properities of fine-grained anorthite aggregates.J Geophys Res,Vol.111,No.B03203
    Rybacki E.2008.High strain creep of feldspar rocks:Implications for cavitation and ductilefailure in the lower crust. Geophysical Research Letters,35: L04304, DOI:10.1029/2007GL032478
    Schmid S.E,Cacey M.1986.Complete fabric analysis of some commonly observed quartz c-axispatterns.In Hobbs BE,Heard HC,eds,Mineral and Rock Deformation:Laboratory Studies-thePaterson Volume.Am Geophys Union Monograph,36:246-261
    Schulmann K, Mlcoch B, MelkaR.1996.High-temperature microstructures and rheology ofdeformed granite,Erzgebirge,Bohemian Massif.J Struct Geol,18:719-733
    Shea W T,Kronenberg A K.1992,Rheology and deformation mechanisms of an isotropic micaschist.J Geophys Res,97(B11):15201-15237
    Shea W T,KronenbergA K.1993.Strength and anisotropy of foliated rocks with varied micacontents.J Struct Geol,15:1097-1121
    Shelton GL,TullisJ.1981.Experimental flow laws for crustal rock.Eos Trans Am GeophysUnion,62:396.
    ShimamotoT.1989.The origin of S–C mylonites and a new fault-zone model.J Struct Geol,11,64
    Simpson C.1985.Deformation of granitic rocks across the brittle-ductile transition.J StructGeology,7:503-511.
    Skemer P,Karato S,et al.2006.Rheology and recrystallization of orthopyrxene at upper mantleconditions.EOS Trans AmGeophys Union,87(52):R23A-R25A.
    Stipp M,Karsten K.2008.Dynamic recrystallization near the brittle-plastic transition in naturallyand experimentally deformed quartz aggregates.Tectonophysics,448:77-97
    Stipp M,Stiuniz H, Heilbronner R,Schmid SM.2002.The eastern Tonale fault zone:a 'naturallaboratory' for crystal plastic deformation of quartz over a temperature range from250to700℃.J Struct Geol,24:1861-1884
    Stipp M,Tullis J.2003.The recrystallized grain size piezometer for quartz.Geophy Res Letters,Vol.30,No.21,1029
    Stipp M,Tullis,J,Behrens H.2006.Effect of water on the dislocation creep microstructure andflow stress of quartz and implications for the recrystallized grain size piezometer.Journal ofGeophysical Research Solid Earth,(111):0148-0227
    Stipp M,Tullis J,et al.2010.A new perspective on paleopiezometry: Dynamically recrystallizedgrain size distributions indicate mechanism changes.Geological Society of America,38(8):759-762
    Stockhert B,Brix M R,Kleinschrodt R,et al.1999.Thermochronometry and microstructuresof quartz—a comparison with experimental flow laws and predictions on the temperature of thebrittle-plastic transition.J Struct Geol,21:351-369.
    Takei Y,Holtzman B K.2009a.Viscous constitutive relations of solid-liquid composites in termsof grain boundary contiguity:1. Grain boundary diffusion control model.J Geophys Res,114:B06205,doi:10.1029/2008JB005850.
    Takei Y,Holtzman B K.2009b.Viscous constitutive relations of solid-liquid composites in termsof grain boundary contiguity:2. Compositional model for small melt fractions.J Geophys Res,114:B06206,doi:10.1029/2008JB005851.
