乐清湾环境水力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海湾环境水力特性的研究,有利于正确理解海湾水域物理过程和生态过程的密切关系,是海湾乃至邻近海域水环境与生态研究必不可少的基础。乐清湾是典型的半封闭强潮海湾,其环境水力特性在浙闽沿海海湾中具有一定代表性。本文从水平离散系数、水交换能力、纳潮量以及潮汐余流四个方面深入研究了乐清湾环境水力特性,得到如下主要认识:
     1.借鉴前人的研究方法,从理论上导出了“水平离散系数张量”的分量表达式;运用三维水动力模型数值模拟了乐清湾的潮流场,经实测水文资料验证合理。在此基础上,计算得到了乐清湾水平离散系数的时空分布。
     2.横断面上的分析表明,水平离散系数随水深的变化具有两重性:一是水平离散系数总体与水深呈正相关;二是水平离散系数与地形的明显起伏有一定关系。纵向变化及时变过程的分析表明,水平离散系数与垂线平均流速总体呈正相关,而潮差和流速的垂向分布也是重要的影响因子。
     3.基于三维潮流场和水平离散系数的计算结果,通过回归分析拟合得到了乐清湾水平离散系数的无因次计算表达式为:该表达式显示水平离散系数不仅与水深和垂线平均流速呈正比,而且与代表海湾动力特征的参数——相对潮差(△H/h)呈指数相关,较目前常用的离散系数计算表达式(E=5.93u*h),后者实现了一定程度的拓展。
     4.采用保守物质的对流扩散模型模拟了水交换过程,计算了乐清湾半交换时间和平均滞留时间的空间分布。结果表明:乐清湾外湾水体半交换时间在7天以内,中湾为7天-10天,内湾则为11-13天,全湾平均为8天;外湾平均滞留时间从2天递增至11天,中湾为12天-15天,内湾超过15天,湾顶附近为18天,全湾平均为11.2天;内部水交换能力系数K值的计算结果显示,乐清湾内部水交换最活跃的区域小潮出现在中湾,大潮则出现于中湾的内侧。
     5.基于水动力数值模拟结果计算得到了乐清湾纳潮量,结合潮差累积频率分析可知:乐清湾在累积频率为3.95%情况下的大潮期纳潮量为23.5亿m3,在累计频率为89.20%的小潮期纳潮量为10.1亿m3。分析发现,中湾海域的纳潮量相对较大,水体自净和交换能力也相应较大。
     6.将三维潮流计算结果进行准调和分析,获得乐清湾的潮汐余流分布,结果表明:湾内垂向平均余流流速基本在15cm/s以下,湾口海域余流流速明显增大,在20cm/s左右;乐清湾口以小门岛为分界的东、西两个断面的法向余流最大流速分别在15cm/s和30cm/s左右。
Research on the environmental hydraulic characteristic that is the fundament of aquatic environment and ecosystem in bays and the related areas is of importance to better understand the relationship between the physical and ecological processes. As a typical macrotidal and semi-closed bay, the Yueqing Bay's environmental hydraulic characteristic is representative in bays along the coastline in Zhejiang and Fujian province. Considering the horizontal dispersion coefficient, water exchange, tidal prism, and tidal-induced residual flow, the environmental hydraulic characteristic in the Yueqing Bay was studied in this dissertation. The main conclusions are drawn as follows:
     (1). An expression of the horizontal dispersion tensor was derived theoretically based on the previous methods in literature. By using a well-validated three-dimensional hydrodynamic model, the temporal and spatial distribution of the horizontal dispersion coefficient in the Yueqing Bay was then calculated, which is consistent with the observed data.
     (2). The analysis of results along the cross sections in the Bay has showed that the relationship between the horizontal dispersion coefficient and water depth can be explained in two ways:a positive correlation between the horizontal dispersion and water depth and a certain correlation between the horizontal dispersion and the significant sea bed variation. The longitudinal and temporal analysis has showed that the horizontal dispersion coefficient has positive correlation with the depth-averaged velocity and is also impacted by the tidal range and the vertical distribution of velocity.
     (3). Based on the computed results of the three-dimensional tidal current and the horizontal dispersion coefficient, a dimensionless expression was obtained by means of regression analysis as It indicates that the horizontal dispersion coefficient is not only proportional to water depth and the depth-averaged velocity but also has an exponential correlation with the relative tidal range (ΔH/h).In comparison with the often used equation of dispersion coefficient E=5.93u.h, the proposed expression is more meaningful and reasonable to some degree.
