旅客列车车厢内气流分布特征与环境舒适性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旅客列车是我国中长途客运的主要交通工具之一。列车车厢内高度的密封性带来的热舒适和空气品质问题日益突出,已成为国内外学者关注的焦点和研究的热点。旅客列车车厢内热环境的特点是列车内外的热、湿扰量大,且不同的时段、不同的运行区间差别很大,热环境呈不稳定性。国内学者对旅客列车车厢内气流组织和热舒适的研究大多是基于空载条件下进行的,对车厢内气流分布特征和影响因素尚缺乏系统而全面的研究。本文以25K型旅客列车为研究背景,针对其热源和污染源复杂、多场耦合的特点,数值研究了车厢内气流分布特征,在此基础上对车厢内人体热舒适性和空气质量进行了研究。
     用三维不可压缩雷诺时均N-S方程描述旅客列车车厢内的空气流动,湍流模型采用标准k -ε模型,视人体为污染源和热源体,考虑太阳辐射和车体传热作用,自行编制计算程序,研究了不同工况下车厢内空气流场和温度场分布规律,以及人体作为污染源和热源体对车厢内流场、温度场和CO2浓度场的影响,讨论了不同送风方式和送风速度对车厢内气流分布参数的影响。将25K型硬座车厢内速度和温度实测数据与模拟结果进行对比,两者吻合良好,证实了所开发的数值计算程序的可靠性。
     针对旅客列车车厢内气流分布不均、人体热感觉差别较大的现状,成功实现了将热舒适评价指标PMV和吹风感指标PD应用于车厢内人体热舒适性的研究,研究了送风速度、送风温度和送风方式对车厢内热舒适性的影响。计算结果表明:硬座车厢内采用两侧条缝送风方式比较合适,车厢内送风速度不宜过大,较大的送风速度虽然能改善靠窗处乘客的热舒适性,但同时使过道处乘客有局部吹风感;硬卧车厢内为了保持各铺位乘客的热舒适性,宜采用条缝送风方式,且送风口应置于铺位区中央。
     在综合考虑人体热舒适性和空气品质的基础上,首次提出了全面评价旅客列车车厢内空气质量的指标AQI,利用该指标对车厢内空气质量进行了评价,得出了硬座车厢内两侧条缝送风的最佳送风速度为2.5m/s;对硬卧车厢送风方式进行了改进,得出了保持车厢内良好空气质量的送风方式和送风参数,硬卧车厢内应采用条缝送风,最佳送风速度为2.5m/s。该研究结论对指导列车车厢内通风系统设计有重要的参考价值。
     我国旅客列车空调系统通过控制空调机组的开停以实现车厢内的温度控制,该控制方法使车厢内温度波动大,车厢内环境不能满足热舒适性要求。以25K型旅客列车为研究对象,采用MATLAB/SIMULINK工具箱,设计了PID和FUZZY控制系统,以实现对车厢内的温度控制。针对旅客列车车厢内CO_2浓度偏高、车厢内空气质量较差这一状况,以车厢内CO_2浓度作为车厢内空气品质的控制标准,设计了PID控制系统并进行仿真,结果表明基于CO_2浓度变化控制车厢内的新风量,能有效改善车厢内的空气品质。
Railway passenger car is one of the main vehicles in middle and long distance transportation in our country. The problem of comfort and air quality in the compartment induced by the good sealing is increasingly outstanding, which become the focus of attention and study by domestic and foreign scholars. The peculiarity in railway passenger car is that the heat flux and humidity internal and external has a big interference on thermal environment, and varies with different driving period and location, so the thermal environment in the compartment has a significant instability. Some relative studies on air organization and thermal comfort only in idle condition in train compartment have been carried out, but the airflow distribution characteristics and influencing factor are devoid of systematical and comprehensive research in our country. In this paper, aiming at the complexity of heat flux and contaminant source with multi-coupling in the 25K railway passenger car, the air distribution in the compartment is numerically simulated, and the thermal comfort and air quality is studied based on the anterior simulation result.
