煤颗粒热反应过程中宏观动力学模型的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界仅有的几个以煤为主要能源的国家之一,煤资源作为我国能源消费的主要支柱的局面必然长期存在。然而它的不可再生性以及附带产生的诸多环境问题,已经严重制约了人类的可持续发展,也逐渐受到全世界的广泛关注与重视。煤的利用带来的污染是我国大气污染的主要来源,因而提高我国煤炭利用效率、减少煤炭利用带来的环境污染是我们急待解决的问题。因此,本文以中国三种典型煤种焦作无烟煤、云浮烟煤和小龙潭褐煤为研究对象,对煤热解和燃烧/气化机理及模型进行了详细系统的研究,对于加深认识煤热解、燃烧和气化过程,揭示其本质具有重要的意义。
     首先采用气体分析仪开展了煤固定床热解的实验研究,对煤热解过程中气体产物的析出特性进行了实时在线分析,利用Weibull分布函数的特点和阶梯函数的性质,建立了简化的DAEM模型,并对该模型进行修正。研究结果表明,升温速率、温度和煤种是影响煤热分解气体产物释放特性的主要因素。煤热分解过程中气体产物析出浓度的峰值随升温速率的升高而增大,且H2的释放发生在较高温度段。热解温度越高,主要气体产物(CO2、CO和CH4)析出浓度的峰值越大,并且主要气体产物释放特性随煤种的不同而差异较大。通过简化的DAEM模型和修正的DAEM模型,对煤热解过程中气体产物析出特性的模拟结果比较发现,这两个DAEM模型都能较好的模拟实验结果,但修正的DAEM模型的模拟值与实验数据更接近。
     采用TG/DTG方法对三种典型煤种在化学反应控制条件下O2/C02燃烧特性进行研究,利用分形理论描述颗粒内部孔隙结构,并对随机孔模型中固定的结构参数(?)进行修正,然后建立了分形随机孔模型。研究结果表明,三种典型煤种在低温条件下O2/C02燃烧过程中,在反应起始阶段分形维数变化很小,而后阶段分形维数急剧减少。另外,热解终温对焦结构的影响是不可忽略的,这主要是由于孔隙结构的变化主要受挥发分析出和焦受热变形的影响。在煤焦燃烧过程中(?)的变化可分为两个阶段:在X=0~0.7阶段,(?)基本上保持不变,且起始阶段(X=0~0.3),(?)是略微减少,这主要由于在反应起始阶段大量新孔的产生和微孔的扩容使反应面积明显增加而造成;在后阶段(X=0.7~1),(?)急剧上升,这主要是由于在后阶段孔坍塌造成反应面积的急剧减少。通过五种不同随机孔模型,对三种典型煤焦燃烧过程进行预测的结果比较发现,分形随机孔模型和Struis模型在整个反应阶段均能得到较好的预测结果,而前者更精确。
     在热重分析仪和固定床上对三种典型煤焦在扩散控制条件下O2/C02燃烧特性进行研究,根据反应气体和焦颗粒的偏微分质量守恒方程,利用逼近的方法简化和求解该偏微分质量守恒方程,建立了在扩散控制条件下预测煤焦反应性的模型。研究结果表明,三种煤焦在不同转换率的吸附等温线虽然在形态上稍有差别,但都呈反“S”形,并且随着转换率的升高其吸附量先增大后减小。在不同转换率条件下煤焦吸附等温线在形态上存在着差异,这意味着在不同转换率条件下焦的孔径分布是不同的。此外,在起始阶段三种典型煤在高温条件下燃烧比表面积都有增加趋势,这主要是由于煤颗粒新孔的产生和微孔的扩容。而微孔孔容积与比表面积的变化规律非常相似,这是由于比表面积主要由微孔来提供。通过不同模型对实验数据的预测结果比较发现,本章中改进的量化模型在整个反应阶段均能得到较好的预测结果,这表明在扩散控制条件下该模型能够作为一种快速合理的方法来预测煤焦反应特性。
     最后在热重分析仪和沸腾炉上开展了煤与水蒸气气化的实验研究,对煤水蒸气气化特性进行了研究,并利用修正的DAEM模型模拟实验结果。研究结果表明,煤种和温度是影响煤水蒸气气化气体产物释放特性的重要因素。煤水蒸气气化气体产物析出浓度峰值的变化与煤的挥发分含量有关,低挥发分煤与高挥发分煤气化气体析出浓度峰值的变化明显有差异。气化温度越高,气化时气体产物析出浓度的峰值越大,达到其峰值所需的时间越短,且在不同温度下煤气化时气体产物的体积分数的变化也明显不同,高挥发分煤气化时气体产物体积分数的变化相对较小。修正的DAEM能够较好的模拟低挥发分煤水蒸气气化过程中焦的反应特征,但该模型模拟高挥发分煤气化反应特征的效果明显较差,这可能是由于煤的高挥发分使其气化过程中出现第二次反应高峰的现象,从而使其模拟结果产生误差。
China is one of only several countries with coal as the main source of energy in the world, so the situation of coal resources as the main energy consumption will exist for a long time. However, it's non-renewable and incidental to the many environmental problems, which have seriously hampered the sustainable development of mankind, should have gradually been worldwide attention. Pollution caused by the utilization of coal is main source of air pollution in China, thereby improving the efficiency of the utilization of coal and reducing environmental pollution caused by the utilization of coal is pressing problem. Jiaozuo anthracite, Yunfu bituminous, Xiaolongtan lignite were used in this study as the representatives of three typical Chinese coals, and coal pyrolysis and combustion/gasification mechanism and model were studied in detail, which should understand better coal pyrolysis, combustion and gasification process and reveal its nature is of great significance.