     (4). The spatial distribution of the half-lift-time and the average residence time in the Yueqing Bay was calculated using the convection and diffusion model of conservative substance. The results show that the half-life-time is less than 7 days in the outside of the bay, 7-10 days in the middle of the bay,11-13 days in the inside of the bay, and an average of 8 days for the whole bay. The average residence time was 2-11 days in the outside of the bay, 12-15 days in the middle,15-18 days in the inside, and an average of 11.2 days for the whole bay. The calculated results of the internal exchange capacity coefficient (K) have shown that the most active water exchange appears in the middle of the bay during the neap tide in the spring, while it appears close to the interface of the middle and the inside of the Yueqing Bay.
     (5). The tidal prism of the Yueqing Bay was calculated based on the hydrodynamic results. Combining with the analysis of the cumulative frequency, we find that the tidal prism is 23.5 billion m3 in the sprint tide with a cumulative frequency of 3.95% and the tidal prism is 10.1 billion m3 in the neap tide with a cumulative frequency of 89.2%. Further analysis also indicate that the tidal prism is larger in the middle of the bay, which leads to the better self-purification and larger exchange capability in this region.
     (6). The distribution of tidal-induced residual flow in the Yueqing Bay was obtained through the quasi-harmonic analysis of the tidal current calculated by the three-dimensional model. The results show that the depth-averaged residual velocity is mostly less than 15 cm/s inside the bay and increases to 20cm/s close to the bay mouth. The maximum residual flow rates along the east and west normal lines of the cross section at the Xiaomen Island are 15 cm/s and 30 cm/s, respectively.
引文
[1]李玉梁,李玲.环境水力学的研究进展与发展趋势[J].水资源保护,2002(01):1-6+68.
    [2]张书农.环境水力学[M].南京:河海大学出版社,1992.
    [3]Taylor, G.. Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube. Proceedings of the Royal Society of London[J]. Series A, Mathematical and Physical Sciences.1953,219(1137):186-203.
    [4]Elder, J.W.. The dispersion of marked fluid in turbulent shear flow[J]. J. Fluid Mech.1959, 5:544-560.
    [5]Fischer, H.B.. The mechanics of dispersion in natural streams[J]. Journal of Hydraulic Engineering.1967,93:187-216.
    [6]Fischer, H.B. J. LISTE, and C.Y. KOHR. Mixing in inland and coastal water[M]. New York:Academic Press,1979.
    [7]Bogle, G.V.. Stream Velocity Profiles and Longitudinal Dispersion[J]. Journal of Hydraulic Engineering.1997,123(9):816-820.
    [8]Sooky, A.A.. Longitudinal dispersion in open channels[J]. J.Hydr.Eng.Div-ASCE.1969, 95:1327-1346
    [9]Seo, I.W. and K.O. Baek. Estimation of the Longitudinal Dispersion Coefficient Using the Velocity Profile in Natural Streams[J]. Journal of Hydraulic Engineering.2004, 130(3):227-236.
    [10]Deng, Z.Q., V.P., Singh, L. Bengtsson. Longitudinal Dispersion Coefficient in Straight Rivers[J]. Journal of Hydraulic Engineering.2001,127(11):919-927.
    [11]陈永灿,朱德军.梯形断面明渠中纵向离散系数研究[J].水科学进展.2005(04):511-517.
    [12]Rutherford, J.C.. River Mixing[M]. Chichester:John Wiley &Sons Lt.,1994.
    [13]Holley, E.R., J. Siemons, G. Abraham. Some Aspects Of Analyzing Transverse Diffusion In Rivers[J]. Journal of Hydraulic Research.1972,10(1):27-57
    [14]Boxall, J.B., I.Guymer. Estimation Transverse Mixing Coefficients [J]. Water,Maritime Engineering.2001,148:263-275.
    [15]Gharbi, Verrette. Relation Between Longitudinal and Transversal Mixing Coefficients in Natural Streams[J]. Journal of Hydralic Research.1998,36:43-53.
    [16]Keulegan, G.H.. Laws of Turbulent Flow in Open Channels[J]. J.Res.Natl.Bur.Stand.. 1938,21:707-741
    [17]Yoksukura. N., W. Sayre. Transverse Mixing in Natural Channels[J]. Water Resources Research.1976,12(4):695-704.