     The three-dimensional incompressible Reynolds time-average N-S equation is used to descript the air distribution. In the standard k-εturbulence model, the passenger body is regarded as contaminant and heat source, considering solar radiation and heat transfer of the compartment, and the calculation code is wholly compiled by the author successfully. The airflow and temperature distribution characteristics are studied in different conditions. The influence of body heat on turbulence airflow, temperature and CO2 concentration fields are analyzed, and the influence of supply air mode and air velocity on the air distribution parameters is discussed. The experimental measurement is carried out in the 25K railway passenger car. The data of experimental measurement are coinciding with the simulation results, which verify the reliability of the calculation code.
     Based on the state of uneven distribution of airflow and great difference of thermal sensation in the compartment, PMV and PD are successfully applied in the research of body thermal comfort. The influences of supply air velocity, temperature and supply air mode on thermal comfort are respectively studied. The results reveal that sew supply air at two sides of the ceiling is suitable for hard-seat car, and the supply air velocity should not be too large, because too large velocity easily produce local blowing feeling at the aisle while improving thermal comfort near the windows. Sew supply air mode is suitable for hard-berth sleeper to maintain the passengers’comfort, and the outlet should be located on the ceiling at the centre of the berth.
     On the basis of comprehensively considering thermal comfort and air quality,the index of AQI is first put forward to overall evaluate the air quality in the compartment. A conclusion that the optimal sew supply air velocity at two sides is 2.5m/s in hard-seat car is drawn. Supply air mode in hard-berth sleeper is improved, and the optimal supply air mode and supply air parameter simultaneously meeting the requirement of thermal comfort and good air quality are obtained. In hard-berth sleeper, the optimal supply air velocity is 2.5m/s with sew supply air. The research conclusion has an important reference value to guide the design of ventilation system in the compartment.
     In our country, the air-conditioning system in railway passenger car control the temperature through start-stop condition, so the temperature fluctuation is obvious, and the air environment can’t satisfy the passenger’s demand. In the study of 25K passenger car, PID and FUZZY control system are designed by simulink tool box of the Microsoft MATLAB to control the temperature in the compartment. Based on the condition that the CO_2 concentration is much high, and the air quality is bad in the compartment, the CO_2 concentration is regarded as control standard, and PID control system is designed and simulated. The results show that controlling fresh air volume based on CO_2 concentration can effectively implement improving the air quality in the compartment.
引文
[1] Patanker S V, Spalding D B. A calculation procedure for heat, mass, and momentum transfer in three-dimensional flow. Int J Heat Mass Transfer, 1972, 15:1787-1806
    [2] Launder B E, Spalding D B. The Numerical computation of turbulent flows. Comp. Mech. in Mech. Eng. 1974, 3:269-289
