陆地棉体细胞胚胎发生的细胞学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农杆菌介导法可以高效的将T-DNA插入棉花基因组中并能稳定遗传,在棉花的遗传转化中应用最为广泛。但农杆菌介导的棉花遗传转化必须以高效的棉花再生体系为基础,胚性愈伤组织诱导困难、非胚性愈伤组织大量发生以及畸形胚状体(畸形苗)高比率发生等问题制约着棉花遗传转化效率的提高。有鉴于此,本研究以绿色荧光蛋白(Enhanced Green Fluorescent Protein,EGFP)为报告基因确定转化体,利用扫描电镜、透射电镜等技术,系统的研究了农杆菌介导的棉花遗传转化过程中不同阶段和不同类型愈伤组织的细胞学和组织学差异,主要结果如下:
     1)EGFP基因在愈伤组织、胚性愈伤组织、非胚性愈伤组织和体细胞胚均可以表达。利用荧光显微镜可以快速无伤性的鉴定出阳性转化体。
     2)胚性愈伤组织表面的细胞以细胞团方式存在,这些细胞团由半球形、形状规则、体积相对一致的细胞构成,细胞之间结合紧密,细胞团之间可见间隙;组织学水平上,细胞形态相对一致,表面可见胚性细胞团;细胞超微结构水平上,细胞核大,核仁明显;细胞质电子密度高,富含各种细胞器;质体呈现原质体状态,位于细胞核附近;粗面内质网较为丰富;存在大小不等的液泡。非胚性愈伤组织表面细胞的排列疏松,以单个细胞或者数个细胞构成的简单细胞结合体存在,细胞的形态和体积差别较大;细胞超微结构也有类似之处,有中央大液泡的存在,细胞质被挤压在四周;质地较硬的叶绿体内膜系统发育良好,疯长型的非胚性愈伤组织叶绿体呈类原质体状态,中间形成空泡结构。
     3)叶绿体在陆地棉体细胞胚胎发生和形态建成过程中发挥着重要的作用。在愈伤组织细胞中,叶绿体以造粉体的状态;随着胚性愈伤组织被诱导出来,以原质体状态存在;待到形成胚状体以后,叶绿体内膜系统逐渐出现;到子叶期的胚叶绿体内膜系统逐渐恢复;再生苗阶段,叶绿体内膜系统恢复正常。研究还发现,叶绿体的异常发育与非胚性愈伤组织发生关系密切,玻璃化胚状体和白化胚状体的叶绿体也存在结构异常。
     4)诱导出胚性愈伤组织时,细胞外基质就可见;随着胚性愈伤表面形成有数个胚性细胞构成的集合体,细胞外基质发生达到了最多,在愈伤表面形成网络状结构;随着胚性细胞团的发生和形成体细胞胚,细胞外基质逐渐消退。
Because of the high transformation efficiency and genetic stability of foreign gene, Agrobacterium-mediated transformation method is considered as the most common technique which has been applied to cotton genetic transformation. However, it requires an efficient plant regeneration procedure. The high genotype-dependence of embryogenic potential, the difficulty embryogenic callus induction, and the high ratio of abnormal somatic embryos restrict the application of biotechnology on cotton development and fundamental research. In view of this, we studied histological structure and ultrastructure of different type callus during the course of Agrobacterium-mediated cotton genetic transformation systematically via such techniques as scanning electron microscope (SEM), transmission electron microscope (TEM) and so on. In this study, enhanced foreign green fluorescent protein (EGFP) was served as the reporter gene to identify the transformant.
     1) Expression of EGFP was observed in callus, embryogenic callus, non-embryogenic callus and somatic embryo. As EGFP is a stable, cell-autonomous fluorescent protein, positive transformant could be identified by fluorescence microscope non-destructively easily.
     2) On surface of embryogenic callus, series of nodule-like structures developed, which was formed by small, tightly packed and hemispherical cells. Results of the histological observation revealed that early embryogenic callus displayed similar cellular morphology and embryogenic callus could develop embryonic nodule-like structure through further sub-culturation. Organelles of embryogenic callus cells were located near the nucleus and contained dense cytoplasm. Plastid was degraded into proplastid-like structures with some starch grains. Rough surfaced endoplasmic reticulum (RER) and a series of small vacuoles could also be observed.
     In contrast, non-embryogenic callus was characterized by high variant of cell morphology and loose cell organization on the surface. The nucleus was located in a narrow strip of cytoplasm between cell wall and the large vacuole which is located in the center. Chloroplasts of hard callus developed well organized membrane system and chloroplasts in cell of overgrown callus were degraded into proplastids which exhibited some vacuole-like structures.
     3)In the cells of hypocotyls, chloroplasts had abnormal structure. In the cell of callus, plastids were degraded into amyloplast. In the cell of embryogenic callus, chloroplasts were degraded into plastids. When somatic embryo formed, endomembrane system of chloroplast emerged. Once somatic embryo developed into cotyledonary embryos, endomembrane system of chloroplast developed grana lamella and starch grains accumulated in chloroplast stroma. Abnormal development of chloroplast (plastid) was related with the occurrence of non-embryogenic callus closely and there were structural abnormalities of chloroplasts in cells of albino and vitrified somatic embryo.