    [18]Seo, I., K.O. Baek, T.M. Jeon. Analysis of transverse mixing in natural streams under slug tests[J]. Journal of Hydraulic Research.2006,44(3):350-362.
    [19]Smeithlov. B.B.. Effect of Channel Sinuosity on River Turbulent Diffusion[J]. Yangtze River.1990,21(11):62.
    [20]Albers. C., P. Steffler. Estimating Transverse Mixing in Open Channels due to Secondary Current-Induced Shear Dispersion[J]. Journal of Hydraulic Engineering.2007,133(2): 186-196.
    [21]Boxall. J.B., I. Guymer. Analysis and Prediction of Transverse Mixing Coefficients in Natural Channels[J]. Journal of Hydraulic Engineering.2003,129(2):129-139.
    [22]周克钊,余常昭,张永良.天然河流纵向离散系数示踪实验计算方法研究[J].环境科学学报.1986(03):314-326.
    [23]Chatwin. P.C.. On the interpretation of some longitudinal dispersion experiments[J]. Journal of Fluid Mechanics Digital Archive.1971,48(04):689-702.
    [24]郭建青,温季.示踪试验确定河流纵向弥散系数的直线图解法[J].环境科学.1990(02):24-27+95.
    [25]郭建青,王洪胜,李云峰.确定河流纵向离散系数的相关系数极值法[J].水科学进展.2000(04):387-391.
    [26]周克钊.天然河流纵向离散系数确定方法的研究[M].北京:清华大学,1985.
    [27]张江山.示踪实验确定河流纵向离散系数的单纯形加速法[J].环境科学.1994(04):66-68.
    [28]郭建青,李彦,王洪胜,马健.利用改进SA算法估计河流水质参数的仿真实验[J].系统仿真学报.2003(12):1750-1752+1762.
    [29]张娟娟,万伟锋.确定河流纵向离散系数的快速SA法[J].地下水.2005(05):396-398.
    [30]郭建青,李彦,王洪胜,马健.确定河流水质参数的抛物方程近似拟和法[J].水利水电科技进展.2005(02):11-13+32.
    [31]Singh. S.K, and M.B. Beck. Dispersion Coefficient of Streams from Tracer Experiment Data[J]. Journal of Environmental Engineering.2003,129(6):539-546.
    [32]McQuivey. R.S. and T.N. Keefer.. Simple Method for Predicting Dispersion in Streams[J]. Journal of the Environmental Engineering Division.1974,100(4):997-1011
    [33]Liu. H.. Predicting Dispersion Coefficient of Streams[J]. Journal of the Environmental Engineering Division.1977,103(1):59-69.
    [34]Iwasa. Y., S. Aya. Predicting longitudinal dispersion coefficient in open-channel flows[C], Environmental Hydraulics:Proceedings of the International Symposium on Environmental Hydraulics. Hong Kong.1991:505-510
    [35]Seo. I.W., T.S. Cheong. Predicting Longitudinal Dispersion Coefficient in Natural Streams[J]. Journal of Hydraulic Engineering.1998,124(1):25-32.
    [36]Koussis. A.D., J. Rodriguez-Mirasol. Hydraulic Estimation of Dispersion Coefficient for Streams[J]. Journal of Hydraulic Engineering.1998,124(3):317-320.
    [37]李锦秀,黄真理,吕平毓.三峡库区江段纵向离散系数研究[J].水利学报.2000(08):84-87.
    [38]Kashefipour. S.M., and R.A. Falconer. Longitudinal dispersion coefficients in natural channels[J]. Water Research.2002,36(6):1596-1608.
    [39]Asai. K., and K. Fujisaki. Effect of Aspect Ratio on Longitudinal Dispersion Coefficient[C], Environmental Hydraulics:Proceedings of the International Symposium on Environmental Hydraulics. Hong Kong.1991:493-498.
    [40]Taylor. G. The Dispersion of Matter in Turbulent Flow through a Pipe[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1954, 223(1155):446-468.
    [41]Sabol. G.V., C.F. Nordin. Dispersion in Rivers as Related to Storage Zones[J]. Journal of the Hydraulics Division.1978,104(5):695-708.
    [42]Nordin. C.F., B.M.. Troutman, Longitudinal Dispersion in Rivers:The Persistence of Skewness in Observed Data[J]. Water Resources Research.1980,16(1):123-128.