    [3] Patanker S V. Numerical heat transfer and fluid flow. New York: Hemisphere Ohblihing Corporation, 1980
    [4] Hanzawa H, Melikov A K, Fanger P O. Airflow characteristics in the occupied zone of ventilated spaces. ASHRAE Trans, 1987, 93:524-539
    [5] Gan G, Awbi H B, Croome D J. CFD Simulation of the Indoor Environment for Ventilation Design. ASME Winter Annual Meeting, Transport Phenomena in Indoor Environment, paper93-WA/HT-49, November 1993, New Orleans, USA
    [6] Awbi H B. Application of computational fluid dynamics in room ventilation. Building and Environment, 1989, 24(1):73-83
    [7] Fanger P O, Melikov A K, Hanzawa H, et al. Air turbulence and sensation of draught. Building and Environment, 1988, 23(12):21-39
    [8] Paul Martin. CFD in the Real World. ASHRAE Journal, 1997, 1:20-25
    [9] Chen Q, Moser A, Huber A. Prediction of buoyant, turbulent flow by a low-renolds-number k ?εmodel. ASHRAE Trans, 1990, 96(1):564-573
    [10] Nielsen P V. Description of supply openings in numerical models for room air distribution, ASHRAE Trans.1992: 963-971
    [11] Weatgers J W, Spitler J D. A comparative study of room airflow: Numerical prediction using computational fluid dynamics and full-scale experimental measurements. ASHRAE Trans, 1993, 99:144-157
    [12] Fountain M, Arens E, Dedear R, et al. Locally controlled air movement preferred in warm isothermal environments. ASHRAE Trans, 1994, 100(2):937-952
    [13] Trent E S, Donald J B, James D B. Numerical Simulation of Three-Dimensional Airflow in Unfurnished Rooms. ASHRAE Trans, 1994, 100(2):68-76
    [14] Chen Q. Prediction of room air motion by Reynolds-stress. Building and Environment, 1996, 31(3):232-244
    [15] Lu W Z, Andrew T, Alan P. Prediction of airflow and temperature field in a room with convective heat source. Building and Environment, 1997, 32(10):541-550
    [16] Nielsen P V. The selection of turbulence models for prediction of room airflow. ASHRAE Trans., 1998, 104(1): 1119-1126
    [17] Chung K C. Three-dimensional analysis of airflow and contaminant particle transport in a partitioned enclosure. Building and Environment, 1999, 34(3):7-17
    [18] Chung K C, Hsu S P. Effect of ventilation pattern on room air and contaminant distribution. Building and Environment, 2001, 36(5):989-998
    [19] Han T. Three-dimensional navier-stokes simulation for passenger compartment cooling. Int J of VehicleDesign, 1999, 10(2):223-235
    [20] Tohru Komoriya. Analysis of vehicle passenger compartment ventilation using experimental and numerical models. SAE Trans, 1997, 98(6):392-400
    [21] Lin C H, Lelli M A, Han T, et al. An experimental and computational study of cooling in a simplified gm-10 passenger compartment. SAE paper 910216, 1998
    [22] Kazuhiko M. Evaluation and measurement of thermal comfort in the vehicles with a new thermal mannequin [R]. SAE paper 931958, 1993
    [23] Currle J. Numerical Simulation of the flow in a passenger compartment and evaluation of the thermal comfort of the occupants.SAE paper 970529:804-816, 1997
    [24] Hohler J. Numerical calculation of the distribution of temperature and heat flex in buses under the influence of the vehicle air-conditioning system. ASHRAE Trans, 1998, 104(1):124-132
    [25] McIntyre D A. Indoor Climate. London: Applied science published LTD, 1980
    [26] Gagge A P, Stolwijk J A, Nishi Y. An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans, 1971, Vol. 77, Part 1:247-262