     4)As while embryogenic callus were induced, fine fibrils of extracellular matrix(ECM) could be observed. The structural arrangement of the ECM changed during culture. During the formation of a series of multi-cellular embryonic clusters, the ECM was the most abundant and was arranged as network-like layer connected by coarse strands outside of callus. While nodule-like structures formed, ECM was disturbed gradually, and while embryo formed,the ECM network disappeared completely. The ECM was not observed on the surfaces of callus and non-embryogenic callus.
引文
[1].曹景林,张献龙,金双侠,杨细燕,朱华国,付莉莉.棉花高效体细胞胚发生及同步控制培养体系研究.作物学报2008, 34(02),224~231.
    [2].陈天子,吴慎杰,李飞飞,郭旺珍,张天真.新疆棉花4个主栽品种的体细胞胚胎发生及植株再生.作物学报,2008,34(8):1374~1380.
    [3].陈志贤,Uewe D J.利用农杆菌介导法转移tfdA基因获得可遗传的抗2,4-D棉株.中国农业科学,1994,27 (2) :312~337.
    [4].程佑发,王勋陵.枣树体细胞胚发生和组织学研究.西北植物学报2001,21(1):142~145.
    [5].迟吉娜,马峙英,张桂寅.中国棉花体细胞植株再生的基因型分析.分子植物育种,2005,3(1):75~82.
    [6].邓德旺,郭三堆,杨志民.棉花花粉管通道法转基因的分子细胞学机理研究.云南大学学报(自然科学版),1999/S3,32(6):113~114.
    [7].董合忠棉花体细胞胚胎发生和植株再生.植物生理学通讯,1990 (2):8~12.
    [8].耿立召,李付广,刘传亮,武芝霞,李凤莲,亓建飞.影响基因枪轰击转化棉花胚性愈伤的因素初探.2006,16 (6):352~356.
    [9].龚蓁蓁,沈慰芳,周光宇.授粉后外源DNA导入植株技术-通过花粉管通道进入胚囊.中国科学B辑,1988,6:611~614.
    [10].巩万奎,吴家和,姚长兵,刘方,喻树迅,陈志贤,刘志红,李燕娥.葡萄糖氧化酶基因在棉花中的高效转化——转基因再生棉株的获得.棉花学报,2002,14(2):76~79.
    [11].黄清俊,丁雨龙,甘习华.水晶掌胚状体发生的超微结构观察.电子显微学报,2005,24(5):74~78.
    [12].黄粤,柯遐义,李保健.通过基因枪轰击转化获得转基因小麦植株的研究.西北植物学报,1997,17 (2):142~146.
    [13].冷春旭,李付广,陈国跃,刘传亮.陆地棉体细胞胚发生过程的cDNA~AFLP分析.西北植物学报,2007,27(2):0233~0237.
    [14].冷春旭,李付广,陈国跃,刘传亮.陆地棉体细胞胚发生过程的cDNA~AFLP分析.西北植物学报,2007,27(2):0233~0237.
    [15].黎裕,王天宇,石云素.转基因玉米的研究现状与未来.玉米科学,2000,8 (4):20~22.
    [16].李付广,刘传亮.生物技术在棉花育种中的应用.棉花学报,2007,19(5):362~368.
    [17].李付广,李秀兰,李凤莲.棉花体细胞胚发生及主要物质生化代谢机制.河南农业大学学报,1994,28(3):313~316.
    [18].李官德,肖娟丽,罗晓丽,张安红,吴家和.不同棉花愈伤组织状态与胚胎发生及其植株再生的关系.山西农业科学,2006,34(1):29~31.
    [19].李惠英,张献龙.陆地棉体细胞胚发生过程中的mRNA差异显示分析.棉花学报,2003,15(5):264~268.
    [20].李克勤,王喆之,张大力,郭德志,郝联芳,张苏峰,沈志刚.陆地棉组织细胞培养的研究.西北植物学报,1991,11(2):144~153.
    [21].李秀兰,李凤莲,李付广.棉花组织培养中异常苗转化为正常苗.作物学报,1991,17(05):392~393.
    [22].李燕娥,郭三堆.棉花农杆菌介导高效转化体系.中国棉花,2000,27 (5) :102~111.
    [23].刘传亮,武芝霞,张朝军,李凤莲,王玉芬,李付广.农杆菌介导棉花大规模高效转化体系的研究.西北植物学报,2004,(24)5:768~775.
    [24].刘传亮,于娅,王玉芬,等.棉花基因枪茎尖转化研究.棉花学报,2003,15(4):243~247.
    [25].刘春明,姚敦义.陆地棉体细胞胚发生及其细胞组织学研究.植物学报,1991,33(5):378~384.
    [26].陆振鑫,夏振澳.戴维逊棉的组织培养与原生质体培养研究.植物学报,1991,33, 98~103.
    [27].亓建飞,李付广,张朝军,刘传亮.植物组织培养中畸形苗发生机理的研究进展.棉花学报,2004,16 (3):243~248.
    [28].亓建飞2004农杆菌介导转化棉花过程中畸形苗发生机理的研究硕士学位论文中国农业科学院研究生院导师:李付广.