    [43]Thackston. E.L., and K.B. Schnelle.. Predicting Effects of Dead Zones on Stream Mixing [J]. Journal of the Sanitary Engineering Divisio n.1970,96(2):319-331.
    [44]Bencala. K.E., R.A. Walters. Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream:A Transient Storage Model[J]. Water Resour. Res..1983,19(3): 718-724.
    [45]Schmid. B.H.. On the transient storage equations for longitudinal solute transport in open channels:temporal moments accounting for the effects of first-order decay[J]. Journal of Hydraulic Research.1995,33(5):595-610.
    [46]Harvey. J.W., B.J. Wagner, K.E. Bencala. Evaluating the Reliability of the Stream Tracer Approach to Characterize Stream-Subsurface Water Exchange[J]. Water Resour. Res.. 1996,32(8):2441-2451.
    [47]Gooseff. M.N., et al.. Determining in-channel (dead zone) transient storage by comparing solute transport in a bedrock channel-alluvial channel sequence, Oregon[J]. Water Resour. Res..2005,41(6):W06014.
    [48]Haggerty. R., S.M. Wondzell, M.A. Johnson. Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream[J]. Geophys. Res. Lett..2002, 29(13):1640.
    [49]Worman. A., et al.. Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers[J]. Water Resour. Res..2002,38(1):1001.
    [50]Gooseff. M.N., R.O. Hall, Jr., J.L. Tank. Relating transient storage to channel complexity in streams of varying land use in Jackson Hole, Wyoming[J]. Water Resour. Res..2007, 43(1):W01417.
    [51]Worman. A., et al.. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography. Geophys[J]. Res. Lett..2006, 33(7):L07402.
    [52]Worman. A., et al.. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield[J]. Geophys. Res. Lett..2007,34(7):L07402.
    [53]Boano. F., et al.. A continuous time random walk approach to the stream transport of solutes[J]. Water Resour. Res..2007,43(10):W10425.
    [54]Holley. E.R., D.R.F. Harleman, H.B. Fischer. Dispersion in Homogeneous Estuary Flow[J]. Journal of the Hydraulics Division.1970,96(8):1691-1709.
    [55]Bowden. K.F.. Horizontal mixing in the sea due to a shearing current[J]. Journal of Fluid Mechanics.1965,21(1):83-95.
    [56]Chatwin. P.C.. On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes[J]. Journal of Fluid Mechanics Digital Archive.1975,71(03):513-527.
    [57]Yasuda. H.. Longitudinal dispersion of matter due to the shear effect of steady and oscillatory currents. Journal of Fluid Mechanics Digital Archive.1984,148:383-403.
    [58]Aris. R.. On the Dispersion of a Solute in a Fluid Flowing through a Tube[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1956, 235(1200):67-77.
    [59]Smith. R.. The contraction of contaminant distributions in reversing flows[J]. Journal of Fluid Mechanics.1983,129:p.137-151.
    [60]Smith. R.. Buoyancy Effects upon Longitudinal Dispersion in Wide Well-Mixed Estuaries[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.1980,296(1421):467-496.
    [61]Glenne. B., R.E. Selleck. Longitudinal estuarine diffusion in San Francisco Bay, California[J]. Water Research.1969,3(1):1-20.
    [62]Stommel. H.. Computation of Pollution in a Vertically Mixed Estuary[J]. Sewage and Industrial Wastes.1953,25(9):1065-1071.
    [63]Paulson. R.W.. The Longitudinal Diffusion Coefficient in the Delaware River Estuary as Determined From a Steady-State Model[J]. Water Resour. Res..1969,5(1):59-67.
    [64]Prandle. D.. Salinity Intrusion in Estuaries[J]. Journal of Physical Oceanography.1981, 11(10):1311-1324.
    [65]Hetling. L.J., R.L. Connell. A Study of Tidal Dispersion in the Potomac River[J]. Water Resour. Res..1966,2(4):825-841.
    [66]Ward. P.R.B.. Measurements of Estuary Dispersion Coefficients[J]. Journal of the Environmental Engineering Division.1976,102(4):855-860.
    [67]匡国瑞,俞光耀,葛文标.现场海域水平扩散系数的探讨[J].青岛海洋大学学报.1991,21(2):37-47.
    [68]匡国瑞,陈伯海,徐天真,钱成春,俞光耀,现场海域水平扩散系数的探讨Ⅱ.黄河三角洲埕北海域的计算[J].青岛海洋大学学报.1995,25(03):301-313.