    [27] Gagge A P, Fobelets A P, Berglund L G. A standard predictive index of human response to the thermal environment. ASHRAE Trans, 1986, Vol. 92, Part 2:709-731
    [28] McNall P E, Nevins R G, Ryan P W, et al. Metabolic rates at four activity levels and their relationship to thermal comfort. ASHRAE Trans, 1968, Vol. 74, Part 1:1-20
    [29] Fanger P O. Thermal comfort. Copenhagen: Danish Technical Press, 1970
    [30] ISO Standard 7730-84, Moderate thermal environments-determination of PMV and PPD indices and specification of the conditions for thermal comfort. Geneva, International Standards Organization (1984)
    [31] Fanger P O. Thermal comfort-analysis and applications in environmental engineering. New York: McGraw-Hill Book Company, 1973
    [32] Shuzo Murakami, Shinsuke Kato, Jie Zeng. Combined simulation of airflow, radiation, and moisture transport for heat release from a human body. Building and Environment, 2000, 35(2):489-500
    [33] Shin-ichi Tanabe, Kozo Kobayashi, Junta Nakano, Yoshiichi Ozeki, Masaaki Konishi.Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD).Energy and Buildings, 2002, 34(6):637-646
    [34] Muhsin Kilic, Gokhan Sevilgen.Modelling airflow, heat transfer and moisture transport around a standing human body by computational fluild dynamics. International communications in heat and mass transfer, 2008, 35:1159-1164
    [35] Maher Hamdi, Gérard Lachiver, Fran?ois Michaud. A new predictive thermal sensation index of human response.Energy and Buildings, 1999, 29(2):167-178
    [36] Chen Q, Srebric J. Application of CFD tools for indoor and outdoor environment. International Journal on Architectural Science, No.1, 2000:14-29
    [37] Ampofo F, Maidment G, Missenden J. Underground railway environment in the UK: Part 1: Review of thermal comfort.Applied Thermal Engineering.2004, 24: 611-631
    [38] Ampofo F, Maidment G, Missenden J. Underground railway environment in the UK Part 2: Investigation of heat load.Applied Thermal Engineering.2004,24(5-6): 633-645
    [39] Ampofo F, Maidment G, Missenden J. Underground railway environment in the UK: Part 3: Methods of delivering cooling.Applied Thermal Engineering.2004, 24(5-6): 647-659
    [40] Chow W K, Yu Philip C H. Simulation on energy use for mechanical ventilation and air-conditioning (MVAC) systems in train compartments.2000,25(1):1-13
    [41] Conceicao E Z E, Da Silva M C G, Andre J C S, et al. Thermal behaviour simulation of the passenger compartment of vehicles.International Journal of Vehicle Design, 2000, 24(4):372-387
    [42] Yadollah Farzaneh, Ali A Tootoonchi. Controlling automobile thermal comfort using optimized fussy controller.Applied Thermal Engineering.2004, 28: 1904-1917
    [43] Gaylard A P. Application of computational fluid dynamics to railway aerodynamics.Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit.1993, 27(2): 133-141
    [44] Piet Rietveld. Why railway passengers are more polluting in the peak than in the off-peak; environmental effects of capacity management by railway companies under conditions of fluctuating demand.Transportation Research Part D: Transport and Environment, 2002, 7(5): 347-356
    [45] Ka Wing Shek, Wai Tin Chan. Combined comfort model of thermal comfort and air quality on buses in Hong Kong.Science of The Total Environment, 2008, 389( 2-3): 277-282
