燃煤烟气中汞再析出及抑制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用安大略法(OHM)对4套不同装机容量(90 MW、205 MW、190 MW和450 MW)的美国燃煤机组烟气中汞进行现场采样和分析,评价各污染物控制工艺(选择性催化还原SCR脱硝、静电除尘ESP和湿法烟道气脱硫WFGD)对汞的形态转化和汞脱除效率的影响。SCR具有明显的氧化零价汞的作用,SCR的零价汞的氧化效率在55.2%~70.4%范围内变化;当烟气不经过SCR和经过SCR时,ESP脱除汞效率分别为0.9%~2.9%和5.3%~9.6%,WFGD脱汞效率分别为30.9%~77.4%和37.8%~89.5%。同时发现烟气经过湿法脱硫工艺发生了零价汞再析出现象,即经过WFGD吸收的离子汞又被还原成零价汞,导致在WFGD出口处零价汞的浓度高于其入口值。
     通过建立一套连续测试零价汞再析出的实验室评价装置,对现场循环脱硫浆液、脱硫废水和不同自制脱硫浆液(CaO、CaSO3、CaSO4和Na2SO3)的零价汞再析出的影响进行实验研究,实验结果表明亚硫酸根离子是导致零价汞再析出的主要原因。同时对不同操作条件下(温度、浆液pH值、氧气浓度和不同载气)及低价态金属离子溶液对零价汞再析出的影响进行了研究。低价态金属离子Sn2+、Pb2+、Fe2+、Ni2+、AsO2-和Cu+能还原离子汞,而高价态金属离子Fe3+和Cu2+不能使离子汞还原,定量分析表明金属离子还原离子汞能力的强弱顺序为Sn2+>Pb2+>Cu+>Fe2+>AsO2->Ni2+。并对外加添加剂(H2S、Na2S4、TMT15、NaHS和HI)抑制零价汞再析出进行了实验评价,结果表明外加添加剂与离子汞生成的汞沉淀HgS或HgI2降低了离子汞的还原势,阻止了离子汞继续被还原性离子还原;价格便宜及容易得到PY系列添加剂也对抑制零价汞再析出有较好效果。实验研究还发现浆液的氧化还原电位(ORP)与零价汞再析出存在明显的相关性,浆液的ORP为负值,能发生零价汞的再析出现象;浆液的ORP为正值,出现零价汞再析出的可能性大大降低。
Ontario hydro method (OHM), a mercury speciation method certificated by American Society for Testing and Materials (ASTM), was applied to collect speciated mercury in the flue gas at the four full-scale coal-fired utilities with different electricity capacities (90MW,205MW,190MW and 450MW). Mercury transformation and removal efficiencies through SCR, ESP and WFGD in these four utilities were evaluated. It was found that Hg0 oxidation efficiencies across SCR ranged from 55.2% to 70.4%. When the flue gas passing SCR and no passing SCR, The mercury capture efficiencies by ESP were the 0.9%~2.9% and 5.3%~9.6%, The total mercury removal efficiencies across WFGD were respectively 30.9%-77.4% and 37.8%~89.5%. The Hg0 re-emission phenomena (Hg2+being reduced to Hg0) were observed in two WFGD of utilities, i.e the HgO concentrations at WFGD out were higher than they were at WFGD inlet.
     A lab-scale simulated WFGD system was set up to investigate the Hg0 re-emission, and effects of the recirculating slurries, waste water collected from a full-scale WFGD and home-made slurries (CaO, CaSO3, CaSO4 and Na2SO3) were performed. There is a significant correlation between Hg0 re-emission and sulfite ion in home-made or natural WFGD slurries. Further, effects of major operational parameters (temperatures, pH values of slurries, oxygen gas concentrations and different carrier gases) and some metal ions on Hg0 re-emission were intensively investigated. The effects of some ions respectively including Sn2+, Pb2+, Fe2+, Ni2+, AsO2-, Cu+, Fe3+and Cu+on Hg0 re-emission were studied. Low chemical valence ions being oxidized by Hg2+led to Hg0 re-emission, and the order of Hg2+reduction capacity was Sn2+>Pb2+>Cu+>Fe2+>As02>Ni2+. In the followed-up Hg0 re-emission suppression tests, the performances of five additives, including H2S, Na2S4, TMT15, NaHS and HI were evaluated. It was found that the produced precipitates HgS and HgI2 can prevent Hg2+from being reduced to Hg0. The cheaper home-made additives also had better effects on suppressing Hg0 re-emission. There also existed the significant correlation between oxidation-reduction potential (ORP) of slurries and Hg0 re-emission. Only the slurries with minus ORP values can result in occurrence of Hg0 re-emission.