    [69]李玉梁,卞振举,余常昭.潮流中污染物离散的理论分析与应用.力学学报.1993,25(04):394-403.
    [70]聂红涛,陶建华.基于最佳摄动量法反演浅水海湾水质模型的综合扩散系数.应用数学和力学.2009,30(06):655-662.
    [71]罗家海.河口及海湾地区水平扩散系数确定研究[J].海洋环境科学,1989,8(03): 36-40.
    [72]匡国瑞,苏志清,陈伯海.埕北海域污染扩散参量的估算——潮流水平扩散系数[J].海洋环境科学.1993,12(02):34-39.
    [73]匡国瑞,陈伯海等.浅海水域水平扩散系数的推算研究[J].海洋湖沼通报.1992(02):1-8.
    [74]Csanady. G.T.. Circulation in the coastal ocean[J]. Adv. Geophys.1981,23(1):101-183.
    [75]Longuet-Higgins. M.S.. On the transport of mass by time-varying ocean currents[J]. Deep Sea Research and Oceanographic Abstracts.1969,16(5):p.431-447.
    [76]Tee. K.T.. Tide-induced residual current, a 2-D nonlinear numerical tidal model[J]. Journal of Marine Research.1976,34(4):603-628.
    [77]Zimmerman. J.T.F.. On the Euler-Lagrange transformation and the stokes'drift in the presence of oscillatory and residual currents[J]. Deep Sea Research Part A. Oceanographic Research Papers.1979,26(5):505-520.
    [78]Nihoul. J.C.J., F.C. Ronday. The influence of the "tidal stress" on the residual circulation. Application to the Southern Bight of the North Sea[J]. Tellus.1975,27:484.
    [79]MCCARTHY. R.K.. Residual currents in tidally dominated, well-mixed estuaries[J]. Tellus A.1993,45(4):325-340.
    [80]Li. C. and J. O'Donnell. Tidally driven residual circulation in shallow estuaries with lateral depth variation[J]. Journal of Geophysical Rearch.1997,102:915-929.
    [81]Awaji. T.. Water Mixing in a Tidal Current and the Effect of Turbulence on Tidal Exchange through a Strait[J]. Journal of Physical Oceanography.1982,12(6):501-514.
    [82]俞光耀,陈时俊.胶州湾环流和污染扩散的数值模拟——Ⅲ.胶州湾拉格朗日余流与污染物质的迁移[J].山东海洋学院学报.1983,13(01):1-14.
    [83]李龙章,窦振兴,张存智.渤海海峡拉格朗日余流的数值模拟[J].海洋学报(中文版).1988,10(1):31-37.
    [84]Feng. S.. On the fundamental dynamics of barotropic circulation in shallow seas[J]. Acta Oceanologica Sinica.1990,9(3):315-329.
    [85]Feng. S., Y. Lu. A turbulent closure model of coastal circulation[J]. Chinese Science Bulletin.1993,38(20):1737-1741.
    [86]Feng. S., D. Wu. An inter-tidal transport equation coupled with turbulent K-smodel in a tidal and quasi-steady current system[J]. Chinese Science Bulletin.1995,40(2):136-139.
    [87]孙文心.超浅海风暴潮的进一步研究[J].山东海洋学院学报.1987,17(1):34-45.
    [88]唐永明,孙文心,冯士筰.三维浅海流体动力学模型的流速分解法[J].海洋学报(中文版).1990(02):149-158.
    [89]王辉等.渤海三维风生-热盐-潮致Lagrange余流数值计算[J].海洋学报(中文版).1993(01):9-21.
    [90]孙文心等.黄、东海环流的数值研究Ⅱ潮及潮致环流数值模拟[J].青岛海洋大学学报(自然科学版).2001,31(03):297-304.
    [91]刘桂梅等.黄、东海环流的数值研究Ⅲ 压环流的数值模拟[J].青岛海洋大学学报.2002,32(1):1-8.
    [92]Dyke. P.P.G.. On the Stokes'drift induced by tidal motions in a wide estuary[J]. Estuarine and Coastal Marine Science.1980,11(1):17-25.
    [93]孙英兰,陈时俊,赵可胜.沿岸海域三维斜压场的数值模拟——Ⅰ、渤海潮流数值计算[J].青岛海洋大学学报.1990,20(03):11-24.