    [46] Mezrhab A, Bouzidi M. Computation of thermal comfort inside a passenger car compartment. Applied Thermal Engineering, 2006, 26(14-15): 1697-1704
    [47] Kazuaki Yamashita, Tomonori Kuroda, Yutaka Tochihara, et al. Evaluation of summertime thermal comfort in automobiles.Elsevier Ergonomics Book Series, 2005, 3: 299-303
    [48] Kazuhiro Fukuyo. Application of computational fluid dynamics and pedestrian-behavior simulations to the design of task-ambient air-conditioning systems of a subway station.Energy, 2006, 31(5):704-718
    [49] K Suleyman Yigit. Experimental investigation of a comfort heating system for a passenger vehicle with an air-cooled engine.Applied Thermal Engineering, 2005, 25(17-18):2790-2799
    [50] Eric B Ratts, J Steven Brown. An experimental analysis of the effect of refrigerant charge level on an automotive refrigeration system.International Journal of Thermal Sciences, 2000, 39(5):592-604
    [51] Omer Kaynakli, Muhsin Kilic.An investigation of thermal comfort inside an automobile during the heating period.Applied Ergonomics, 2005, 36(3):301-312
    [52] Kazuhiko Matsunaga, Fujio Sudou, Shin-Ichi Tanabe.Evaluation of comfort of thermal environment in vehicle occupant compartment.JSAE Review, 1997, 18(1):74-75
    [53]孙学军,苏志军,丁国良.轿车空调车室空气流场数值模拟[J].上海交通大学学报,1996,30(2):19-22
    [54]万建武, J. Van Derkovi.长途客车中的空气品质和人体热舒适研究[J].通风除尘,1998,16(3):8-11
    [55]吴俊云,童灵,陈芝久.空调客车室内三维紊流流动与传热数值研究[J].上海交通大学学报,1999,33(3):331-334
    [56]简晓文,陈江平,陈芝久.一种简便实用的汽车空调车室设计仿真方法[J].流体机械,2001,29(5):50-52
    [57]陈江平,孙召璞,阙雄才.轻型客车室内通风的数值模拟与实验研究[J].应用科学学报,2002,20(2):169-172
    [58]刘军朴,陈江平,陈芝久.客车车厢内气流分布及传热数值分析[J].上海交通大学学报,2003,37(7):1098-1101
    [59]庄达民,林国华,袁修干.高速列车舱内气流分布的数值模拟[J].铁道学报,2000,22(2):24-30
    [60]靳谊勇,郁永章.铁路空调客车车内气流组织的数值模拟[J].制冷学报,2002,33(2):30-34
    [61]邓建强,靳谊勇,张早校,等.空调客车内风道三维湍流流动特性数值研究[J].制冷学报,2001,32(1):30-34
    [62]王东屏,兆文忠,马思群.CFD数值仿真在高速列车设计中的应用[J].铁道学报,2007.29(5):24-28
    [63]王利,陆震,黄兴华.铁路空调硬卧客车室内气流组织的数值模拟[J].上海交通大学学报,2002,36(11):1579-1582
    [64]陈焕新,黄素逸,张登春.空调列车室内三维紊流流动与传热的数值模拟[J].华中科技大学学报(自然科学版),30(3):52-54
    [65]胡松涛,斐念强,李郁武.高档软卧车空调送风系统的实验研究与优化[J].暖通空调.2004.34(4):9-13
    [66]赵忠超,史自强,靳谊勇.空调列车室内气流的数值模拟与实验研究[J].暖通空调,2004,34(10):29-32
    [67]史自强,卢纪富,靳谊勇,等.空调列车室内气流组织的三维数值模拟[J].河南科技大学学报(自然科学版),2004,25(3):70-73
    [68]连之伟,张桂荣,叶晓江.铁路空调客车气流组织评价[J].上海交通大学学报,2004,38(6):961-966
    [69] Lian Zhiwei, Zhang Guirong, Liu Hongmin, et al..Presentation and evaluation of a new type of air supply system in a passenger carriage in China.Applied Thermal Engineering.2004, 24(5-6): 703-715
    [70] Li Tian-Tian, Bai Yu-Hua, Liu Zhao-Rong, et al. Air quality in passenger cars of the ground railway transit system in Beijing, China.Science of the Total Environment,2006,367(1): 89-95
    [71] Tian-Tian Li, Yu-Hua Bai, Zhao-Rong Liu, et al. In-train air quality assessment of the railway transit system in Beijing: A note.Transportation Research Part D, 2007, 12:44-67
    [72]叶晓江,连之伟,周正平,等.空调客车的空气品质与热舒适[J].中国铁路,2005,47(9):63-65
    [73]高秀峰,冯诗愚,郁永章,等.铁路空调客车内三维湍流流动及温度场的实验研究[J].流体机械,2004,32(12):57-60
    [74]丛晓春,张旭,张明.列车车厢内气流分布的数值计算与测定[J].中国铁道科学,2003,24(5):101-105
    [75]包涛,孙宗鑫,袁秀玲,等.客车空调气流组织的改进及模拟分析[J].西安交通大学学报,2005,39(1):61-65
    [76]张吉光,杨晚生,史自强.铁路客车空调系统送风均匀性的研究[J].流体机械,2002,30(11):50-53
    [77]杨晚生,张艳梅,张吉光.新型空调静压送风道主风道流速衰减规律研究[J].流体机械,2003,31(5):58-60
    [78]张桂荣,连之伟,何晶,等.空调客车舒适度调查及分析[J].铁道车辆,2001,39(8):14-15
