风电规律预测及对电网运行影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着可耗竭能源的日益枯竭,继水力资源后,风能、太阳能等可再生能源的开发利用再度受到重视。如今,风力发电技术成熟度高、商业化前景广阔,得到大规模发展。风电作为能够部分代替化石燃料的可再生能源,可降低污染物排放,对改善能源结构起到了积极作用。然而,风电的随机波动性,使电网运行与控制难度增加,甚至会影响电网安全运行。因此,在大规模风电并网后如何配置备用,以保证电网运行的安全性和经济性,必然成为研究热点和焦点。
     针对电网运行过程中有功功率的平衡,以及运行质量(安全和经济)水平,风电并入电网后,出现两个重要的问题:一是如何尽量准确的把握风电变化的规律;二是如何进行备用的配置以把握电网运行的风险。
     在当前形势下,以风电并网为线索,在研究风电变化规律的基础上,以电网运行风险引导下的备用配置为核心,对电网运行条件下如何协调安全性和经济性进行研究,具有重要的理论意义和实际价值。
     对此,本文以烟台电网为实际背景,就风电并入对电网运行决策影响进行了深入的理论研究和实际工程软件开发,其主要工作体现如下。
     (1)针对地区电网并入多个风电场的状况,论证分析所有风电场总输出功率变化较单一风电场输出功率变化具有更好的规律性,给出风电总量与风电分配因子两个概念,提出短期风电场功率的预测模型和求解方法。其焦点体现在:风电总量、风电分配因子以及他们之间的随机关联规律,最小二乘支持向量机和卡尔曼滤波技术对风电总量和风电分配因子的自适应动态预测算法,基于关联规律间接实现风电场输出功率的短期预测。该研究对探索电网层面上相关节点的风电功率预测问题给出了新的解决思路和方法,对有效把握风电功率规律是有益的。
     (2)风电随机规律的特点体现在未来时刻功率分布范围的分散性,仅对期望进行分析难以反映其特征,电网运行风险也难以准确把握。对此,本文基于分位点回归分析理论,对风电功率波动区间通过支持向量机自适应地选取回归函数,建立风电功率分位点回归模型,并基于内点法对该模型进行求解,进而实现分位点预测,以把握未来时刻风电功率的波动区间。该方法的意义在于提供可信的风电功率波动区间分析结果,为调度部门应对风电波动,更加准确地评估电网运行风险提供重要依据。
     (3)明确风电并入对电网运行风险的影响,是维持电网运行风险水平、保证电网安全经济运行的关键所在。在对风电波动区间的概率分布进行全面把握基础上,将风电波动分布规律与电网中机组停运容量概率表相结合,建立计及风电影响的电网有功平衡的投运风险模型和分析方法。在此基础上,以投运风险水平为约束条件,将累积停运容量概率(风险约束)嵌入到机组组合决策模型中,予以研究和分析,以烟台等值电网作为算例,对风电并入后电网运行成本、备用容量配置的影响情况进行了详细分析。
     (4)当电网接入一定规模的风电时,为追求风电高效利用而使电网调度更加复杂。针对风电接入电网,调度面临煤耗量和风电高效利用间的矛盾问题,将风电能够为电网节约的煤耗量作为风电价值的度量,在经济机制下,对风电价值进行评估,由此构建运行条件下计及接纳风电能力的电网调度数学模型,核心为在与风电波动相关的各种关联约束下,通过数学优化调整调度方案,使其经济性和接纳风电能力得到折中决策。利用该模型能够确定电网允许风电波动的范围,使调度运行过程中的煤耗和电网对风电的接纳能力得到有效协调。符合节能发电调度理念。
     (5)以烟台电网为对象,就风电并入对电网运行的影响进行了实际分析和研究,在计及风电的背景下,对其建立潮流分析、短路容量分析、稳定分析、安全可靠经济分析等模型,并给出相应的解决方法,经过对烟台电网给定的条件,进行了全面翔实的计算和分析,给出风电并入对烟台电网运行影响的具体所在,并提出应对这一影响的具体措施,由此在风电对电网影响的实际研究上向前迈进了一步。
With the depletion of non-renewable resources, renewable resources have attracted the attention of the world. As the high maturity of wind power technology, it has been developed on quite a large scale. Wind power is recyclable and non-polluting, so that it can be a substitution of fossil fuels and improve the resource composition of power grid. However, the stochastic volatility of wind power makes power grid operation more difficult and even a threat to power grid security sometimes. How to allocate the reserve capacity with wind power integration has become the focus of research.