    [29].秦永华,刘进元.棉花组织培养与植株再生.分子植物育种,2006,4 (4),583~592.
    [30].师海荣,王清连,鲁玉贞.陆地棉品种在体细胞培养中愈伤组织褐化的生化基础研究.中国农学通报,2006,22(6):215~217.
    [31].宋国立,崔荣霞,王坤波,郭立平,黎绍惠,王春英,张香娣.改良CTAB法快速提取棉花DNA.棉花学报,1998,10(5):273~275.
    [32].孙朝煜,张蜀秋,娄成后.细胞编程性死亡在高等植物发育中的作用.植物生理学通讯,2002,38 (4):389~393.
    [33].谭晓连,钱迎倩.不同外植体来源和培养条件对拟似棉植株再生的影响.遗传学报,1988,5, 81~87.
    [34].汪静儿,孙玉强,沈晓佳,祝水金.棉花G染色体组野生棉种的体细胞胚胎发生与植株再生研究,作物学报,2007,33 (8):1279~1285.
    [35].王省芬,迟吉娜,马峙英.以棉花茎尖分生组织为受体进行基因枪轰击转化的研究.棉花学报,2006,18 (1):53~57.
    [36].王亚馥,崔凯荣,汪丽虹,等.小麦体细胞胚发生的超微结构研究.植物学报,1994,36(6):418~422.
    [37].王喆之,张大力,李克勤,郭德志,郝联芳.陆地棉愈伤组织产生及胚胎发生的细胞学研究.西北植物学报,1990,10(2):77~83.
    [38].吴家和,张献龙,罗晓丽,肖娟丽.两个陆地棉体细胞胚发生新品系的选育.棉花学报,2003,15(4):254~256.
    [39].吴家和,张献龙,聂以春.棉花体细胞增殖和胚胎发生中的细胞程序性死亡.植物生理与分子生物学学报,2003,29(6):515~520.
    [40].吴敬音,陈松.外源激素和定向选择对棉花体细胞胚胎发生能力长期保持的影响.江苏农业学报,1988,4, 9~15.
    [41].吴敬音,主卫民,佘建明,蔡晓宁,朱帧,李向辉.棉花茎尖分生组织培养及其在基因导入上的应用.棉花学报,1994, 6 (2):89~92.
    [42].武秀明,刘传亮,张朝军,李付广.棉花体细胞胚胎发生的研究进展.植物学通报,2008,25(4):469~475.
    [43].夏启中,张献龙,聂以春,郭小平.撤除外源生长素诱发棉花胚性悬浮细胞程序性死亡,植物生理与分子生物学学报,2005,31(1):78~54.
    [44].谢德意,金双侠,郭小平,张献龙.长江和黄河流域棉区棉花品种体细胞胚发生和植株再生比较研究.作物学报,2007,33(3):394~400.
    [45].邢更生,崔凯荣,山仑,王亚馥.植物体细胞胚发生的分子基础.遗传,1999,21(1):30~34.
    [46].邢更生,邢更妹,崔凯荣,王亚馥.枸杞胚性细胞分化的超微结构研究.电子显微学报,1999,18(4):395~400.
    [47].许萍,张丕方.关于植物细胞脱分化的研究概况.植物学通报,1996,13(1):20~26.
    [48].杨书华,倪万潮,葛才林,朱静,王泽港,罗时石.花粉管通道法导入标记DNA在棉花胚珠内的分布.核农学报,2007,21 (1):13~16.
    [49].于娅,刘传亮,马峙英,李付广,王省芬.基因枪转化技术在棉花遗传转化上的应用.棉花学报,2003,15 (4) :243~247.
    [50].于娅,刘传亮,马峙英,李付广,李凤莲,王玉芬,武芝霞.陆地棉中棉所24胚性愈伤组织的诱导及植株再生.西北植物学报,2004,24(2):306~310.
    [51].于娅,刘传亮,马峙英,李付广.适于基因枪转化的棉花茎尖培养及筛选体系初探.棉花学报,2003,15 (5):274~278.
    [52].余迪求,洪维廉,陈睦传,汪德耀.甜菊叶肉细胞脱分化过程中超微结构的研究,植物学报1993, 35(7):499~505.
    [53].喻树迅,郭香墨,邢朝柱.我国棉花现代育种技术应用与育种展望(上).中国农业信息,2008,03,19~21(b).
    [54].喻树迅,郭香墨,邢朝柱.我国棉花现代育种技术应用与育种展望(下).中国农业信息,2008,04,16~18(a).
    [55].喻树迅,李付广,刘金海.我国杭虫棉发展战略.棉花学报,2003,154:238~242.
    [56].翟中和,王喜忠,丁明孝.细胞生物学.高等教育出版社[北京[,2000,105~106.
    [57].詹园凤,王广东.大蒜体细胞胚胎发生的组织学研究.农业生物技术科学,2006,22(1):46~48.
    [58].张朝军棉花叶柄高效再生体系的建立与遗传分析,中国农业科学院学位论文,导师:喻树迅,北京,2008.6.
