水声信号的匹配场处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以浅海环境底质声学参数反演和匹配场被动定位为应用背景,对水声信号匹配场处理技术进行了探索性研究。论文从浅海环境参数反演、复杂水声条件下的被动定位、以及匹配场用于空域离散噪声干扰抵消等三方面展开,对匹配场的理论、方法及实验验证进行了深入地探讨。主要研究内容和取得的成果有:
     (1)从目标函数的建立、拷贝场计算、全局寻优算法、参数反演的不确定性分析四个方面建立了浅海环境参数反演的完整体系;提出了采用快速精确的差异进化算法进行全局寻优,可以取得比模拟退火算法和遗传算法更好的全局收敛性能;并采用后验概率分布进行反演结果的唯一性分析,改善了全局寻优反演方法的完整性,提高了反演结果的可信度。
     (2)根据不同的前提条件,采用似然比的方法推导了宽带匹配场反演的最大似然目标函数;深入地研究了宽带匹配场处理中的相干与非相干问题;在分析参数反演的敏感性之后,提出了浅海环境参数宽带匹配场反演的多步优化策略,并与全参数反演方法进行了性能上的仿真比较。
     (3)对东中国海实验(ASIAEX)的实际海洋环境参数反演进行了实验研究。利用实测爆炸声传播数据,对实验海域半径投弹方向进行了水平不变的参数反演,对实验海域西北和东南局部区域进行了水平变化的参数反演,得到了不同实验区域的沉积层和海底地声参数,并与Hamilton地声模型经验值、ASIAEX2000和ASIAEX2001海底采样值进行了比较,验证了差异进化算法、多步优化策略的正确性与可行性。
     (4)研究了浅海复杂水声环境下的目标被动定位问题。为了降低被动定位对快拍数的要求,建立了降阶自适应匹配场处理的通用结构,比较分析了多种降阶算法;对环境参数失配条件下的两种稳健AMFP算法进行了性能对比;采用运动补偿的方法提高被动定位的精度;并采用实测数据对各种方法进行了评估。针对存在水面强干扰、非平稳噪声场和海洋环境参数失配的一般浅海复杂水声环境,提出了基于子空间分解的运动补偿算法和自适应匹配场定位的系统解决方案,并通过仿真数据和实验数据进行了验证。
     (5)将平面波波束形成后干扰抵消与匹配场处理技术进行有机结合,探索性地提出了拖线阵声纳本舰干扰的匹配场抵消方法和匹配场处理后的干扰抵消方法,为本舰多途干扰抵消、水面强干扰抑制和水下弱目标检测提供了新的技术途径。同时,提出将匹配场干扰抵消应用于同方向强干扰背景下的弱目标检测,为解决平面波假设条件下无法克服的干扰抵消难题提供了新的技术途径。
This dissertation studies mainly the inversion of ocean environmental parameters by MFP (Matched Field Processing). Meanwhile, adaptive matched field passive localization in complex environment and discrete noise rejection with MFP are discussed. The main contributions are as follows:
    (1) DE (Differential Evolution) algorithm is proposed to invert the ocean acoustic parameters in shallow water in order to get faster and more accurate results than GA (Genetic algorithm) and SA (Simulated Annealing algorithm). Also a posteriori probability analysis method is applied to evaluate the uncertainty of inversion results.
    (2) Maximum likelihood objective functions for broadband MFI are derived according to different conditions. Meanwhile, coherent and non-coherent broadband MFP is studied. After analyzing the sensitivity of different inversion parameters, a new approach named MS-MFI (Multi-step MFI) is proposed for inversion in order to improve the efficiency.
    (3) Applying MS-MFI, ASIAEX2001 (Asian Seas International Acoustic Experiments) data are used to invert environmental parameters in the East China Sea. According to the different ocean environment, range dependent and range independent inversion are studied and the inversion results are analyzed.
    (4) In order to reduce the snapshots needed by passive localization in complex ocean environment, reduced rank AMFP frame is founded and many algorithms are compared. In mismatch environment, two robust AMFP algorithms are compared. Meanwhile, motion compensation method is used for AMFP to improve the localization effect. With strong interferes at surface, non-stationary noise field and mismatch environment, subspace motion compensation method and efficient AMFP system frame are proposed and confirmed by simulation and real data.