     Figure [67] table [21] reference [151]
引文
[1]郭欣.煤燃烧过程中的汞、砷、硒的排放与控制研究[D].武汉:华中科技大学,2005
    [2]张成,曹娜,邱建荣等.煤燃烧前温和热解汞和硫的释放特性研究[J].中国电机工程学报,2009,29(20):35~40
    [3]薛长海,李鑫,耿合先等.燃煤烟气中脱汞吸附剂的性能实验研究[J].华中电力,2009,22(4):1~8
    [4]Cheng Chin-min, Chen Chien-wei, Zhu Jia-shun et al. Measurement of vapor phase mercury emissions at coal-fired power plants using regular and speciation sorbent traps with in-stack and out of stack sampling method[J]. Energy & Fuels,2009,23:4831~4839
    [5]Cao Yan, Cheng Chin-min, Chen Chien-wei et al. Abatement of mercury emissions in the coal combustion process equipped with a fabric filter baghouse[J]. Fuel,2008,87:3322~3330
    [6]下运军,段钰锋,杨立国等.湿法、半干法和循环流化床炉内脱硫技术的脱汞特性[J].燃烧科学与技术,2009,15(4):368~373
    [7]覃东立,姜秋俚,付友生.全球汞污染回顾与分析[J].环境保护科学,2009,35(4):75~78
    [8]王成云.吸收法脱除燃煤烟气中气态汞的应用基础研究[D].杭州:浙江大学,2005
    [9]刘英.汞及其化合物的神经毒性及机制研究进展[J].河南预防医学杂志,2006,17(1):46~48
    [10]任建莉.燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究[D].杭州:浙江大学,2003
    [11]Wu Y, Wang S, David G. S et al. Trends in anthropogenic mercury emissions in China from 1995 to 2003[J]. Environment Science Technology,2006,40:5312~5318
    [12]David G S, Zhang Q, Wu Ye. Projections of global mercury emissions in 2050. Environment Science Technology,2009,43:2983~2988
    [13]Wang Q, Shen W G, Ma Z W. Estimation of mercury emission from coal combustion in China[J]. Environment Science Technology,2004,38:2711~2713
    [14]Streets D G, Hao J, Wu Y et al. Anthropogenic Mercury Emissions in China[J]. Atmospheric Environment,2005,39:7789~7806
    [15]王宏,徐智.汞在环境中的污染和迁移转化[J].内蒙古环境保护,2000,12(1):46~47
    [16]Meij R. The fate of mercury in coal-fired power plants and the influence of wet flue gas desulphurization[J], Water Air and Soil Pollution,1991,56:21~33.
    [17]陈冰如,钱琴芳,杨亦易等.我国一百零七个煤矿样中微量元素的浓度分布[J],科学通报,1985,30(1):34~41
    [18]王起超,马如龙.煤及灰渣中的汞[J].中国环境科学,2001,21(1):57~57
    [19]冯新斌,洪业汤,倪建宇.贵州煤中汞的分布、赋存形态及对环境的影响[J].煤田地质与勘探,1998,26(2):12~14
    [20]Bouska V, Pesek J. Qualit parameters of lignite of the north bohemian basin in the Czech Republic in comparison with the world average lignite[J]. International Journal of Coal Geology, 1999,40(2,3):211~235.
    [21]Swaine D J. Why trace elements are important [J]. Fuel Processing Technology, 2000,65(1):21~33.