    [94]Dortch. M.S., R.S. Chapman, S.R. Abt. Application of Three-Dimensional Lagrangian Residual Transport[J]. Journal of Hydraulic Engineering.1992,118(6):831-848.
    [95]Delhez, E.J.M.. On the residual advection of passive constituents[J]. Journal of Marine Systems.1996,8(3-4):147-169.
    [96]Wei. H., et al.. Tidal-induced Lagrangian and Eulerian mean circulation in the Bohai Sea[J]. Journal of Marine Systems.2004,44(3-4):141-151.
    [97]Hainbucher. D., et al.. Variability of the Bohai Sea circulation based on model calculations[J]. Journal of Marine Systems.2004,44(3-4):153-174.
    [98]Officer. C.B.. Physical oceanography of estuaries (and associated coastal waters)[M]. New York:Wiley,1976.
    [99]Dyer. K.R., P.A. Taylor. A simple, segmented prism model of tidal mixing in well-mixed estuaries[J]. Estuarine and Coastal Marine Science.1973,1 (4):411-418.
    [100]Ketchum. B.H.. The exchange of fresh and salt waters in tidal estuaries[J]. Journal of Marine Research.1951,10:18-38.
    [101]D.Luketina. Simple Tidal Prism Models Revisited[J]. Estuarine, Coastal and Shelf Science.1998,46(1):77-84.
    [102]Abdelrhman. M.A., Embayment characteristic time and biology via tidal prism model[J]. Estuarine, Coastal and Shelf Science.2007,74(4):742-755.
    [103]刘学先,李秀亭.胶州湾寿命初探.海岸工程.1986(03):25-30.
    [104]郑全安等.胶州湾遥感研究Ⅱ.动力参数计算[J].海洋与湖沼.1992(01):1-6.
    [105]杨世伦等.半封闭海湾潮间带部分围垦后纳潮量计算的商榷——以胶州湾为例[J].海洋科学.2003(08):43-47.
    [106]姬厚德等.筼筜湖纳潮量与海水交换时间的计算[J].厦门大学学报(自然科学版).2006(05):660-663.
    [107]熊学军等.半封闭海湾纳潮量的一种直接观测方法[J].海洋技术.2007(04):17-19.
    [108]乔贯宇等.基于ADCP湾口测流的纳潮量计算[J].海洋科学进展.2008(03):285-291.
    [109]乔贯宇等.实测数据和数值模拟相结合的办法计算海湾纳潮量[J].港工技术.2009(04):1-5.
    [110]陈红霞,华锋,刘娜,吴志彦.不同方式的纳潮量计算比较——胶州湾2006年秋季小潮为例[J].海洋科学进展.2009,27(1):11-15.
    [111]叶海桃,王义刚,曹兵.三沙湾纳潮量及湾内外的水交换[J].河海大学学报(自然科学版).2007(01):96-98.
    [112]蒋磊明等.钦州湾潮流模拟及其纳潮量和水交换周期计算[J].广西科学.2009(02):193-195+199.
    [113]蒋增杰等.海南黎安港纳潮量及海水交换规律研究[J].海南大学学报(自然科学版).2009(03):261-264.
    [114]匡国瑞.海湾水交换的研究—海水交换率的计算方法[J].海洋环境科学.1986(03):44-48.
    [115]Parker. D.S., D.P. Norris. Tidal Exchange at Golden Gate[J]. Journal of the Sanitary Engineering Division.1972,98(2):305-323.
    [116]Kashiwai. M.. The conception of tidal exchange and the tidal exchange ratio[J]. Journal of the Oceanographical Society of Japa.1984,40:135-147.
    [117]匡国瑞等.海湾水交换的研究——乳山东湾环境容量初步探讨[J].海洋环境科学.1987(01):13-23.
    1[118]王寿景.厦门西港海水交换计算[J].台湾海峡.1990(02):108-111.
    [119]潘伟然.湄洲湾海水交换率和半更换期的计算[J].厦门大学学报(自然科学版).1992(01):65-68.
    [120]胡建宇.罗源湾海水与外海水的交换研究[J].海洋环境科学.1998(03):51-54.
    [121]Barber. R., M. Wearing. A Simplified Model for Predicting the Pollution Exchange Coefficient of Small Tidal Embayments[J]. Water, Air and Soil Pollution:Focus. 2004(4):87-100.