     After wind power integration, there are two issues for power balance and operation quality. The first is fluctuation regularity of wind power and the other is reserve capacity allocation. In the current situation, the research on coordination of security and economy in power grid operation has important theoretical and practical value.
     In this thesis, an exploratory study on optimal operation of power grid with wind power integration is carried out, which is based on mathematical optimization theory. The main works and innovative achievements of the thesis are as follows:
     1. Considering the regional grid with several wind farms integrated, the total wind power has a better regularity comparing to single wind farm. A ultra-short term forecasting method of wind farms is proposed in this paper, which is based on the correlation of total power and wind farms. The Least-Square Support Vector Machine and Kalman filter are adopted respectively to forecast total wind power and distribution factors recursively, so that the good regularity of total wind power could be restored to wind farms and the short power forecasting system of wind farms is established indirectly.
     2. The stochastic property of wind power leads to great error on forecasting result, and a fluctuation interval analysis of forecasting result is required for security operation. In this paper, an interval analysis model of wind power built based on quantile regression is proposed. After selection of regression function by support vector machine, the model of quantile regression is established for wind power. The interior point is adopted here to solve the model, then the analysis result of wind power fluctuation interval ahead consisting of a series of quantiles is obtained. The case study shows that the methodology proposed in this paper could provide a reliable interval analysis result for the power dispatching center which is beneficial to security operation, risk Assessment and the reserve capacity reduction.
     3. Analysis of impact on power grid operation risk by wind power integration is the key issue to maintaining the security level. Based on regularity of wind power fluctuation, the probability distribution of wind power can be combined with capacity outage probability table and the impact of wind power on power grid operation risk is specified. For further study on the influence to power grid scheduling, cumulative capacity outage probability table is introduced into Unit Commitment. The power grid in Yantai is study and the influence on operation cost and reserve capacity allocation is analyzed in detail.
     4. As the installed capacity of wind power in power grids reach a certain scale. the dispatching schedule becomes more complex for high efficiency utilization of wind power. In a power grid with wind power, there is a contradiction between fuel cost and effective utilization in the scheduling process. In this paper, the fuel cost saved is taken as the value of wind power. A scheduling method considering wind power receptiveness is proposed so that a fluctuation range can be calculated to coordinate the fuel cost and wind power receptiveness. Case study shows that the method proposed is appropriate for power grid scheduling considering renewable energy with uncertainty and accords with the principle of energy conservation.
     5. The project "Study of Impact on Power Grid operation in Shandong by Wind Power Integration" is introduced briefly. With analysis on power flow, Short-circuit capacity, static stability and reliability, the impact on Power Grid operation in Yantai by wind power integration is specified and measures of impact improvement are proposed.
引文
[1]王承煦,张源.风力发电[M].中国电力出版社,2003.
    [2]Notis C, Trettel D, Aquino J, Piazza T, Taylor L, Trask D, etal. Learning to forecast wind at remote sites for wind energy applications. PNL-4318, Pacific Northwest Laboratory,1983.
    [3]Wegley H, Formica W. Test applications of a semi-objective approach to wind forecasting for wind energy applications. PNL-4403, Pacific Northwest Laboratory,1983.
    [4]雷亚洲.与风电并网相关的研究课题.电力系统自动化.2003,Vol.27(8):84-89.