    [22]唐修义,黄文辉.中国煤中微量元素[M].北京:商务印书馆,2004,155~165
    [23]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318~321
    [24]冯新斌,洪业汤.中国燃煤向大气排放汞量的估算[J].煤矿环境保护,1996,10(3):10~13
    [25]Pacyna E G, Pacyna J M, Steenhuisen F et al. Global Anthropogenic Mercury Emission Inventory for 2000[J]. Atmospheric Environment,2006,40:4048~4063
    [26]Wilson S J, Steenhuisen F, Pacyna J M et al. Mapping the Spatial Distribution of Global Anthropogenic Mercury Atmospheric Emission Inventories[J]. Atmospheric Environment,2006, 40:4621~4632
    [27]Streets D G, Hao J, Wu Y et al. Anthropogenic Mercury Emissions in China [J]. Atmospheric Environment,2005,39:7789~7806
    [28]Jaffe D, Prestbo E, Swartzendruber P et al. Export of Atmospheric Mercury from Asia[J]. Atmospheric Environment,2005,39,3029~3038
    [29]Wang Q, Shen W, Ma Z. Estimation of mercury emission from coal combustion in China[J], Environment Science Technology,2000,34:2711 ~2713
    [30]姚多喜,支霞臣,郑宝山.煤中微量元素及其在燃烧过程中释放的研究现状[J].合肥工业大学学报(自然科学版),2002,25(3):373~378
    [31]Finkelman R.B. Modes of occurrence of potentially hazardous elements in coal:levels of confidence [J]. Fuel processing technology,1994,39:21~34
    [32]赵峰华.煤中有害微量元素分布赋存机制及燃烧产物淋滤实验研究[D].北京:中国矿业大学北京研究生部,1997
    [33]贾小红,郭欣,郑楚光.煤燃烧过程中痕量元素的形态分析方法[J].煤炭转化,2003,26(1):17~21
    [34]郭欣,郑楚光.煤中汞、砷、硒赋存形态的研究[J].工程热物理学报,2001,22(6):763~766
    [35]蒋靖坤.中国大气汞排放和控制初步研究[D].北京:清华大学,2004,1~79.
    [36]Chu P, Porcella D B. Mercury stack emissions from U.S.A electric utility power plants[J]. Water, air and soil pollution,1995,80(1):135~144
    [37]王乾,段钰锋,吴成军等.燃煤电厂脱硫系统的脱汞特性研究[J].锅炉技术,2008,39(1):69~74
    [38]孟素丽,段钰锋,杨立果等.燃煤烟气中汞脱除技术的研究进展[J].锅炉技术,2008,39(4):77~80
    [39]赵毅,王丽蓉.火电厂燃煤中汞的迁移转化规律研究[J].中国电力,1994,14(4):52~53.
    [40]赵毅,马双忱,华伟等.电厂燃煤过程中汞的迁移转化及控制技术研究[J].环境污染治理技术与设备,2004,4(11):59~63
    [41]任建莉,周劲松.煤中汞燃烧过程析出规律试验研究[J].环境科学学报,2002,22(3):289~293
    [42]刘迎辉,郑楚光,游小清.氯元素对烟气中汞的形态和分布的影响[J].环境科学学报,2001,21(1):69~73
    [43]任建莉,周劲松,骆仲泱等.煤中汞燃烧过程析出规律试验研究[J].环境科学学报,2002,22(3):290~293
    [44]Constance L S, Lawrence E B. Laboratory study of trace elements vaporization from combustion of pulverized coal[J]. Fuel Processing Technology,2000,63:109~124
    [45]Constance L S, Adel F S, Zeng T, et al. Gas-phase transformations of mercury in coal-fired power plants[J]. Fuel Processing Technology,2000,63:197-213
    [46]Grant E D, Raymond A D, Constance L S. Fixed-bed studies of the interactions between mercury and coal combustion fly ash[J]. Fuel Processing Technology,2003,82(2):197-213
    [47]赵毅,陈周燕,汪黎东等.湿式烟气脱硫系统同时脱汞研究[J].环境工程学报,2008,2(1):64~69
    [48]姜平,陈作帅,吕晓彤等.贵州地区大气汞污染及湿法脱硫装置除汞效果的初步评价[J].环境工程学报,2007,1(3):80~83.
    [49]Gibb W H, Carke F, Mehta A K. The fate of coal mercury during combustion[J]. Fuel Processing Technology,2000,65-66:365~377
    [50]刘迎辉,郑楚光.燃煤过程中易挥发有毒痕量元素的相互作用[J].燃烧科学与技术,2001,7(4):243~247.