    [59].张朝军,李付广,王玉芬,武芝侠,李风莲.降低棉花胚性愈伤褐化研究.棉花学报,2005,17(5):285~288.
    [60].张朝军,李付广,喻树讯,范术丽,王玉芬,武芝侠,李凤莲,刘传亮.棉花叶柄组织培养与高分化率材料选育方法,200610089439.1[专利文献].
    [61].张家明,孙雪飘,郑学勤,张献龙,赵燕,刘金兰,孙济中.陆地棉愈伤诱导及胚胎发生能力的遗传分析.中国农业科学, 1997,30(3):36~43.
    [62].张献龙,孙济中,刘金兰.陆地棉品种“珂字201”胚性与非胚性愈伤组织生化代谢产物的比较.研究作物学报,1992,18(3):176~182.
    [63].张献龙,孙济中.棉花生物技术研究概况Ⅰ.棉花组织培养与基因工程研究.武汉植物学研究,1999,17(3):259-266.
    [64].张献龙,孙玉强,吴家和,金双侠,聂以春,郭小平.棉花细胞工程及新种质创造.棉花学报,2004,16(6):368~373.
    [65].张英,穆楠,朴红梅.转基因技术在玉米遗传育种中的应用.生物技术通报,2009,1,64~68.
    [66].周光宇,翁坚,龚蓁蓁,曾以申,杨晚霞,沈慰芳,王自芬,陶全洲,黄骏麒,钱思颖,刘桂玲,应苗成,薛达元,洪爱华,徐英俊,陈善葆,段晓岚.农业分子育种授粉后外源DNA导入植物的技术.中国农业科学,1988,21(3)1~6.
    [67].周小凤,张碧瑶,刘冠泽,高巍,余渝,邓福军,李保成,孔宪辉,张献龙,金双侠.新疆棉花高体细胞胚胎发生能力基因型的筛选.分子植物育种,2007,5(6)819~826.
    [68].朱丽霞,程乃乾,高信增.生物学中的电子显微镜技术,北京大学出版社[北京],1983.10, pp:1~60.
    [69].Baudino S., Hansen S., Brettschneider R., Hecht V.F., Dres-selhaus T., Lorz H., Dumas C., Rogowsky P.M. Molecular characterizations of two novel maize LRR receptor-likekinases, which belong to the SERK gene family. Planta, 2001, 213:1~10.
    [70].Atarita L.V., Guerra M.P. Early somatic embryogenesis in A.angustifolia—induction and maintenance of embryonal-suspensor mass cultures. Braz. J. Plant Physiol. 1998,10, 113~118.
    [71].Bobák M., ?amaj J., PretováA., BlehováA., HlinkováE., Ovecka M., Hlavacka A.,KutarnováZ. The histological analysis of in direct somatic embryogenesis on Drosera spathulata Labill. ACTA PHYSIOLOGIAE PLANTARUM,2004,26 (3), 353~361.
    [72].Caredda S, Devaux P, Sangwan RS, Cl′ement C. Differential development of plastids during microspore embryogenesis in barley. Protoplasma,1999,208, 248~256.
    [73].Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher D.C. Green fluorescent protein as a marker for gene expression. Science, 1994, 263, 802~805.
    [74].Chapman A, Blervacq A.S, Hendriks T, et al. Cell wall differentiation during early somatic embryogenesis in plants. II. Ultrastructural study and pectin immunolocalization on chicory embryos [J]. Can. J. Bot, 2000, 78(6): 824~831.
    [75].Chapman A., Helleboid S., Blerwacq A.S., Vasseur J., Hilbert J.L. Removal of the fibrillar network surrounding Cichorium somatic embryos using cytoskeleton inhibitors: analysis of proteic compounds. Plant Sci. 2003, 150: 103–114.
    [76].Chiu W., Niwa Y., Zeng W., Hirano T., Kobayashi H., Sheen J. Engineered GFP as a vital reporter in plants. Current Biology. 1996,6,325~330.
    [77].Chlan C.A., Lin J., Cary J.W., Clevel T.E. A procedure for biolistict ransformation and regeneration of transgenic cotton rommeristematic tissue. Plant Molecular Biology Reporter,1995, (13):1,31~37.
    [78].Christou P. 1996a. Particle Bombardment for Genetic Engineering of Plants. R.G. Landes Company and Academic Press, Austin, TX.
    [79].Christou P. 1 Transformation technology. Trends Plant Sci. 996b.1:423~431.
    [80].Clément T., Meyer D., Himber C., et al. Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem, 2004, 42(1): 35~42.
    [81].Davidonis G.H., Hamilton R.H. Plant regeneration from callus tissues of Gossypium hirsutum L.Plant Sci Lett, 1983, 32:89~93.
    [82].de Jong A.J., Hoeberichts F.A., Yakimova E.T., Maximova E., Woltering E.J. Chemical-induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. Planta,2000,211: 656~662.
    [83].Dubois T., Dubois J., Guedira M., Diop A., Vasseur J. SEM characterizationof an extracellular matrix aroundsomatic proembryos in roots of Cichorium. Ann. Bot. 1992,70: 119–124.