    [5]O Alsac and B Stott. Optimal Load Flow with Steady-State Security. IEEE Transactions on Power Apparatus and Systems,1974, PAS-93(4):745-751.
    [6]Costa Alexandre, Crespo Antonio, Navarro Jorge. A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews,2008,12(6):1725-1744.
    [7]Wegley H, Kosorok M, Formica W. Sub-hourly wind forecasting techniques for wind turbine operations. PNL-4894, Pacific Northwest Laboratory,1984.
    [8]Kaminsky F, et al. Time series models of average wind speed within synoptic weather categories. In:Proceedings of the fourth ASME wind energy symposium; 1985, pp.215-9.
    [9]Hipper H S, Pedreira C E, Souza R C. Neural networks for short-term load forecasting a review and evaluation[J]. IEEE Transaction on Power System, 2001,Vol.16(1):44-55.
    [10]邓聚龙,灰色系统基本方法[M].华中理工大学出版社,1987.
    [11]程正兴,小波分解算法与应用[M].西安交通大学出版社,1998.
    [12]Vapnik V N. The nature of statistical learning theory[M]. New York: Spring-Verlag,1995.
    [13]Cherkassky V, Mulier F. Vapnik-Cherconernkis (VC) learning theory and its applications [J]. IEEE Transaction on Neural Networks,1999, Vol.10(5):985-987.
    [14]Ito K, Nakano R. Optimizing support vector regression hyperparameters based on cross-validation[C]. Proc. Int. Joint Conf. on Neural Networks(UCNN 2003),2003:2077-2082.
    [15]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,Vol.25(11):1-5.
    [16]El-Fouly T H M, El-Saadany E F, Salama M M A. Improved grey predictor rolling models for wind power prediction[J]. IET Generation Transmission & Distribution,2007, Vol.6(1):928-937.
    [17]李俊芳,张步涵,谢光龙,李妍,毛承雄.基于灰色模型的风速-风电功率预测研究[J].电力系统保护与控制,2010,Vol.38(19):151-159.
    [18]张彦宁,康龙云,周世琼,曹秉刚.小波分析应用于风力发电预测控制系统中的风速预测[J].太阳能学报,2008,Vol.29(5):520-524.
    [19]Mohandes M A, Halawani T O, Rehman S, Hussain Ahmed A. Support vector machines for wind speed prediction[J]. Renewable Energy,2004, Vol.29(6):939-947.
    [20]Watson S, Halliday J, Landberg L. Assessing the economic benefits of numerical weather prediction model wind forecasts to electricity generating utilitiesfC]. Proceedings of wind energy conversion, Nottingham, UK,1992, pp:291-297.
    [21]杜颖,卢继平,李青,邓颖玲.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术,2008,Vol.32(15):62-66.
    [22]Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S, Manousaridis I M. Short-term forecasting of wind speed and related electrical power [J]. Solar Energy,1998, Vol.63(1):61-68.
    [23]Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. Wind speed and power forecasting based on spatial correlation models[J]. IEEE Transactions on Energy Conversion,1999, Vol.l4(3):836-842.
    [24]Focken Ulrich, Lange Matthias, Mdnnich Kai, Waldl Hans-Peter, Beyer Hans Georg, Luig Armin. Short-term prediction of the aggregated power output of wind farms-a statistical analysis of the reduction of the prediction error by spatial smoothing effects [J]. Journal of Wind Engineering and Industrial Aerodynamics,2002, Vol.90(3):231-246.
    [25]Damousis I G, Alexiadis M C, Theocharis J B, Dokopoulos P S. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation[J]. IEEE Transactions on Energy Conversion,2004, Vol.19(2):352-361.
    [26]Bilgili Mehmet, Sahin Besir, Yasar Abdulkadir. Application of artificial neural networks for the wind speed prediction of target station using reference stations data[J]. Renewable Energy,2007, Vol.32(14):2350-2360.