    [51]王泉海,邱建荣,吴吴.煤燃烧过程中汞释放的研究现状[J].热能动力工程,2002,17(11):547~550
    [52]冯荣.烟气中Hg的氧化机理的研究[J].工程热物理学报,2002,23(3):384~387
    [53]程俊峰,曾汉才,韩军等.燃煤电站锅炉痕量重金属的释放与控制[J].热力发电,2002,31(2):23~30
    [54]蔡铭,徐明厚,乔瑜等.燃煤烟气中痕量元素的形态及其分析方法[J].热力发电,2004,33(8):10~14
    [55]郭欣,郑楚光,贾小红.煤粉锅炉燃烧产物中汞、砷分布特征研究[J].工程热物理学报,2004,25(4):714~716
    [56]朱珍锦,薛来.负荷改变对煤粉锅炉燃烧产物中汞的分布特征影响研究[J].中国电机工程学报,2001,21(7):87~91
    [57]张军营,任德贻.煤中汞及其对环境的影响[J].环境科学进展,1997,7(3):100~104
    [58]周劲松,骆仲泱,任建莉等.燃煤汞排放的测量及其控制技术[J].动力工程,2002,22(6):2099~2105
    [59]杨振宇,羌宁,季学李.美国燃煤电厂锅炉烟气中汞的研究进展[J].能源环境保护,2003,17(5):3~7
    [60]刘晶,刘迎晖,贾小红等.燃煤烟气中汞形态分析的实验研究[J].环境化学,2003,22(2):172~176
    [61]周劲松,王光凯,骆仲泱.600 MW煤粉锅炉汞排放的试验研究[J].热能动力工程,2006,21(6):569~572
    [62]刘迎晖,徐杰英,郑楚光等.燃煤烟气中汞的形态分布及热力学模型预报[J].华中科技大学学报,2001,29(8):90~92
    [63]韩军,徐明厚,詹靖等.煤燃烧过程中汞排放的模拟[J].中国电机工程学报,2003,23(12):208~212
    [64]王运军,段钰锋,杨立国等.燃煤电站布袋除尘器和静电除尘器脱汞性能比较[J].燃料化学学报,2008,36(1):23~29
    [65]高洪亮,王向宇,周劲松等.静电除尘器对燃煤电站汞排放的影响[J].锅炉技术,2007,38(5):63~67
    [66]刘迎晖,郑楚光,程俊峰等.燃煤烟气中汞的形态及其分析方法[J].燃料化学学报, 2000,28(5):463~467
    [67]任建莉,周劲松,骆仲泱等.燃煤过程中汞的析出规律试验研究[J].浙江大学学报(工学版),2002,36(4):397~402
    [68]吴吴,邱建荣,王泉海等.煤中汞在燃煤电站中的形态转化[J].电力环境保护,2003,19(1):29~31
    [69]王泉海,刘迎晖,贾小红等.煤燃烧过程中汞元素形态转化的实验研究[J].煤炭转化,2003,26(1):67~70
    [70]Shawn K, Duan Y, Cao Y et al. Mercury emission from a 100 MW wall-fired boiler as measured by semi-continuous mercury monitor and Ontario Hydro method[J]. Fuel Processing Technology,2004,85:487~499
    [71]Lee S J, Seo Y C, Jang H et al. Speciation and mass distribution of mercury in a bituminous coal-fired power plant[J]. Atmospheric Environment,2006,40(12):2215~2224
    [72]刘晶,王满辉,郑楚光等.煤燃烧中汞与含氯气体的反应机理研究[J].工程热物理,2003,24(1):161~164
    [73]Cao Y, Duan Y, Kellie S et al. Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOx burners[J]. Energy & Fuels,2005,19:842~854
    [74]Zhuang Y, Laumb J, Richard L et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technology,2007,88:929~934
    [75]傅丛,连进京,姜英等.高汞煤燃烧过程中汞的析出规律试验研究[J].洁净煤技术,2007,13(6):62~65
    [76]Wang Y, Duan Y, Yang L et al. Experimental study on mercury transformation and removal in coal-fired boiler flue gases[J]. Fuel Processing Technology,2009,90(5):643~651
    [77]Thomas D. B, Dennis N S, Richard A H, et al. Mercury measurement and its control:what we know, have learned, and need to further investigate[J]. Journal of the air & waste management association,1999,49:628~640
    [78]Sakulpitakphon T, Hower J C, Trimble A S et al. Mercury capture by fly ash:study of the combustion of a high-mercury coal at a utility boiler[J]. Energy & Fuels,2000,14:727~733.