    [84].Dubois T., Guedira M., Dubois J., Vasseur J. Direct somatic embryogenesis in leaves of Cichorium. A histological and SEM study of early stages. Protoplasma, 1991, 162: 120–127.
    [85].Escobar M.A., Park J, Polito V.S., Lesslie C.A., Uratsu S.L., Mcgranahan G.H, Dandkar A.M. Using GFP as a scorable marker in Walnut somatic embryo transformation. Annals of Botany,2000,85: 831~835.
    [86].Filonova L.H., Bozhkov P.V., Brukhin V.B., Daniel G., Zhivotovsky B., Arnold S.V. Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci, 2000, 113:4399~4411.
    [87].Finer J.J., McMullen M.D. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep, 1990, 8, 586~589.
    [88].Firoozabady ., David L. DeBoer, Donald J. Merlo, Edward L. Halk, Lorraine N. Amerson, Kay E. Rashka,Elizabeth E. Murray. Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants.Plant Molecular Biology,1987,10: 105~116.
    [89].Gamborg O.L., Miller R.A., Ojima K. Nutrient requirements of suspension culture of soybean roots cells. Exp Cell Res, 1968, 50: 150~158.
    [90].Ganesan M., Jayabalan N. Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep,2004, 23:181~187.
    [91].Gawel N.J., Robacker C.D. Somatic embryogenesis in two Gossypium hirsutum L. genotypes on semi-solid versus liquid proliferation media. Plant Cell Tiss. Org. Cult. 1990, 23:201~204.
    [92].Greenberg J.T. Programmed cell death: a way of life for plants. Proc Natl Acad Sci USA,1996,93: 12094~12097.
    [93].Hao Y, Deng X. Stress Treatments and DNA methylation affected the somatic embryogenesis of Citrus callus. Acta Botanica Sinica, 2002, 44(6): 673~677.
    [94].Harvel L, Durzan DJ Apoptosis during diploid parthenogenesis and early somatic embryogenesis of Norway spruce. Int J Plant Sci,1996,157: 1~8.
    [95].Hraska M., Rakousky S., CurnV. Tracking of the CaMV-35S promoter performance in GFP transgenic tobacco, with a special emphasis on flowers and reproductive organs, confirmed its predominant activity in vascular tissues. Plant Cell Tiss Organ Cult. DOI 10.1007/s11240-007-9312-6
    [96].Ikram U.H. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) via vacuum infiltration. Plant molecular biology reporter,2004,22 (9): 279~288.
    [97].Iwai H., Kikuchi A., Kobayashi T., Kamada H., Satoh S. High levels of nonmethylesterified pectins and low levels of peripherally located pectins in loosely attached nonembryogenic callus of carrot. Plant Cell Rep. 1999, 18, 561~566.
    [98].Jasik J., Salajova T., Salaj J. Developmental anatomy and ultrastructure of early somatic embryos in European black pine (Pinus nigra Arn.). Protoplasma, 1995, 185: 205–211.
    [99].Jenkins J.N., Parrott W.L., McCarty J.C., Callahan F.E., Berberich S.A., Deaton W.R. Growth and survival of Heliothis virescens (Lepidoptera, Noctuidae) on transgenic cotton containing a truncated form of the delta endotoxin gene from Bacillus thuringiensis. J. Econ. Entomol. 1996, 86, 181~185.
    [100].Jimenez V.M. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Brasi de Fisio Vegl. 2001, 13:196–223.
    [101].Jin S., Liang S., Zhang X., Nie Y., Guo X. An efficient grafting system for transgenic plant recovery in cotton (Gossypium hirsutum L.).Plant Cell, Tissue and Organ Culture,2006,85: 181~185,
    [102].Jin S., Zhang X., liang S., Nie Y., Guo X.,Huang C. Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens.Plant Cell, Tissue and Organ Culture. 2005,81:229~237.
    [103].Jin S., Zhang X., Nie Y., Guo X., Liang S., Zhu H. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biologia Plantarum,2006,50(4): 519~524.
    [104].Keller G., Spatola L., McCabe D., Martinell B., Swain W., John M.E. Transgenic cotton resistant to herbicide bialaphos. Transgen Res., 1997, 6: 385~392.
    [105].Kevers C., Coumans M., Coumans-Gillès M.F., Caspar T. Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiologia Plantarum,61 (1):69~74.
    [106].Kim E.N., Rina R.I., Ray J. Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol, 2003, 133(1): 218~230.
    [107].Konieczny R., Bohdanowicz J., Czaplicki A.Z., Przywara L. Extracellular matrix surface network during plant regeneration in wheat anther culture. Plant Cell Tissue Organ Cult. 2005, 83, 201~208.
    [108].Konieczny R., Czaplicki A.Z., Golczyk H., Przywara L. Two pathways of plant regeneration in wheat anther culture. Plant Cell Tiss. Org. Cult. 2003, 73: 177–187.
    [109].Kreuger M., van Holst G.J. Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta 1995,197: 135–141.
    [110].Kreuger M., vans Holst G.J. Arabinogalactan-proteins are essential in somatic embryogenesis of Daucus carota L. Planta, 1993(2), 189: 243~248.