    [79]陈焕新,张登春.空调硬卧车内人体热舒适性研究[J].铁道学报,2004,26(3):44-50
    [80]朱春,张旭,胡松涛.列车空调卧铺包厢不同送风方式热舒适模拟研究[J].铁道学报,2008,30(4):98-102
    [81]杨培志.YW25G型空调硬卧列车车厢内热舒适性研究[J].热科学与技术,2007,6(2):167-171
    [82]严军耄.车辆工程(第二版) [M].北京:中国铁道出版社.1999
    [83] Kenji Furuse, Thoru Kornoriya. Study of passenger's comfort in non-uniform thermal environments ofvehicle compartment. JSAE Review, 1997, 18(4): 411-414
    [84] Kazuyuki Kojima, Yoshihiro Adachi, Shigenobu Itoh. An estimate of temperature in a passenger compartment by numerical simulation using the linear graph theory. JSAE Review, 1997, 18(2):205
    [85] Lai J C S, Yang C Y. Numerical Simulation of turbulence suppressions of the performance of four k ?εturbulence models. Int J Heat and Fluid Flow, 1997, 18:575-584
    [86] Chow W K, Fung W Y. Numerical Studies on the Indoor Air Flow in the Occupied Zone of Ventilated and air-conditioned Space. Building and Environment, 1996, 31(4):319-344
    [87] Ghiaus C M, Ghiaus A G. Evaluation of the indoor temperature field using a given air velocity distribution. Building and Environment, 1999, 34(3):671-679
    [88] Chen Q. Computational fluid dynamics for HVAC: Successes and Failures. ASHRAE Trans. 1997, 103.PartⅠ:178-187
    [89]陶文铨.数值传热学(第2版) [M].西安:西安交通大学出版社,2001
    [90]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000
    [91]刘应中,缪国平.高等流体力学(第二版) [M].上海:上海交通大学出版社,2002
    [92] Patankar S V著,张政译.传热与流体流动的数值计算[M].北京:科学出版社,1984
    [93]山口克人.关于室内气流解析基础[D].大阪大学博士学位论文集,1983
    [94] Foluso Lodeinde, Michelle D Nearon. CFD Applications in the HVAC&R Industry. ASHRAE Journal, 1997, 1:44-48
    [95] Bergstrom D J, Stubley G D, Strong A B. Numerical Prediction of Countergradient Thermal Transport in a Turbulent Plume. ASHRAE Trans: Research, 422-429
    [96]卞伯绘.辐射换热的分析与计算[M].北京:清华大学出版社,1988
    [97] Chow W K. Ventilation of enclosed train compartments in Hong Kong.Applied Energy, 2002, 71(3): 161-170
    [98] Houghten F C, Gutberlet C, Witkowski E. Draught temperatures and velocities in relation to skin temperature and feeling of warmth. ASHRAE Trans, 1988, 94(2):193-212
    [99] ASHRAE, Standard 55-1981. Thermal environmental conditions-human occupancy. Atlanta: American society of heating, refrigerating and air-conditioning Engineers Inc, 1981
    [100] Wang Xiaoling. Thermal comfort and sensation under transient conditions. Stockholm: Department of Energy Technology Division of Heating and Ventilating, The Royal Institute of Technology, 1994
    [101] Satish Kumar, Ardeshir Mahdavi. Integrating Thermal comfort field data analysis in a case-based building simulation environment. Building and Environment, 2001, 36(5):711-720
    [102] Fanger P O. Introduction of the olf and the decipol units to quantify air pollution perceived by humans indoors and outdoors. Energy and Buildings, 1988, 12(1):1-6
    [103] L.巴赫基著,傅忠诚,艾效逸,王天富,等译.房间的热微气候[M].北京:中国建筑工业出版社, 1987
    [104] Chung K C, Lee C Y. Predicting Air Flow and Thermal Comfort in an Indoor Environment under Different Air Diffusion Models. Building and Environment, 1996, 31(1):21-26
    [105] ZHENG JIANG, FARIBORZ HAGHIGHAT, JOSEPH C Y WANG. Thermal Comfort and Indoor AirQuality in a Partitioned Enclosure under Mixed Convection. Building and Environment, 1992, 27(1):77-84
    [106] RICHARD HOLZ. Effects of Standard Energy Conserving Measures on Thermal Comfort. Building and Environment, 1997, 32(1):31-43