    (5) MFPIC (Matched Field Postbeamformer Interference Canceller) is proposed to cancel tow ship's noise. The advantage of MFPIC is that it can be used to cancel the tow ship's noise for all arrival directions. Furthermore, this new approach can be used to detect weak target, which has the same bearing angle of a strong interference. Numerical results show that the MFPIC outperforms the conventional PIC. MFP-PIC (Matched Field Processing with Postbeamformer Interference Canceller) is also proposed to cancel strong interference and detect the underwater weak target.
引文
[1]. A. Tolstoy. Matched Field Processing for Underwater Acoustic, World Scientific Publishing Co. Pte. Ltd. Singapore, 1993.
    [2]. W.H. Munk and C. Wunsch. Ocean acoustic tomography: a scheme for large scale monitoring. Deep Sea Res., 1979, 26A: 123~161.
    [3]. A. Tolstoy, O. Diachok, L. N. Frazer. Acoustic tomography via matched field processing. J. Acoust. Soc. Am., 1991,89(3): 1119~1127.
    [4]. A. Tolstoy and O. Diachok. Acoustic tomography via matched field processing. J. Acoust.Soc. Am., 1991,89(3): 119~1127.
    [5]. F.Ingenito. Measurements of mode attenuation coefficients in shallow water. J. Acoust. Soc. Am., 1973,53(3): 858~863.
    [6]. A.B. Baggeroer, W. A. Kuperman, P. N. Mikhalevsky. An overview of matched field methods in ocean acoustics. IEEE J. Oceanic. Eng., 1993, 18(3): 401~424.
    [7]. A.B. Baggeroer, W. A. Kuperman and H. Schmit. Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem. J. Acoust. Soc. Am., 1988, 83(2): 571~587.
    [8]. Evan K. Westwood. Broadband matched-field source localization. J. Acoust. Soc. Am., 1992, 91(5): 2777~2789.
    [9]. R.K. Brienzo, W. S. Hodgkiss. Broadband Matched-field processing. J. Acoust. Soc. Am., 1993, 94(5): 2821~2831.
    [10]. T.C. Yang. Broad-band source localization and signature estimation. J. Acoust. Soc. Am., 1993,93(4): 1797~1806.
    [11]. L.A. Rubano. Acoustic propagation in shallow water over a low velocity bottom. J. Acoust. Soc. Am., 1980,67(5): 1608~1613.
    [12]. Ji-Xun Zhou. Normal mode measurements and remote sensing of sea-bottom sound velocity and attenuation in shallow water. J. Acoust. Soe. Am., 1985, 78(3): 1003~1009.
    [13]. Subramaniam D. Rajan, James F. Lynch, and George V. Frisk. Perturbative inversion methods for obtaining bottom geoacoustic parameters in shallow water. J. Acoust. Soc. Am., 1987, 82(3): 998~1017.
    [14]. James F. Lynch, Subramaniam D. Rajan, and George V. Frisk. A comparison of broadband and narrow-band modal inversions for bottom geoacoustic properties at a site near Corpus Christi, Texas. J. Acoust. Soc. Am., 1991, 89(2): 648~665.
    [15]. Peter Gerstoft and Donald F. Gingras. Parameter estimation using multifrequency range-dependent acoustic data in shallow water. J. Acoust. Soc. Am., 1996, 99(5): 2839~2850.
    [16]. Jean-Pierre Hermand and Peter Gerstoft. Inversion of broadband multitone acoustic data from the yellow shark summer experiments. IEEE J. Oceanic. Eng., 1996,21(4): 324~346.
    [17]. Gopu R. Potty and James H. Miller. Tomographic inversion for sediment parameters in shallow water. J. Acoust. Soc. Am., 2000,108(3), Pt.1: 973~986.
    [18]. Charles W Holland and John Oster. High-resolution geoacoustic inversion in shallow water: a joint time-and frequency-domain technique. J. Aeoust. Soc. Am., 2000,107(3): 1263~1279.
    [19]. O. Diachok et.al., Eds., Full field inversion methods in ocean and seismo- acoustics. Amsterdam, The Netherlands: Kluwer Academic, 1995.