    [79]Sakulpitakphon T, Hower J C, Trimble A S et al. Arsenic and mercury partitioning in fly ash at the Kentucky power plant[J]. Energy & Fuels,2003,17:1028~1033
    [80]Carpi A, Lindberg S E. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge[J]. Environment Science Technology,1997,31:2085~2091
    [81]Cao Yan, Pan Wei-Ping. Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal[J]. Energy& Fuels,2007,21:145~156
    [82]Steven A B, Jason D L, Charlene R C et al. SCR catalyst performance in flue gases derived from sub-bituminous and lignite coals[J]. Fuel Processing Technology,2005,86(5):577~613
    [83]Andrej S, Milena H, Joze K et al. The role of flue gas desulphurization in mercury speciation and distribution in a lignite burning power plant[J]. Fuel,2008,87(17-18):3504~3512
    [84]John H. Pavlish. Status review of mercury control options for coal-fired power plants[J]. Fuel Processing Technology 2003,82:89~165
    [85]Senior C, Chen Z, Sarofim A. Mercury oxidation in coal-fired utility boilers:validation of gas-phase kinetic models, presented at the Air and Waste Management Association's 95th Annual Meeting and Exhibition, Baltimore, MD, June 2002
    [86]Huang Y, Jin B, Zhong Z, et al. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler[J]. Fuel Processing Technology,2004,86:23~32
    [87]Senior C, Montgomery C, Sarofim A et al. Evaluation of co-benefits strategies for utility mercury control. In: Proceedings of the 31st international technical conference on coal utilization and fuel systems. FL:Clearwater; 2006 [May21-26]
    [88]Stephen N, Chitralkumar V N, Mark S B et al. Interpreting enhanced Hg oxidation with Br addition at plant Miller[J]. Fuel Processing Technology,2009,90(11):1372~1377
    [89]Lee C W, Srivastava R K, Ghorishi S B et al. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions[J]. Journal of the Air & Waste Management Association,2004,54(1):1560~1566
    [90]Stephen N, Naoki F. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue Gas[J]. Journal of the Air & Waste Management Association,2005,55(12):1866~1875
    [91]Constance L S. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants[J]. Journal of the Air& Waste Management Association,2006,56(1):23~ 31
    [92]刘彦,韦宏敏,徐江荣等.O2/CO2与空气对燃煤汞形态分布的影响[J].中国电机工程学报,2008,28(11):48~53
    [93]高洪亮,周劲松,骆仲泱等.NO对燃煤烟气中汞形态分布影响的实验研究[J].工程热物理学报,2004,25(6):1057~1060
    [94]朱燕群,周劲松,蔡小舒等.燃煤过程中不同烟气组分对汞形态转化的影响[J].浙江大学(工学版),2007,41(2):356~360
    [95]孟素丽,段钰锋,黄治军等.烟气成分对燃煤飞灰汞吸附的影响[J].中国电机工程学报,2009,29(20):66~73
    [96]冯立品,路迈西,刘红缨等.汞在选煤过程中的迁移规律研究[J].洁净煤技术,2008,14(4):16~18
    [97]冯立品,路迈西.汞污染控制[J].选煤技术,2007,34(4):140~144
    [98]Wang M, Keeener T C, Khang S J. The effects of coal volatility on mercury removal from bituminous coal during mild pyrolysis[J]. Fuel Processing Technology,2000,67(2):147~161
    [99]赵毅,于欢欢,贾吉林等.烟气脱汞技术研究进展[J].中国电力,2006,39(12):59~62
    [100]Guffey F D, Bland A E. Thermal pretreatment of low-ranked coal for control of mercury emissions[J]. Fuel Processing Technology,2004,85(6-7):521~531
    [101]段钰锋,江贻满,杨立国等.循环流化床锅炉汞排放和吸附实验研究[J].中国电机工程学报,2008,28(32):1~5
    [102]王运军,段钰锋,杨立国等.湿法、半干法和循环流化床炉内脱硫技术的脱汞特性[J].燃烧科学与技术,2009,15(4):367~373
    [103]周劲松,骆仲泱,任建莉等.煤裂解或燃烧条件下汞的析出规律研究[J].燃烧科学与技术,2002,8(2):103~108
    [104]Stephen N, Naoki F. Estimating Hg emissions from coal-fired power stations in China[J]. 2009,88:214~217
    [105]于欢欢.高活性吸收剂烟气脱汞试验研究[D].河北保定:华北电力大学(保定),2006
    [106]Jean B. Full-scale evaluation of sorbent injection for mercury control on coal-fired power plants[J]. Fuel Processing Technology,2004,85:549~562.