    [107] Yang K H, Su C M. An approach to building energy savings using the PMV index. Building and Environment, 1997, 32(1):25-30
    [108] Gan G. Numerical Method for a full Assessment of Indoor Thermal Comfort. Indoor Air, 1994, 4:154-168
    [109] Gan G, HAZIM B AWBI. Numerical Simulation of the Indoor Environment. Building and Environment, 1994, 29(4):449-459
    [110] Chien C H, Jang J Y, Chen Y H. 3-D numerical and experimental analysis for airflow within a passenger compartment. International Journal of Automotive Technology, 2008, 9(4):437-445
    [111] Heinz Herwig, Karsten Klemp, Arnd Schmücker et al. Ventilation of passenger car cabins: comparison of experimental data and numerical calculations. Forschung im Ingenieurwesen, 1996, 62(6):161-167
    [112] YUGUO LI, STURE HOLMBERG. General Flow and Thermal Boundary Conditions in Indoor Air Flow Simulation. Building and Environment, 1994, 29(3):275-281
    [113] Chow W K. Application of Computational Fluid Dynamics in Building Services Engineering. Building and Environment, 1996, 31(5):425-436
    [114] XU Weiran. New Turbulence Models for Indoor Air Flow Simulation. USA: Massachusetts Institute of Technology, 1998
    [115] Zhang J S, Wu G J, Christianson L L. A New Similitude Modeling Technique for studies of Nonisothermal Room Ventilation Flows. ASHRAE Trans: Research, 129-138, 1996
    [116] Grimilyn M I, Pozin G M. Fundamentals of optimizing air distribution in ventilated spaces. ASHRAE Trans: 1128, 1993
    [117]黄三弥.铁路空调客车变频调速制冷系统研究[J].中国铁道科学,2001,22(3):103-106
    [118]黄忠霖.控制系统MATLAB计算及仿真[M].北京:国防工业出版社,2001
    [119]刘耀浩.空调与供热的自动化[M].天津:天津大学出版社,1993
    [110] Yu B, Paassen A H C. Modeling with SIMULINK and Bong Graph method for fault[C]. Proceeding of the 4th International Conference on Indoor Air Quality, Ventilation Energy Conservation in Buildings, 2001
    [121]李金川,郑智慧.空调制冷自控系统运行与管理[M] .北京:建材工业出版社,2002
    [122]李祖欣.MATLAB在模糊控制系统设计和仿真中的应用[J].系统仿真学报,2003,15(1):132-134
    [123] Francesco M Raimondi, Maurizio Melluso.Fuzzy motion control strategy for cooperation of multiple automated vehicles with passengers comfort.Automatica, 2008, 44(11):2804-2816
    [124] K David Huang, Sheng-Chung Tzeng, Tzer-Ming Jeng, et al. Air-conditioning system of an intelligent vehicle-cabin.Applied Energy, 2006, 83(6):545-557
    [125]周兴禧,王懿.变频空调器基于系统的变工况模糊控制仿真研究[J].流体机械,2000,28(7):42-44
    [126] Thomos B H. Global Optimization Strategies for High-Performance Controls [J]. ASHARE Transactions, 1995, 101(2): 679-687
    [127] McCullough F, Olesen B W. Thermal insulation provided by chairs. ASHRAE Trans, 1994, 100(1):795-802
    [128] Kettler J P. Minimum ventilation control for VAV systems: fan tracking vs. workable solution. ASHRAE Trans, 1995, 101(2): 625-630
    [129] Levenhagen J I. Control system to comply with ASHRAE Standard 62-1989. ASHARE J 1992, 34(9): 40-44
    [130] Reardon J T. Air change rates and carbon dioxide concentrations in a high-rise office building. ASHRAE Trans, 1994, 100(2):1251-1263
    [131]陈焕新,杨培志,黄素逸.空调列车车厢内CO2浓度的模糊控制[J].中南大学学报,2003,34(6):652-656
    [132] Yu C K, Lin Z, Chow T T. CO2 concentration in a typical Hong Kong classroom. In: Proceedings of the 4th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings. Changsha, Hunan, P.R, China. Published by the City University of Hong Kong, 2001
    [133]钱以明.高层建筑空调与节能[M].上海:同济大学出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700