    Toy V G,Prior D J,Norris R J.Quartz fabrics in the Alpine Fault mylonites:Influence ofpre-existing preferred orientations on fabric development during progressive uplift.J StructGeol,2008,30:602-621
    Trepmann C A, Stockhert B,,Kuster M,et al.,Simulating coseismic deformation of quartz inthe middle crust and fabric evolution during postseismic stress relaxation-an experimentalstudy.Tectonophysics,2007,442:83-104
    Tullis J,Yund R A,et al.1980.Hydrolytic weakening of experimentally defored Westerly graniteand Hale albite rock.J Struct Geol,2:439-451
    Tullis J,Yund R A,et al.1977.Experimental deformation of dry Westerly granite.JGR,82:5705-5717
    Tullis J,Yund R A,et al.1985.Dynamic recrystallization of feldspar:a mechanism for ductileshear zone formation.Geology,13:238-241
    Tullis J,Yund R A,et al.1991.Diffusion creep in feldspar aggregates: Experimental evidence[J].Journal of Structural Geology,13:987-1000
    Tullis J,Yund R A,et al.1992.The brittle-ductile transition in feldspar aggregates: Anexperimental study,in Fault Mechanics and Transport Properties of Rocks.edited by B. Evans,Academic,San Diego,Calif,89-117
    Tullis J,YundR A,et al.1987.Transition from cataclastic flow to dislocation creep of feldspar:mechanisims and microstructures.Geology,15:606-609
    TwissRJ.1977.Theory and applicability of a recrystallized grain size paleopiezometer.Pageoph,115:224-227
    Wang Y F,Zhang J F,Jin Z M,et al.2008.Rheology of Mafic granulite at high pressure andtemperature:Implications for crust mantle interactions[C]∥Eos Trans.American GeophysicalUnion,Fall Meeting Supplement,89:153
    Wolf MB and Wyllie PJ.1993a.Amphibolite dehydration-melting:Sorting out the solidus.InMagmatic Processes and Plate Tectonics.Geological Society,LondonSpecial,Publications,6:405-416
    Wolf MB and Wyllie PJ.1993b.Garnet Growth during Amphibolite Anatexis:Implications of aGarnetiferous Restite.The Journal of Geology,101(3):357-373
    Wolf MB and Wyllie PJ.1994.Dehydration-melting of amphibolite at10kbar:The effects oftemperature and time.Contributions to Mineralogy and Petrology,115(4):369-383
    Wu FY,Sun DY,Li HM,Wilde S.2002.A-type granite in North China:Age and geochemicalconstrains on their petrogenesis.Chem Geol,187(1-2):143-173
    Xiao X,Brian Evans,et al.2003.Shear-enhanced compaction during non-linear viscous creepof porous calcite-quartz aggregates.Earth and Planetary Science Letters,216(4):725-740
    Xiao X,Wirth R,Dresen G.2002.Diffusion creep of anorthite-quartz aggregates.Journal ofGeophysical Research,107(B11),2279. doi:10.1029/2001JB000789
    Xiao X.1999.Experimental study of the rheology of synthetic anorthite-quartz aggregates. Ph.Dthesis,GFZ,Germany
    Xu YG,Huang XL,Ma JL.2004.Crust-mantle interaction during the tectono-thermal reactivationof the North China Craton:constrains from SHRIMP zircon U-PB chronology and geochemistryof Mesozoic plutons from weatern Shandon.Contrib Mineral Petrol,285:301-322
    Zeng LS,Liu J,Gao L,Xie KJ and Wen L.2009.Early Oligocene anatexis in the Yardoi gneissdome, southern Tibet and geological implications.Chinese Science Bulletin,54(1):104-112
    Zhang HF,Sun M,Zhou XH,Fan WM,Zhai JF,Yin JF.2002.Mesozoic lithosphere destructionbeneath the North China Craton: evidence from major,teace-element and Sr-Nd-Pb isotopestudies of Fangcheng basalts,Contrib. Mineral Petrol,141:241-254
    Zhou YS,Rybacki E,Wirth R,et al.2012.Creep of partially molten fine-grained gabbro underdry condition.Journal of Geophysical Research,doi:10.129/2011JB008765
    Zimmerman ME,Zhang S,Kohlstedt DL and Karato S.1999.Melt distribution in mantle rocksdeformed in shear.Geophysical Research Letters,26:1505-1508
    Zulauf G.2001.Structural style,deformation mechanisms and paleodifferential stress along anexposed crustal section:constraints on the rheology of quartzofeldspathic rocks at supra-andinfrastructural levels (Bohemian Massif).Tectonophysics,332:211-237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700