    [111].Kumria R., Leelavathi S., Bhatnagar R.K., Reddy V.S. Regeneration and genetic transformation of cotton: present status and future perspectives. Plant Tissue Cult. 2003, 13(2):211~225.
    [112].Kumria R., Sunnichan V. G., Das D. K. ,Gupta S. K.,Reddy V. S.,Bhatnagar R. K.,Leelavathi S. High frequency somatic embryo production and maturation into normal plants in cotton(Gossypium hirsutum) through metabolic stress.Plant Cell Rep (2003) 21:635~639.
    [113].Li X.B., Fan X.P., Wang X.L., Cai L.,Yang W.C. The Cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. The Plant Cell, 2005, 17:859~875.
    [114].Liu C.M., Yao D.Y. Studies on somatic embryogenesis and histological observation in Gossypium hirsutum L CV. Coker 312. Acta Botanica Sinica, 1991, 33(5):378~384.
    [115].Liu Q., Singh S.P., Green A.G. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol., 2002, 129, 1732~1743.
    [116].Luo J., Gould J.H. In vitro shoot-tip grafting improves recovery of cotton plants from culture. Plant Cell, Tissue and Organ Culture , 1999,57: 211~213.
    [117].Manuel Pedro Fevereiro. Use of fused gfp and gus reporters for the recovery of transformed Medicago truncatula somatic embryos without selective pressure. Plant Cell Tiss Organ Cult. 2007, 90:325~330
    [118].McCabe D.E., Martinell B.J. Transformation of elite cotton cultivars via particle bombardment of meristems. Nature Biotechnology. 1993,11:596~598.
    [119].Mikula A., Tykarska T., Kuras M., Rybczynski J.J. Somatic embryogenesis of Gentiana Crucaita L: Histological and ultrastructural change in seedling hypocotyls explants. In Vitro Cell Dev. Biol. Plant, 2007, 41:686~694.
    [120].Mishra R., Wang H.Y., Yadav N.R., Wilkins T.A. Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv.Maxxa)-a step towards genotype-independent regeneration. Plant Cell Tissue Organ Cult. 2003, 73, 21~35.
    [121].Moghaddam BE, Taha RM. Cellular behavior in embryogenic and non-embryogenic sugar beet calluses. In Vitro Cell Dev. Biol. Plant. 2005,41(4), 465~469.
    [122].Murashige, T., Skoog F. Arevised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962,15:473~497.
    [123].Namasivayam P, Skepper J, Hanke D. Identification of a potential structural marker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue. Plant Cell Rep. 2006, 25, 887~895.
    [124].Nida D.L., Kolacz K.H., Buehler R.E., Deaton W.R., Schuler W.R., Armstrong T. Glyphosate tolerant cotton, characterization of protein expression. J. Agric. Food. Chem, 1996, 44, 1960~1966.
    [125].Nobre J., Keith D.J., Dunwell J.M. Morphogenesis and regeneration from stomatal guard cell complexes of cotton (Gossypium hirsutum L). Plant Cell Rep, 2001, 20(1):8~15.
    [126].Orban N, Boldizsar I, Boka K. Structural and chemical study of callus formation from leaves of Rubia tinctorum. Biologia Plantarum,2007, 51, 421~429.
    [127].Ovecka M., Bobak M. Structural diversity of Papaver somniferum L. cell surfaces in vitro depending on particular steps of plant regeneration and morphogenetic program. Acta Physiol. Plant.1999, 21: 117–126.
    [128].Parameswari Namasivayam, Jeremy Skepper, David Hanke. Identification of a potential structuralmarker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue. Plant Cell Rep, 2006, 25: 887~895.
    [129].Parameswari Namasivayam. Acquisition of embryogenic competence during somatic embryogenesis.Plant Cell Tiss Organ Cult, 2007, 10:1~8.
    [130].Pedroso M.C., Pais. MSA scanning electron microscopy and X-ray microanalysis study during induction of morphogenesis in Camellia japonica L. Plant Sci. 1992,87: 99–108.
    [131].Pérez-Clemente R.M., Pérez-Sanjuán A., García-Férriz L., Beltrán J. Ca?as L.A. Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Molecular Breeding, 2004, 14: 419~427.
    [132].Perlak F.J., Deaton R.W., Armstrong T.A., Fuchs R.L., Sims S.R., Greenplate J.T., Fischhoff D.A. Insect resistant cotton plants. Biotechnology. 1990, 8, 939~943.
    [133].Platt K.A., Oliver M.J. and Thomson W. W. Importance of the fixative for reliable ultrastructural preservation of poikilohydric plant tissues. Observations on dry, partially, and fully hydrated tissues of Selaginella lepidophyll . Annals of Botany .1997, 80:599~610.
    [134].Polin L.D., Liang H.Y, Rothrock E.R., Nishii M., Diehl D.L., Newhouse A.E., Nairn C.J., Powell W.A., Maynard C.A. Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell, Tissue and Organ Cult. 2006,84: 69~78.
    [135].Poljuha D., Balen B., Bauer A, Ljubesic N, Krsnikrasol M. Morphology and ultrastructure of Mammillaria gracillis (Cactaceae) in in vitro culture. Plant Cell Tissue Organ Cult. 2003, 75, 117~123.