    [107]Cheng Chin-min, Chen Chien-wei, Zhu Jiashun et al. Measurement of vapor phase mercury emissions at coal-fired power plants using regular and speciation sorbent traps with in-stack and out of stack sampling method[J]. Energy & Fuels,2009,23:4831~4839
    [108]Lopez-Anton M A, Tascon J M D, Martinez-Tarazona M R. Retention of mercury in activated carbons in coal combustion and gasification flue gases[J]. Fuel Processing Technology, 2002,77:353~358
    [109]Mercedes M, Zhang Y, Graniteb E J et al. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample[J]. Fuel, 2005,84(1):105~108
    [110]Liu W, Vidic R.D, Brown T D. Optimization of sulfur impregnation protocol for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal[J]. Environmental Science and Technology 1998,32:531~538
    [111]Korpiel J A, Vidic R D. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury[J]. Environmental Science and Technology,l997,31:2319-2325
    [112]Li S G, Deng S, Wu A, Pan W P. Impact of the addition of chicken litter on mercury speciation and emissions from coal combustion in a laboratory-scale fluidized bed combustor[J]. Energy & Fuels,2008,22:2236~2240
    [113]Everett A S, Steven A B, John H P. Status of research on air quality:mercury, trace elements, and particulate matter[J]. Fuel Processing Technology,2000,65-66:5~19
    [114]Chen L, Duan Y, Zhuo Y et al. Mercury transformation across particulate control devices in six power plants of China:the co-effect of chlorine and ash composition[J]. Fuel,2007,86:601~ 603
    [115]Cao Yan, Cheng Chin-min, Chen Chien-wei et al. Abatement of mercury emissions in the coal combustion process equipped with a fabric filter baghouse[J]. Fuel,2008,87:3322~3330
    [116]Chen L, Zhuo Y, Zhao X et al. Thermodynamic comprehension of the effect of basic ash compositions on gaseous mercury transformation[J]. Energy & Fuels,2007,21:501~505
    [117]王立刚,彭苏萍,陈昌和.燃煤飞灰对锅炉烟道气中Hg0的吸附特性[J].环境科学,2003,24(6):59~62
    [118]彭苏萍,王立刚.燃煤飞灰对锅炉烟道气汞的吸附研究[J].煤炭科学技术,2002,30(9):33~35
    [119]Malyuba A A, Neville G P. Synthesis and characterization of a nano-structured sorbent for the direct removal of mercury vapor form flue gases by chelation[J]. Chemical Engineering Science,2005,60(7):1901~1910
    [120]Huggins F E, Yap N, Huffman G P et al. XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures[J]. Fuel Processing Technology,2003,83:167~ 196
    [121]Sandra V, Roberto P. Deposition of sulfur from H2S on porous adsorbents and effect on their mercury adsorption capacity[J].Geothermics,1999,28:341~354
    [122]Yang Hong-min, Pan Wei-ping. Transformation of mercury speciation through the SCR system in power plants[J]. Journal of Environmental Science,2007,19:181~184.