    
    
    [20].张仁和,海底参数的声学反演,98全国声学学术会议论文集。
    [21].李风华,张仁和.由脉冲波形与传播损失反演海底声速与衰减系数.声学学报,2000,25(4):297~302.
    [22]. Zhang Renhe, Broadband matched field source localization in East China Sea. ASIAEX International Symposium, Chengdu, China, 2002,10.
    [23].孙枕戈,基于声线理论信道模型的匹配被动定位,西北工业大学博士学位论文,1995。
    [24].张忠兵,浅海声速剖面反演研究,西北工业大学博士学位论文,2002。
    [25].沈远海.浅海声速剖面反演与匹配场定位技术研究,西北工业大学博士学位论文,1999。
    [26]. Hamilton, E. L. Geoacoustic modeling of the sea floor. J. Acoust. Soc.Am., 1980, 68(5):1313~1340.
    [27]. M. J. Hinich, E. J. Sullivan. Maximum likelihood signal processing for a vertical array. J. Acoust. Soc. Am., 1973,54(2): 499~503.
    [28]. H.P. Bucker. Use of calculated sound fields and matched field detection to locate sound sources in shallow water.J. Acoust. Soc. Am., 1976, 59(2): 368~373.
    [29]. J. Hinich. Maximum likelihood estimation of a radiating source in a waveguide. J. Acoust. Soc. Am., 1976,66(2): 480~483.
    [30]. G.C. Carter. Variance bounds for passively locating an acoustic source with a symmetric line array. J. Acoust. Soc. Am., 1977,62(4): 922~926.
    [31]. R. Klemm. Range and depth estimation by line arrays in shallow water. Signal Processing, 1981,3: 333~344.
    [32]. R. G. Fizell. Application of high-resolution processing to range and depth estimation using ambiguity fimction methods. J. Acoust. Soc. Am., 1987, 82(2): 606~613.
    [33]. E.C. Shang. Source depth estimation in waveguides. J. Acoust. Soc. Am., 1985,77(4): 1413~1418.
    [34]. E.C. Shang, C. S. Clay, Y. Y. Wang. Passive harmonic ranging in waveguide by localization in shallow water waveguide using the prong method. J. Acoust. Soc. Am., 1988,83(1): 103~108.
    [35]. Y.A. Krovstov, V.M. Kuz'kin and V. G. Petnikov. Resolvability of rays and modes in an ideal waveguide. Soviet Physics Acoustics, 1988,34(4): 387~390.
    [36]. R. Doolittle, E. J. Sullivan, A. Tolstoy. Special issue on raatched field processing. IEEE J. of Oceanic Eng., 1993,18(3).
    [37]. R.G. Fizell and S. C. Wales. Source localization in range and depth in an Arctic environment. J. Acoust. Soc. Am., Suppl.78, 1985.
    [38]. T.C. Yang. A method of range and depth estimation by modal decomposition. J. Acoust. Soc. Am., 1987,82(5): 1736~1745.
    [39]. H.P. Bucker. Experimental test of acoustic localization in shallow water. J. Acoust. Soc. Am., 1985,77 (SI).
    [40]. Jean-Marie, Q.D.T., W.S. Hodgkiss. Matched field processing of 200hz continuous wave (CW) signals. J. Acoust. Soc. Am., 1991, 89(2): 745~755.
    [41]. R. H. Ferris. Comparison of measured and calculated normal-mode amplitude functions for acoustic waves in shallow water. J. Acoust. Soc. Am., 1983,52(3): 981~988.
    [42]. F. Ingenito. Measurements of mode attenuation coefficients in shallow water. J. Acoust. Soc. Am., 1973,53(3): 858~863.
    [43]. C. Feuillade, W. A. Kinney, D. R. DelBalzo. Shallow-water matched-field localization off Panama city, Florida. J. Acoust. Soc. Am., 1990, 88(1): 423~433.
    [44]. R. M. Hamson, R. M. Heitmeyer. Environmental and system effects on source localization in shallow water by the matched-field processing of a vertical array. J. Acoust. Soc. Am., 1989, 86(5): 1950~1958.