    [122]Kitheka. J.U.. Coastal Tidally-driven Circulation and the Role of Water Exchange in the Linkage Between Tropical Coastal Ecosystems[J]. Estuarine, Coastal and Shelf Science. 1997,45(2):177-187.
    [123]Guo. Q., G.P. Lordi. Method for Quantifying Freshwater Input and Flushing Time in Estuaries[J]. Journal of Environmental Engineering.2000,126(7):675-683.
    [124]Bolin. B., and H. Rodhe. A note on the concepts of age distribution and transit time in natural reservoirs [J]. Tellus.1973(25):58.
    [125]Zimmerman. J.T.F.. Mixing and flushing of tidal embayments in the western Dutch Wadden Sea part I:Distribution of salinity and calculation of mixing time scales[J]. Netherlands Journal of Sea Research.1976,10(2):149-191.
    [126]Zimmerman. J.. Estuarine Residence Times in Hydrodynamics of Estuaries, Volume I: Estuarine Physics[O]. CRC Press:Boca Raton FL,1988:75-84.
    [127]Takeoka. H.. Fundamental concepts of exchange and transport time scales in a coastal sea[J]. Continental Shelf Research.1984,3(3):311-326.
    [128]Deleersnijder. E., J.-M. Campin, E.J.M. Delhez. The concept of age in marine modelling:I. Theory and preliminary model results[J]. Journal of Marine Systems.2001, 28(3-4):229-267.
    [129]Delhez. E.J.M., E. Deleersnijder. The concept of age in marine modelling:II. Concentration distribution function in the English Channel and the North Sea. Journal of Marine Systems.2002,31(4):279-297.
    [130]Shen. J., Haas. Calculating age and residence time in the tidal York River using three-dimensional model experiments [J]. Estuarine, Coastal and Shelf Science.2004, 61(3):449-461.
    [131]Signell. R.P., B. Butman. Modeling Tidal Exchange and Dispersion in Boston Harbor[J]. J. Geophys. Res..1992,97(C10):15591-15606.
    [132]Ranasinghe. R, C. Pattiaratchi. Flushing Characteristics of a Seasonally-Open Tidal Inlet:A Numerical Study[J]. Journal of Coastal Research.1998,14(4):1405-1421.
    [133]Guyondet. T., V.G. Koutitonsky, S. Roy. Effects of water renewal estimates on the oyster aquaculture potential of an inshore area[J]. Journal of Marine Systems.2005, 58(1-2):35-51.
    [134]Luff. R., T. Pohlmann. Calculation of water exchange times in the ICES-boxes with a eulerian dispersion model using a half-life time approach[J]. Ocean Dynamics.1996, 47(4):287-299.
    [135]Kjerfve. B., et al.. Hydrology and Salt Balance in a Large, Hypersaline Coastal Lagoon: Lagoa de Araruama, Brazil[J]. Estuarine, Coastal and Shelf Science.1996,42(6):701-725.
    [136]David. L.T., B. Kjerfve. Tides and currents in a two-inlet coastal lagoon:Laguna de Terminos, Mexico[J]. Continental Shelf Research.1998.18(10):1057-1079.
    [137]董礼先,苏纪兰.象山港水交换数值研究——Ⅰ.对流-扩散型的水交换模式[J].海洋与湖沼.1999(04):410-415.
    [138]董礼先,苏纪兰.象山港水交换数值研究 Ⅱ.模型应用和水交换研究[J].海洋与湖沼.1999(05):465-470.
    [139]魏皓等.渤海水交换的数值研究-水质模型对半交换时间的模拟[J].青岛海洋大学学报(自然科学版).2002(04):519-525.
    [140]孙英兰,张越美.丁字湾物质输运及水交换能力研究[J].青岛海洋大学学报(自然科学版).2003(01):1-6.
    [141]Thompson. K.R., et al.. Probabilistic characterization of tidal mixing in a coastal embayment:a Markov Chain approach[J]. Continental Shelf Research.2002, 22(11-13):1603-1614.
    [142]Brooks.D.A., M.W. Baca, Y.T. Lo. Tidal Circulation and Residence Time in a Macrotidal Estuary:Cobscook Bay, Maine[J]. Estuarine, Coastal and Shelf Science.1999, 49(5):647-665.
    [143]Nakatsuji.K., et al.. Seasonal Changes of Baroclinic Circulation and Water Exchange in the Bohai Sea[M]. Monterey, California, USA:ASCE,2003.
    [144]赵亮,魏皓,赵建中.胶州湾水交换的数值研究[J].海洋与湖沼.2002(01):23-29.