    [136].Popielarska-Konieczna M, Kozieradzka-KiszkurnoM, Swierczynska G, Goralski, Slesak G, Bohdanowicz J. Ultrastructure and histochemical analysis of extracellular matrix surface network in kiwifruit endosperm derived callus culture. Plant Cell Rep. 2008, 27, 1137~1145.
    [137].Rajasekaran K., Cary J.W., Cotty P.J., Cleveland T.E. Development of a GFP-expressing Aspergillus flavus strain to study fungal invasion, colonization, and resistance in cotton seed. Mycopathologia. 2008. 165:89~97.
    [138].Rajasekaran K., Hudspeth R.L., Cary J.W., Anderson D.M., Cleveland T.E. High frequency stable transformation of cotton (Gossypium hirsutum L.) by Particle bombordment of embryogenic cell suspension cultures. Plant Cell Rep. 2000, 19: 539~545.
    [139].Ratna Kumria, Sadhu Leelavathi, Raj K. Bhatnagar,Vanga Siva Reddy. Regeneration and genetic transformation of cotton: present status and future perspectives.Plant Tissue Cult. 2003,13(2): 211~225.
    [140].Reynolds E.S. The use of lead citrate at high pH as an electron opaque stain for electron microscopy. Journal Cell Biology. 1963,17:208~212.
    [141].Rumyantseva N.I., Salnikov V.V., Lebedeva V.V. Structural Changes of Cell Surface in Callus of Fagopyrum esculentum Moench. During Induction of Morphogenesis. Russian Journal of Plant Physiology, 2005, 52(3), 381–387.
    [142].Rumyantseva N.I., Samaj J., Ensikat H.J., Salnikov V.V., Kostyukova Y.A., Baluska F., VolkmanD. Changes in the extracellular matrix surface network during cyclic reproduction of proembryogenic cell complex in the Fagopyrum tataricum (L.) Gaertn callus. Dokl. Biol. Sci. 2003, 391:375~378.
    [143].Sakhanokho H.F., Ozias-Akins P., May O. L., Peng W. Chee. Putrescine enhances somatic embryogenesis and plant regeneration in upland cotton.Plant Cell Tiss Organ Cult, 2005, 81:91~95.
    [144].Sakhanokho H.F., Ozias-Akins P.O., Lloyd May., Chee P.W. Induction of somatic embryogenesis and plant regeneration in select georgia and Pee Dee cotton Lines. Crop Sci, 2004, (44):2199~2205.
    [145].Sakhanokho H.F.,Zipf A.,Rajasekaran K.,Saha S.,Sharma G.C. Induction of highly embryogenic calli and plant regeneration in Upland (Gossypium hirsutum L.) and Pima (Gossypium barbadense L.) Cotton. Crop Sci,2001,41:1235~1240.
    [146].Samaj J., Baluska F., Bobak M. Volkman D. Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4. Plant Cell Rep.1999, 18: 369~374.
    [147].Samaj J., Bobak M., Blehova A., Kris tin J., SamajowaO. Developmental SEM observations on an extracellular matrix in embryogenic calluses of Drosera rotundifolia and Zea mays. Protoplasma,1995,186: 45~49.
    [148].Sanford J.C.,Klein T.M.,Wolf E.D.,Allen N. Delivery of substances into cells and tissues using a particle bombardment process. Particulate science and technology, 1987, 5(1), 27~37.
    [149].Schmidt E.D., Guzzo F., Toonen M.A., de Vries S.C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997, 124(10):2049~2062.
    [150].Sharp W.R., Sondahl M.R., Caldas L.S., et al. The physiology of in vitro asexual embryogenesis. Hort Rev, 1980, 2: 268~310.
    [151].Shoemaker R. C., Couche L. J., Galbraith D. W. Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.).Plant Cell Reports,1986,3: 178~181.
    [152].Spurr A.R. Low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 1969, 26, 31~43.
    [153].Sun Y., Zhang X., Guo X., Huang C., Nie Y. Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species, Plant Cell Reports 2006, 25(4): 289~296.
    [154].Sun Y.Q., Zhang X.L., Jin S.X., Liang S.G., Nie Y.C. Somatic embryogenesis and plant regeneration in wild cotton (Gossypium klotzschianum Anderss). Plant Cell, Tiusue and Organ Culture, 2003, 75:247~253.
    [155].Sun Y.Q., Zhang X.L.,Nie Y.C.,Guo X.P.,Jin S.X.,Liang S G.Production and characterization of somatic hybrids between uppland cotton (Gossypium hirsutum) and wild cotton (Gossypium klotzschianum Anderss) via electrofusion. Theor Appl Genet, 2004, 109: 472~479.
    [156].Sunilkumar G, Mohr L, Lopata-Finch E, Emani C, Rathore KS. Developmental and tissue-specificexpression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol. Biol. 2002, 50, 463~474.
    [157].Sunilkumar G, Rathore K.S. Transgenic cotton, factors influencing Agrobacterium-mediated transformation and egeneration. Mol. Breed. 2001,8, 37~52.
    [158].Sunilkumar G., Campbell L.M., Puckhaber L., Stipanovic R. D., Rathore K.S. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc. Natl. Acad. Sci., USA. 2006,103, 18054~18059.