    
    
    [45]. S.M. Jesus. Broadband matched-field processing of transient signals in shallow water. J. Acoust. Soc. Am., 1993,90(4): 1841~1850.
    [46]. A.B. Baggeroer, W. H. Munk. The Heard Island feasibility test. Physics Today, 1993,45 (Sept): 22~30.
    [47]. M.I. Taroudakis, P. Papadakis and S. Sklavos. Using a side looking parametric array for seabed classification. IACM-FORTH Report, No.98-2, 1998.
    [48]. T. C. Yang, T. W. Yates. Improving the sensitivity of full-field geoacoustic inversion for estimating bottom sound-speed profiles, Full Field Inversion Methods In Ocean And Seismo-Acoustics. Edited by O.Diachok et.al, 1995:323~328.
    [49]. T.C. Yang and T. W. Yates. Acoustic inversion of bottom reflectivity and bottom sound -speed profile. IEEE J. Oceanic. Eng., 1996,21(4): 367~376.
    [50]. N.M. Carbone, G. B. Deane and M. J. Buckingham. Estimating the compressional and shear wave speeds of a shallow water seabed from the vertical coherence of ambient noise in the water column. J. Acoust. Soc. Am. 1998,103(2): 801~813.
    [51]. G.B. Dearie, M. J. Buckingham. Vertical coherence of ambient noise in shallow water overlying a fluid seabed. J. Acoust. Soc. Am. 1997,102(6):3413~3424.
    [52]. M. J. Buckingham, Stephen A. S. Jones. A new shallow-ocean technique for determining the critical angle of the seabed from the vertical directionality of the ambient noise in the water column. J. Acoust. Soc. Am. 1987,81(4): 938~946.
    [53]. W.A. Kuperman and F. Ingenito. Spatial correlation of surface generated noise in a stratified ocean. J. Acoust. Soc. Am., 1980,67(6): 1988~1996.
    [54]. D.M.F. Chapman and Dale D. Ellis. The group velocity of normal modes. J. Acoust. Soc. Am., 1983, 74(3): 973~979.
    [55]. Michaell I. Taroudakis. Identifying modal arrivals in shallow water for bottom geoacoustic invesions. J. Comput. Acoust, 2000,8(2): 307~324.
    [56].杨坤德,马远良,鄢社峰,杨晨辉,东中国海典型声速剖面的经验正交函数表示,声学技术,2001,20:14~16.
    [57]. D.S. Ahluwalia and J. B. Keller. Scattering by a slender body. J. Acoust. Soc. Am., 1986, 80(6): 1782~1792.
    [58]. A. Tolstory. Propagation model accuracy for MFP. Journal of computational acoustics, 2000, 8(3): 389~399.
    [59]. Storn R., Price K. Differential Evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report TR-95-012, ICSI.
    [60].杨坤德,马远良,杨益新,张忠兵,匹配场反演结果的后验概率分析,西北工业大学学报.2002,20(4):637~641。
    [61].杨坤德,马远良,用差异进化算法进行海洋环境参数反演,西北工业大学学报,2003,21(3):289~293。
    [62]. Peter Gerstoft. Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distribution. J.Acoust.Soc.Am., 1994,95(2):770~782.
    [63]. Peter Gerstoft. Inversion of acoustic data using a combination of genetic algorithms and the Gauss-Newton approach. J. Acoust. Soc. Am., 1995, 97(4): 2181~2190.
    [64]. Peter Gerstoft. Ocean acoustic inversion with estimation of a posteriori probability distributions. J. Acoust. Soc. Am., 1998,104(2), Pt. 1: 808~819.
    [65]. C.F. Mecklenbrauker and P. Gerstoft. Objective functions for ocean acoustic inversion derived by likelihood methods. Journal of Computational Acoustics, 2000,8(2): 259~270.
    [66]. Zoi-Heleni Michalopoulou and Michael B. Porter. Matched-field processing for broad- band
    
    source localization. IEEE Journal of Oceanic Engineering, 1996,21 (4): 384-391.
    [67]. Zoi-Heleni Michalopoulou. Matched-impulse-response processing for shallow-water localization and geoacoustic inversion. J. Acoust. Soc. Am., 2000, 108(5), Pt. 1: 2082~2090.