    [27]黎静华,栗然,顾雪平,牛东晓.网格化的电力系统短期负荷预测的MDRBR模型.电力系统自动化,2005,Vol.29(24):27-31.
    [28]潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,Vol.28(26):87-91.
    [29]井天军,阮睿,杨明皓.基于等效平均风速的风力发电功率预测[J].电力系统自动化,2009,Vol.33(24):83-87.Jing Tian-jun, Ruan Rui, Yang Ming-hao. Wind Power Forecast Based on Equivalent Average Wind Speed[J]. Automation of Electric Power Systems, 2009, Vol.33(24):83-87.
    [30]Corinna Mohrlen. Uncertainty in wind energy forecasting[D]. Civil and Environmental Engineering, National University of Ireland, Cork,2004.
    [31]Matthias Lange. On the Uncertainty of Wind Power Predictions[J]. Journal of Solar Energy Engineering,2005,Vol.127(2):177-184.
    [32]Luig A, Bofinger S, Beyer H G. Analysis of confidence intervals for the prediction regional wind power output[C]. Proceeding of the European Wind Energy Conference, Bella Centre, Copenhagen, Denmark,2-7 July,2001.
    [33]Bremnes J B, Villanger F. Probabilistic forecasts for daily wind power production[C]. Proceedings of the Global Wind Power Conference, CNIT, La Defense, Paris, France,2-5 April,2002.
    [34]范高锋,王伟胜,刘纯,戴慧珠.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,Vol.28(34):118-123.
    [35]陈建宝,丁军军.分位数回归技术综述[J].统计与信息论坛,2008,Vol.23(3):89-96..
    [36]康重庆,夏清,刘梅.电力系统负荷预测[M].中国电力出版社,北京,2007.
    [37]孟祥星,韩学山.不确定性因素引起备用的探讨[J].电网技术,2005,Vol.29(1):30-34.
    [38]杨朋朋.机组组合理论与算法研究[D].山东大学,2008.
    [39]李文沅.电力系统安全经济运行——模型与方法[M].重庆大学出版社,1989.
    [40]Soder L. Reserve Margin Planning in a Wind-hydro-thermal Power system[J]. IEEE Transactions on Power Systems,1993, Vol.8(2):564-571.
    [41]MethaprayoonK, ChitraY. An Integration of ANN Wind power Estimation into Unit Commitment Considering the Forecasting Uncertainty [J]. IEEE Transactions on Industry Applications,2007, Vol.43(6):1441-1447.
    [42]Restrepo J F, Galiana F D. Secondary Reserve Dispatch Accounting for Wind Power Randomness and Spillage[J]. IEEE Power Engineering Society General Meeting.2007,1-3.
    [43]Bilinton R, Chowdhury N A. Operating reserve assessment in interconnected generating systems[J]. IEEE Trans on Power Systems,1988, Vol.4(3):1479-1487.
    [44]Chowdhury N, Bilinton R. Unit commitment in interconnected generating systems using a probabilistic technique[J]. IEEE Trans on Power Systems, 1990,Vol.5(4):1231-1238.
    [45]Chowdhury N, Bilinton R. Export/Import of spinning reserve in interconnected generation systems[J]. IEEE Trans on Power Systems,1991, Vol.6(1):43-50.
    [46]Gouveia E M, Matos M A. Operational Reserve of a Power System with a Large Amount of Wind Power[C].8th International Conference on Probabilistic Methods Applied to Power Systems,2004, pp.717-722.
    [47]Morales J M, Conejo A J, Perez-Ruiz J. Economic Valuation of Reserves in Power Systems with High Penetration of Wind Power[J]. IEEE Transactions on Power Systems,2009, Vol.24(2):900-910.
    [48]Chattopadhyay D, Baldick R. Unit commitment with probabilistic reserve[C].2002 IEEE Power Engineering Society Winter Meeting. New York:Press,2002, pp.280-285.
    [49]杨朋朋,韩学山等.用拉格朗日松弛法求解概率备用解析表达的机组组合[J].山东大学学报,2007,37(2):58-62.