    [159].Trolinder N.L., Chen X. Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Rep., 1989, 8(3):133~136.
    [160].Trolinder N.L., Goodin J. Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep.1987, 6: 231~234.
    [161].Trolinder N.L., Goodin J.R. Somatic embryogenesis in cotton (Gossypium):Ⅰ. Effects of source of explant and hormone regime. Plant Cell Tiss Org Cult, 1988, 12: 31~42.
    [162].Umbeck P., Johnson G., Barton K., Swain W. Genetically transformed cotton (Gossypium Hirsutum L.)Plants. Nature biotechnology, 1987, 5, 263~266.
    [163].Verdeil J.L., Hocher V., Huet C., Grosdemange F., Escoute J., Ferrieare N., Nicole M. Ultrastructural changes in coconut calluses associated with the acquisition of embryogenic competence. Ann. Bot. 2001,88, 9~18.
    [164].Wang H.L., Kang Y.Q., Zhang C.J., Ma Y., Wang T.K. Changes in nuclear ultrastructure during callus developmentin tissue culture of Allium sativum. BIOLOGIA PLANTARUM,1998,41 (1): 49~55.
    [165].Wang Y.X., Wang X.F., Ma Z.Y., Zhang G.Y., Han G.Y. Somatic Embryogenesis and Plant Regeneration from Two Recalcitrant Genotypes of Gossypium hirsutum L. Agricultural Sciences in China, 2006, 5(5):323~329.
    [166].Wilkins T.A., Rajasekaran K., Anderson D.M. Cotton biotechnology. Critical Reviews in Plant Sciences, 2000, 19(6):511~550.
    [167].Wu H., Wang H.,Li F.,Chen T.,Jie Zhang J., Jiang Y.,Ding Y., Guo W.,Zhen T. Zhang Enhanced Agrobacterium-mediated Transformation of Embryogenic Calli of Upland Cotton via Efficient Selection and Timely Subculture of Somatic Embryos.Plant Mol Biol Rep,2008,26:174~185.
    [168].Wu H.M., Alice Y.C. Programmed cell death in plant reproduction. Plant Molecular Biology, 2000, 44: 267~281.
    [169].Wu J., Zhang X., Nie Y., Luo X. High-efficiency transformation of Gossypium hirsutum embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants. Plant Breeding, 2005, 124, 142~146.
    [170].Wu J.H., Zhang X.L., et al, Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons. In vitro Cellular and Developmental Biology-Plant, 2004, 40(4): 371~375.
    [171].Wu X., Li F., Zhang C., Liu C., Zhang X. Differential Gene Expression of Cotton Cultivar CRI24During Somatic Embryogenesis, Journal of plant physiology,2009, doi:10.1016/j.jplph.2009.01.012.
    [172].Xia G.M., Chen H.M. Ultrastructure of the Cell of Peucedanum terebinthaceum in Different Stages of Embryogenesis in Suspension Cell Culture. Acta Botanica Sanica. 1991,33(6):282~485.
    [173].Yancheva S. D., Shlizerman L.A., Golubowicz S., Yabloviz Z., Perl A., Hanania U., Flaishman M. A. The use of green fluorescent protein (GFP) improves Agrobacterium-mediated transformation of‘Spadona’pear (Pyrus communis L.). Plant Cell Rep, 2006, 25: 183~189.
    [174].Young T.E., Gallie D.R., DeMason D. Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunkon2 genotypes.Plant Physiol,1997,115: 737~75.
    [175].Zapata C., Park S.H., El-Zik K.M., Smith R.H. Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex. Theor Appl Genet,1999,98, 252~256.
    [176].Zeng F.H., Zhang X.L., Jin S.X., Cheng L., Liang S.G., Hu L.S., Guo X.P., Nie Y.H., Cao J.L. Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell Tiss Organ Cult, 2007, 90: 63~70.
    [177].Zeng F.H., Zhang X.L., Zhu L.F., Tu L.L., Guo X.P., Nie Y.C. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Molecular Biology, 2006, 60:167~183.
    [178].Zhang B., Feng R., Liu F., Wang Q. High frequency somatic embryogenesis and plant regeneration of an elite Chinese cotton variety. Botanical Bulletin of Academia Sinica, 2001,42, 42: 9~16.
    [179].Zhang B., Liu F., Liu Z., Wang H.,Yao C. Effects of kanamycin on tissue culture and somatic embryogenesis in cotton. Plant Growth Regulation 2001, 33: 137~149,
    [180].Zhang B.H., Feng R., Liu F., Wang Q. High frequency somatic embryogenesis and plant regeneration of an elite Chinese cotton variety. Bot. Bull. Acad. Sin. 2001, 42: 9~16.
    [181].Zhao F., Li Y.F., Xu P. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L. cv. Zhongmian 35) using glyphosate as a selectable marker.Biotechnol Lett, 2006, 28:1199~1207.
    [182].Zhou J Y. Embryoids producd from somatic plant cells in tissue culture.Ⅱ.Factors affecting the initiation and development ofplant embryoids. Acta Photophysiologica Sinica,1982,8(1):92~99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700