    [68]. G.J. Orris, M. Nicholas and J. S. Perkins. The matched-phase coherence multi-frequency matched field processor. J. Acoust. Soc. Am. 2000,101:749~759.
    [69]. Yang Kunde, Ma Yuanliang. Broadband matched field inversion with multi-step strategy. 3rd international acoustic conference, 2002, Harbin, China.
    [70]. Jim Lynch. ASIAEX 2000 East China Sea Cruise Report. Hawaii, AISAEX2000 workshop, 2000.
    [71].卢博,黄韶健,张福生.东海大陆架某海区海底沉积物及其声学物理性质.陕西省2002年声学学术会议论文集:42~45。
    [72]. James H. Miller, L. R. Bartek. Geoacoustic measurements in the East China Sea. Chengdu, China, Asian Seas International Acoustics Experiment (ASIAEX) International Symposium, 2002.
    [73]. Porter M. The KRAKEN normal mode program. SACLANTCEN Mem. 1991, SM-245.
    [74]. F.B. Jensen and M. C. Ferla. SNAP-the SACLANT normal mode acoustic propagation model. SACLANT Undersea Research Centre, SM-121, La Spezia, Italy, 1979.
    [75]. A.D. Pierce. Extension of the method of normal modes to sound propagation in an almost-stratified medium. J. Acoust. Soc. Am., 1965,37(1): 19~27.
    [76]. H. Weinberg and R. Burridge. Horizontal ray theory for ocean acoustics. J. Acoust. Soc. Am., 1974, 55(1): 63~79.
    [77]. Georgios Haralabus and Peter Gerstoft. Source localization in shallow water using multi-frequency processing of shot data. SACLANTCEN SR-253.
    [78]. J.C. Preisig. A minmax approach to adaptive matched field processing in an uncertain propagation environment. IEEE Trans. on Signal Processing, 1994,42(6): 1305~1316.
    [79]. N. O. Booth, A. T. Abawi etc., Detectability of low-level broadband signals using adaptive matched field processing with vertical aperture arrays. IEEE Journal of Oceanic Engineering, 2000,25(3): 296~312.
    [80]. N.O. Booth and G. L. Mohnkern. Signal-to noise gain from adaptive matched field beamforming of multidimensional acoustic arrays. Technical report 1661, MIT Lincoln Lab, 1996.
    [81]. H. Schmidt, A. B. Baggeroer, W. A. Kuperman and E. K. Scheer. Environmentally tolerant beamforming for high resolution matched field processing: deterministic mismatch. J. Acoust. Soc. Am., 1990,88(4): 1851~1861.
    [82]. J.L. Krolik. Matched field minimum variance beamforming in a random ocean channel. J. Acoust. Soc. Am., 1992,92(3): 1408~1419.
    [83]. Y.P. Lee, P. Mikhalevsky, H. Freese, and J.Hanna, Robust adaptive matched field processing. Proceeding of Oceans'93: 75~79.
    [84]. G.B. Smith and C. Feuillade. A nonlinear matched-field processor for detection and localization of a quiet source in a noisy shallow-water enviroment. J. Acoust. Soc. Am., 1989,85(3): 1158~1166.
    [85]. Henry Cox, Robert M. Zeskind, and Matthew Myers. A subarray approach to matched- field processing. J. Acoust. Soc. Am., 1990,87(1): 168~178.
    [86]. JohnS. Perkins and W.A. Kuperman. Environmental signal processing: Three- dimensional matched-field processing with a vertical array. J. Acoust. Soc. Am., 1990, 87(4): 1553~1556.
    [87]. Kwang Yoo and T. C. Yang. Improved vertical array performance in shallow water with a directional noise field. J. Acoust. Soc. Am., 1998,104(6): 3326~3338.
    [88]. Michael D. Collins, W. A. Kuperman. Focalization: Environmental focusing and source localization. J. Acoust. Soc. Am., 1991,90(3): 1410~1422.
    [89]. S.P. Czenszak and J. L. Krolik. Robust wideband matched-field processing with a short vertical
    
    array. J. Acoust. Soc. Am., 1997,101(2): 749~759.
    [90]. M. Viberg, B. Ottersten, T. Kailath. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. Signal Processing, 1991, 39(11): 2436~2449.