    [50]雷亚洲,王伟胜,印永华,戴慧珠.基于机会约束规划的风电穿透功率极限计算[J].中国电机工程学报,2002,Vol.22(5):32-35.
    [51]Christensen J F, etal. Methods And Models For Evaluating The Impact Of Decentralized Generation[C]. CIGRE Session,1998.
    [52]Schlueter R A. A Modified Unit Commitment And Generation Control For Utilities With Large Wind Generation Penetrations[J]. IEEE Trans on Power Apparatus and Systems,1985, Vol.104(7):1630-1636.
    [53]Zaininger H W, et al. Potential dynamic impacts of wind turbines on utility systems[J]. IEEE Transactions on Power Apparatus and Systems,1981, Vol.100(12):4821-4829.
    [54]郑国强,鲍海,陈树勇.基于近似线性规划的风电透功率极限优化的改进算法[J].中国电机工程学报,2004,Vol.24(10):68-71.
    [55]吴俊玲,周双喜,孙建锋,陈寿孙,孟庆和.并网风力发电场的最大注入功率分析[J].电网技术,2004,Vol.28(20):28-32.
    [56]王伟胜,冯双磊,张义斌.风电场最大装机容量和电网短路容量的关系[J].国际电力,2005,Vol.9(2):31-34.
    [57]Papadopoulos. Simulation And Analysis Of Small And Medium Power Systems Containing Wind Turbines[J]. IEEE Transactions on Power Apparatus and Systems,1991, Vol.6(4):1453-1458.
    [58]赵海翔,关宏亮,范高锋,戴慧珠.基于静态安全和稳定约束的地区电网接入风电容量算法[J].中国电力,2007,Vol.40(3):79-83.
    [59]乔家赓,徐飞,鲁宗相,闵勇.基于相关机会规划的风电并网容量优化分析[J].电力系统自动化,2008,Vol.32(10):84-87.
    [60]雷亚洲,王伟胜,印永华,戴慧珠.一种静态安全约束下确定电力系统风电准入功率极限的优化方法[J].中国电机工程学报,2001,Vol.21(6):25-28.
    [61]Aidan Tuohy, Peter Meibom, Eleanor Denny, Mark O'Malley. Unit Commitment for Systems With Significant Wind Penetration[J]. IEEE Transactions on Power Systems,2009, Vol.24(2):592-601.
    [62]Stavros A Papathanassioua, Nikos G Boulaxisb. Power Limitations And Energy Yield Evaluation For Wind Farms Operating In Island Systems[J]. Renewable Energy,2006, Vol.31(4):457-479.
    [63]张国强,张伯明.考虑风电接入后二次备用需求的优化潮流算法[J].电力系统自动化,2009,Vol.33(8):25-28.
    [64]Miguel A. Ortega-Vazquez, Daniel S. Kirschen. Estimating the Spinning Reserve Requirements in Systems With Significant Wind Power Generation Penetration[J]. IEEE Transactions on Power Systems,2009, Vol.24(l):114-124.
    [65]谷兴凯,范高锋,王晓蓉,赵海翔,戴慧珠.风电功率预测技术综述[J].电网技术,2007, Vol31.(Supplement 2):335-338.
    [66]穆钢,侯凯元,杨右虹,惠永杰,姜克志.负荷预报中负荷规律性评价方法的研究.中国电机工程学报,2001,Vol.21(10):96-101.
    [67]查特菲尔德(Chesterfield)时间序列分析导论(The guide of time series analysis)[M]北京:宇航出版社,1986.
    [68]盛骤,概率论与数理统计[M].高等教育出版社,2001.
    [69]Nello Cristianini, John Shawe-Taylor.李国正,王猛,曾华军译. 支持向量机导论[M]. 北京:电子工业出版社,2004.
    [70]Suykens J A K, Vandewalle J. Recurrent Least Squares Support Vector Machines[J]. IEEE transactions on circuits and systems,2000, Vol.47(7):1109-1114.