    [145]管卫兵等.POM模式在河口湾污染物质输运过程模拟中的应用[J].海洋学报(中文版).2002(03):9-17.
    [146]Liu.Z., et al.. Simulation of water exchange in Jiaozhou Bay by average residence time approach[J]. Estuarine, Coastal and Shelf Science.2004,61(1):25-35.
    [147]许苏清等.浔江湾海水交换时间的计算[J].厦门大学学报(自然科学版). 2003(05):629-632.
    [148]许卫忆,陈耕心,李伯根.乐清湾的动力沉积过程[J].海洋与湖沼.1992(01):20-29.
    [149]李志永,倪勇强,耿兆铨.乐清湾泥沙运动数值研究[J].泥沙研究.2004(04):77-81.
    [150]季小梅,张永战,朱大奎.乐清湾近期海岸演变研究[J].海洋通报.2006(01):44-53.
    [151]Li, J., Yao.Y.M, Li.X.Y., Zhang.H.W. Numerical analysis on water exchange and its response to the coastal engineering in the Yueqing Bay in China[J]. Acta Oceanologica Sinica.2008,27:60-73.
    [152]赵鑫,黄世昌.乐清湾内外海混合浪与局地风浪的比较分析[J].浙江水利科技.2005(06):5-9.
    [153]金永平,李佳,姚炎明,周大成.乐清湾水质变化及其成因探讨[J].环境污染与防治.2005(04):247-250+235.
    [154]高生泉等.乐清湾水环境特征及富营养化成因分析[J].海洋通报.2005(06):25-32.
    [155]徐国锋,龙绍桥,秦铭俐,王琼,任敏.乐清湾养殖区富营养化现状分析与评价.海洋环境科学.2009(S1):59-61.
    [156]陈雷等.2007年乐清湾富营养化空间特征及其成因分析[J].上海海洋大学学报.2010(01):91-97.
    [157]彭欣等.乐清湾生态系统脆弱性研究[J].海洋学研究.2009(03):111-118.
    [158]杨月伟等.浙江乐清湾湿地水鸟资源及其多样性特征[J].生物多样性.2005(06):507-513.
    [159]慎佳泓等.杭州湾和乐清湾滩涂围垦对湿地植物多样性的影响[J].浙江大学学报(理学版).2006(03):324-328+332.
    [160]洪龙海.乐清湾海水养殖发展前景初探[J].海洋水产科技.1997(54):9-11.
    [161]陈志海.乐清湾海域养鱼设施发展思路[J].海洋水产科技.1997(2):6-8.
    [162]尤仲杰,王一农,陈坚.乐清湾塘养泥蜡的生长[J].水产学报.2002,26(5):440-447.
    [163]张灵杰.浙江乐清湾资源环境特征及其邻近海岸带综合管理[J].资源科学.2000,22(6):57-61.
    [164]李植斌.浙江省二大港湾区海涂资源的可持续利用研究[J].国土与自然资源研究.2001(3):48-50.
    [165]李春平,张灵杰,董丽晶.浙江乐清湾海岸带功能区划分与海洋产业发展[J].海洋通报.2003,22(5):38-43.
    [166]Phillips.N.A.. A co-ordinate system having some special advantages for numerical Forecasting[J]. Journal of Meteorology.1957(14):184-195.
    [167]Stelling, G. S.. On the construction of computational methods for shallow water flow problems[O]. Tech. Rep.1984.
    [168]Stelling, G. S., J. J. Leendertse. Approximation of Convective Processes by Cyclic AOI methods [C].2nd InternationalConference on Conference on Estuarine and Coastal Modelling. Tampa:1991:93-771.
    [169]方国洪.潮汐和潮流的分析和预报[M].北京:海洋出版社,1986.
    [170]Deltf3D-FLOW User Mnaual,WL|DeltfHydraulics,2003
    [171]Abril, J.M.. Marine Radioactivity Studies in the Suez Canal, Part Ⅱ:Field Experiments and a Modelling Study of Dispersion[J]. Estuarine, Coastal and Shelf Science.2000,50(4): 503-514.
    [172]James. Modelling pollution dispersion, the ecosystem and water quality in coastal waters:a review[J]. Environmental Modelling & Software.2002:363.
    [173]吴桑云,王文海.海湾分类系统研究[J].海洋学报(中文版).2000(04):83-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700