    [91]. H. Cox, R. M. Zeskind and M. M. Owen. Robust adaptive beamforming. IEEE Trans. on Acoustics, Speech and Signal Processing, 1987,ASSP-35 (10): 1365~1375.
    [92]. H. Cox. Resolving power and sensitivity to mismatch of optimum array processors. J. Acoust. Soc. Am., 1973, 54 (3): 771~785.
    [93]. D.E. Grant, J. H. Gross and M. Z. Lawrence. Cross-spectral matrix estimation effects on adaptive beamforming. J. Acoust. Soc. Am., 1995,98(1): 517~524.
    [94]. I. Reed, J. Mallett, and L. Brennan. Rapid convergence rate of adaptive arrays. IEEE Trans. on Aerospace Electronic Systems, 1974,10(6): 853~863.
    [95]. N. Owsley. Sonar array processing. In S. Haykin, editor, Array signal processing. Prentice-Hall, New Jersey, 1985.
    [96]. C. Byme. A stable data-adaptive method for matched field array processing in acoustic waveguide. J. Acoust. Soc. Am., 1990, 87(6): 2493~2502.
    [97]. J. Ward, A. Baggeroer, and L. Zurk. Rapidly adaptive matched field processing for nonstationary environments. Adaptive Sensor Array Processing Workshop, Lexington, MA, 1998.
    [98]. E.C. Shang. Passive harmonic source ranging in waveguide by using mode filter. J. Acoust. Soc. Am., 1985,78(1): 172~175.
    [99]. E.C. Shang. An efficient high-resolution method of source localization processing in mode space. J. Acoust. Soc. Am., 1989,86(5): 1960~1964.
    [100]. T. C. Yang. Modal beamforming array gain. J. Acoust. Soc. Am., 1989, 85(1): 146~151.
    [101]. T. C. Yang and Christopher W. Bogart. Matched mode processing for sparse three-dimensional arrays. J. Acoust. Soc. Am., 1994,95(6): 3149~3166.
    [102].姜南,孙大军等.一种基于位移中心法的合成孔径声纳运动补偿改进算法.哈尔滨工程大学学报,2002,23(2):71~74.
    [103]. J. A. Fawcett, B. H. Maranda. Localization accuracies for a moving source in an oceanic waveguide. J. Acoust. Soc. Am., 1994,96(2): 1047~1055.
    [104]. J. C. Hassab, B. W. Guimond, and S. C. Nardone. Estimation of location and motion parameters of a moving source observed from a linear array. J. Acoust. Soc. Am., 1981, 70(4): 1054~1061.
    [105]. C. A. Zala, J. M. Ozard. Matched-field processing for a moving source. J. Acoust. Soc. Am., 1992, 92(1): 403~417.
    [106]. K. E. Hawker. A normal mode theory of acoustic Doppler effects in the oceanic waveguide. J. Acoust. Soc. Am., 1979, 65(3): 675~681.
    [107]. Donald F. Gingras and Peter Gerstoft. Inversion for geometric and geoacoustic parameters in shallow water: experimental results. J. Acoust. Soc. Am., 1995, 97(6): 3589~3598.
    [108]. Shang, E.C. and Wang, Y.Y. Environmental mismatching effects on source localization processing in mode space. J. Acoust. Soc. Am., 1991, 89(5): 2285~2290.
    [109].丛卫华,自适应拖船噪声抵消技术,哈尔滨工程大学博士学位论文,2000。
    [110].姚蓝,蔡志明,应用于拖线阵声呐的一种自适应旁瓣干扰抵消器的性能分析,声学学报,1992,17(3):200~207.
    [111].马远良,刘孟庵,张忠兵,童立,浅海声场中拖曳线列阵常规波束形成器对本舰噪声的接收响应,声学学报,2002,27(6):481~486.
    [112]. L. C. Godara. Beamforming in the presence of correlated arrivals using structured correlation matrix. IEEE Trans., 1990, ASSP-38 (1): 1~15.
    [113]. L.C. Godara. Adaptive postbeamformer interference canceller with improved performance in the
    
    presence of broadband directional sources. J. Acoust. Soc. Am., 1991, 89(1): 266~273.