    [71]康重庆,夏清,张伯明,电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,Vol.28(17):1-11.
    [72]吴琼,杨以函,刘文颖.基于最小二乘支持向量机的电力系统暂态稳定在线预测[J].中国电机工程学报,2007,Vol.27(25):38-43.
    [73]邓自立.最优滤波理论及其应用:现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [74]Joel E.Cohen, Charles M.Newman, Adam E.Cohen, Owen L.petchey, Andrew Gonzalez. Spectral Mimicry:A method of synthesizing matching time series with different fourier spectra[C]. Circuits Systems Signal Process, 1999, Vol.18(3):431-442.
    [75]王耀南,孙春顺,李欣然.用实测风速校正的短期风速仿真研究[J].中国电机工程学报,2008,Vol.28(11):94-100.
    [76]孙春顺,王耀南,李欣然.小时风速的向量自回归模型及应用[J].中国电机工程学报,2008,Vol.28(14):112-117.
    [77]张国强,张伯明.基于组合预测的风电场风速及风电机功率预测[J].电力系统自动化,2009,Vol.33(18):92-95.
    [78]蒋小亮,蒋传文,彭明鸿,林海涛,李子林.基于时间连续性及季节周期性的风速短期组合预测方法[J].电力系统自动化,2010,Vol.34(15):75-78.
    [79]毛英泰.误差理论与精度分析[M].国防工业出版社,1982.
    [80]李育安.分位数回归及应用简介[J].统计与信息论坛,2006,Vol.21(3):35-38.
    [81]Koenker R, Bassett G J. Regression Quantiles[J]. Econometrica, 1978(46):33-50.
    [82]周影辉.非线性分位点回归模型的统计诊断[D].东南大学,2006.
    [83]John Bjornar Bremnes. Probabilistic Wind Power Forecasts Using Local Quantile Regression[J]. Wind Energy,2004, Vol.7(l):47-54.
    [84]Roger Koenker, Beum J Park. An Interior Point Algorithm for Nonlinear Quantile Regression[J]. Journal of Econometrics,1996, Vol.71(l),265-283.
    [85]王福保.概率论及数理统计[M].同济大学出版社,上海,1984.
    [86]周家启,任震译.电力系统可靠性评估[M].重庆:科学技术文献出版社重庆分社,1986.
    [87]Virmani S, Adrian E C, Imhof K et al. Implementation of A Lagrangian Relaxation Based Unit Commitment Problem[J]. IEEE Trans, on Power Systems,1989, Vol.4(4):1373-1379.
    [88]Wang S J, Shahidehpour S M. Short-term generation scheduling with transmission and environmental constraints using an augmented lagrangian relaxation[J]. IEEE Trans, on Power Systems,1995, Vol.10(3):1294-1301.
    [89]孟祥星,韩学山.不确定性因素引起备用的探讨[J].电网技术,2005,Vol.29(1):30-34.
    [90]申洪,梁军,戴慧珠.基于电力系统暂态稳定分析的风电场穿透功率极限计算[J].电网技术,2002,Vol.26(8):8-11.
    [91]雷亚洲,王伟胜,印永华,戴慧珠.风电对电力系统运行的价值分析[J].电网技术,2002,Vol.26(5):10-14.
    [92]Allen J. Wood, Bruce F. Wollenberg. Power Generation, Operation and Control(Second Edition)[M],清华大学出版社,北京,2003.12.
    [93]张伯明,陈寿孙,严正.高等电力网络分析(第二版)[M].清华大学出版社,北京,2007.9.
    [94]刘洋,康凯,王邦惠,张波,韩学山.含风电系统的潮流计算分析[J].山东电力技术,2009,Vol.167(4).
    [95]韩本帅,康凯,王邦惠,韩学山.考虑风电接入的电力系统无功优化[J].山东电力技术,2009,Vol.167(3):11-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700