    [123]Zhuang Ye, Laumb Jason, Liggett Richard, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technology,2007,88:929~934
    [124]许绿丝,程俊峰,曾汉才.煤燃烧过程中痕量元素As、Cd、Cr释放特性实验研究[J].热能动力工程,2004,19(5):478~482
    [125]何争光.大气污染控制工程及应用实例[M].北京:化学工业出版社,2004
    [126]鲍静静,杨林军,蒋振华等.湿法脱硫工艺对汞的脱除性能研究进展[J].现代化工,2008,28(3):31~35
    [127]宋立民,赵毅,赵音等.液相同时脱硫脱硝技术研究[J].电力环境保护,2007,23(1):46~48
    [128]Carolina A, Kevin B, Guenter S et al. The effect of chlorine and oxygen concentration s on the removal of mercury at an FGD-batch reactor[J]. Fuel,2009,88(12):2489~2494
    [129]Stephen N, Naoki F. Estimating Hg emissions from coal-fired power stations in China[J]. Fuel,2009,88(1):214~217
    [130]Mercedes D S. Mercury emission control in coal-fired plants:The role of wet scrubbers[J]. Fuel Processing Technology,2007,88:259~263
    [131]Evan J G, Mark C F, Richard A H et al. The thief process for mercury removal from flue gas[J]. Journal of Environmental Mangagement,2007,84(4):628~634
    [132]Paul S, Kevin E. Redinger N. Demonstration of additive use for enhanced mercury emissions control in wet FGD systems[J]. Fuel Processing Technology,2004,85:587~600
    [133]Renninger S A, Farthing G A, Ghorishi S B et al. Effect of SCR catalyst, Ammonia injection and sodium Hydrosulfide on speciation and removal of mercury within a forced-oxidized limestone scrubber. Presented at combined power plant air pollution control mega symposium, Washington DC, August 30-Sept 2,2004.
    [134]Diaz-Somoano M, Unterberger S, Hein K. Using wet FGD systems for mercury removal[J]. Journal of Environment Monitoring,2005,7:906~918
    [135]Lin C J, Simo O P. The chemistry of atmospheric mercury: a review[J]. Atmospheric Environment,1999,33:2067~2079
    [136]刘俊华,王文华,彭安.北京市二个主要工业区汞污染来源的初步研究[J].环境科学学报,1998,18(3):331~336
    [137]Lipfert F W, Moskowitz P D, Ftherakis V et al. Assessment of adult risks of paresthesia due to mercury from coal combustion[J]. Water, Air and Soil Pollution,1995,80(1-4):1139~1148
    [138]Kellie S, Cao Y, Duan, Y F et al. Factors Affecting Mercury Speciation in a 100-MW Coal-Fired Boiler with Low-NOx Burners[J]. Energy & Fuels,2005,19:800~806.
    [139]Agarwal H, Stenge H G, Wu S et al. Effects of H2O, SO2, and NO on Homogeneous Hg oxidation by C12[J]. Energy & Fuels,2006,20:1068~1075
    [140]Zhou Jin-song, Luo Zhong-yang, Hu C et al. Factors impacting gaseous mercury speciation in post-combustion[J]. Energy & Fuels,2007,21:491~495.
    [141]Diaz-Somoano M, Unterberger S, Hein Klaus R G. Mercury emission control in coal-fired plants:The role of wet scrubbers[J]. Fuel Processing Technology,2007,88:259~263.
    [142]Romero C E, Li Y, Bilirgen H et al,. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers[J]. Fuel,2006,85:204~212
    [143]陈武.大气中不同形态汞的采集与分析方法进展[J].化学工程与装备,2009, (7):209~213.
    [144]卢平,吴江,潘伟平.860 MW煤粉锅炉汞排放及其形态分布的研究[J].动力工程,2009,29(11):1067~1072
    [145]John C Chang. Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber[J]. Environment Science Technology.2003,37:5763~5766
    [146]John C.S. Chang, Yongxin Zhao. Pilot plant testing of elemental mercury re-emission from wet scrubbers, Mega Symposium:August 28-31,2006, Baltimore, MD, USA
    [147]李守信,胡玉亭,纪立国.湿式石灰石-石膏法烟气脱硫中石膏质量的工艺控制因素[J].电力环境保护,2002,18(3):5~7
    [148]周祖飞.燃煤电厂烟气脱硫系统的运行优化[J].浙江电力,2008,27(5):39~42
    [149]王俊.燃煤电厂石灰/石灰石浆液洗涤法脱硫技术的分析[J].浙江电力,2001,20(3):59~61
    [150]王书肖,刘敏,蒋靖坤,郝吉明,吴烨,David G. Streets中国非燃煤大气汞排放量估算[J].环境科学,2006,27(12):2401~2406
    [151]Pushan S, Vladimir S, Kathryn P et al. Speciation of As, Cr, Se and Hg under coal fired power station conditions[J]. Fuel,2008,87:1859~1869

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700