    [114]. L.C. Godara and A. Cantoni. The effect of bandwidth on the performance of a postbeamformer interference canceller. J. Acoust. Soc. Am., 1986, 80(3): 794~803.
    [115]. A. Cantoni and L.C. Godara. Performance of a postbeamformer interference canceller in the presence of broadband directional signals. J. Acoust. Soc. Am., 1984, 76(1): 128~138.
    [116]. L.C. Godara. Analysis of transient and steady state weight covariance in an adaptive postbeamformer interference canceller. J. Acoust. Soc. Am., 1989, 85(1): 194~201.
    [117]. L.C. Godara. Postbeamformer interference canceller with improved performance. J. Acoust. Soc. Am., 1989, 85(1): 202~213.
    [118]. L.C. Godara. A robust adaptive array processor. IEEE Trans. on circuits and systems, 1987, CAS-34 (7): 721~730.
    [119]. M. H. Er. A new technique for designing a postbeamformer interference canceller. J. Acoust. Soc. Am., 1991, 89(4): 1724~1729.
    [120].杨坤德,马远良,浅海环境参数宽带匹配场反演研究,声学技术,2001,21(3):150~153.
    [121]. Yang Kunde, Ma Yuanliang and Yan Shefeng. Ocean acoustic parameters inversion using differential evolution algorithm. China-Japan joint conference on acoustics, 2002,Nanjing.
    [122]. Gary R. Wilson, Robert A. Koch, and Paul J. Vidmar. Matched mode localization. J. Acoust. Soc. Am., 1988,84(1): 310~320.
    [123]. Han-Yang Chen and I-Tai Lu. Localization of a broadband source using a matched- mode procedure in the time-frequency domain. IEEE J. Oceanic. Eng., 1994,19(2): 166~174.
    [124]. H. B. Riley, J. A. Tague. Matched-field localization in high noise environments: A reduced- rank signal processing approach. J. Acoust. Soc. Am., 1994, 96(3): 1515~1520.
    [125]. En-Cen LO, Ji-Xun Zhou, and E. C. Shang. Normal mode filtering in shallow water. J. Acoust. Soc. Am., 1983,74(6): 1833~1836.
    [126]. P. C. Etter. Underwater Acoustic Modeling: Principles, Techniques and Applications, Elsevier, London, 1991.
    [127]. Alexandra Tolstoy. Using matched-field processing to estimate shallow water bottom properties from shot data taken in the Mediterranean Sea. IEEE J. Oceanic. Eng., 1996,21(4): 471~479.
    [128]. M. D. Collins, W. A. Kuperman, H. Schmidt. Nonlinear inversion for ocean-bottom properties. J. Acoust. Soc. Am., 1992, 92(5): 2770~2783.
    [129]. D. P. Knobles and S. K. Mitchell. Broadband localization by matched fields in range and bearing in shallow water. J. Acoust. Soc. Am., 1994,96(3): 1813~1820.
    [130]. S. E. Dosso, M. L. Yeremy, J. M. Ozard, N. R. Chapman. Estimation of ocean- bottom properties by matched-field inversion of acoustic field data. IEEE J. Oceanic. Eng., 1993, 18(3): 232~239.
    [131]. G. B. Smith and C. Feuillade. Matched-field processing enhancement in a shallow water environment by incoherent broadband averaging. J. Acoust. Soc. Am., 1992, 91(3): 1447~1455.
    [132]. Michael D. Collins and W. A. Kuperman. Nonlinear inversion for ocean -bottom properties. J. Acoust. Soc. Am., 1992,92(5): 2770~2783.
    [133].杨坤德,马远良,海洋环境参数反演的实验研究,西北工业大学学报.已录用.
    [134]. Yang Kunde, Ma Yuanliang, Sun Chao. Multi-step matched field inversion for broadband data from ASIAEX2001, IEEE J. Oceanic Engineering, 2003, to be published.
    [135]. N. Ross Chapman and C. E. Lindsay. Matched-field inversion for geoacoustic model parameters in shallow water. IEEE J. Oceanic. Eng., 1996, 21(4): 347~353.
    [136]. A. Tolstory. Propagation model accuracy for MFP. Journal of computational acoustics, 2000, 8(3): 389~399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700