     First, the pyrolysis of coal was studied using a bench scale fixed bed reactor coupled with gas analyzer. The release properties of gas products during coal pyrolysis were analyzed on-line. Using the characteristics of Weibull distribution function and the nature of step function, simplified DAEM was established and this model to be amended in this chapter. The results show that the heating rate, temperature and coal type are important factors for the gas releasing characteristics during coal pyrolysis. The peak of the gas products concentration increases with the pyrolysis temperature increasing during coal pyrolysis, With increasing pyrolysis temperature, the peak of the main gas products (CO2, CO and CH4) concentration increases, and the release properties of the main gas products during coal pyrolysis due to the difference of coal type is larger distinction. Compared with simplified DAEM and modified DAEM predicting the release properties of gas products during coal pyrolysis, it was found that two DAEM were more accurate to describe the experimental results, especially to the DAEM improved in this chapter.
     The combustion of Chinese three typical coal chars in O2/CO2 under chemical reaction control was studied using a TG/DTG. The internal pore structure of the coal chars was investigated with the help of fractal theory, and structure parameterΨin random pore model is modified based on pore fractal feature and fractal random pore model was constructed. The results showed that coal chars combustion under O2/CO2 atmosphere at lower temperature fractal dimensions slightly change at the initial stage, and then kept stable in the middle stage before decreasing drastically. On the other hand, the effect of final pyrolysis temperature for pore structure can not be negligible, this phenomenon was mainly caused by the changes of pore structure affected by devolatilization and thermal deformation of the char. The change of parameterΨcan be divided into the following two categories,Ψis almost constant at this stage of reaction (X=0-0.7), thoughΨdecreases slightly during the initial stage of the reaction (X=0-0.3). This phenomenon is mainly caused by generation of a large number of new pores and micropore expansion. At the end of stage (X=0.7-1),Ψvalues increase remarkably. Structure evolution in particles at this stage is mainly caused by pore collapse which also makes reaction surface decrease gradually. Compared to the results calculated by five different random pore models, the prediction results of fractal random pore model and Struis model are better throughout the conversion period, especially to the prediction results of fractal random pore model.
     The combustion of Chinese three typical coal chars in O2/CO2 under diffusion controlled condition was studied using the thermogravimetric balance and the bench scale fixed bed. The methodology developed is based on an approximate method for decoupling partial differential mass conservation equation, and a mathematical model was created to describe the reaction rates of coal chars under diffusion controlled condition. The results show that the adsorption isotherm curves of three kinds of coal chars in the various conversions slightly distinct in shape, but they were tested against "S" shape, and its adsorption first increases and then decreases with increasing carbon conversions. The adsorption isotherms curves of coal chars prepared at various carbon conversions is diverse, it can be indicated that pore size distribution of coal chars is different at various carbon conversions. In addition, the specific surface area SBET of three typical coal combustion at high temperature has an increasing trend at the initial stage, which is mainly caused by generation of a large number of new pores and micropore expansion. The variation of the micropore volume and surface area is very similar, which mainly due to the specific surface area determined by the micropore. Compared to the results calculated by the models, the prediction results of the model improved in this chapter are better throughout the conversion period, it indicates that this model can be recommended as a quick and reasonable way to predict the reaction rates of coal chars under diffusion controlled condition.
     Finally, the steam gasification of coal was studied using thermogravimetric and the fluidized bed furnace. The characteristics of coal steam gasification were investigated, and modified DAEM model was used to simulate the experimental results. The results show that coal type and temperature are important factors for the gas products releasing characteristics during coal steam gasification. The change trends of the maximum gas releasing concentration during coal steam gasification is related with volatile content, the change trends of the maximum gas releasing concentration of the low volatile coal and high volatile coal is different. With increasing gasification temperature, the peak of the main gas products concentration increases and reached its peak at the shorter time. The changes of the volume fraction of gas products during coal steam gasification is also significantly different, the changes of the volume fraction of gas products during high volatile coal gasification is smaller. Modified DAEM can simulate better the characteristic of char reaction during the low volatile coal steam gasification. The results simulated by this model during the high volatile coal gasification have rather big difference with experimental results. This phenomenon may be due to the high volatile coal that makes the gasification reaction occur the phenomenon of the second peak, and the errors of simulation results are caused by it.
引文
[1]唐炼.世界能源供需现状与发展趋势.国际石油经济,2005,13(1):30-33.
    [2]林宗虎.论未来的中国能源.自然杂志,2001,23(3):125-130.
    [3]刘晶.燃烧过程中痕量元素释放与反应机理的研究:[博士学位论文].武汉:华中科技大学,2007.
    [4]陈巧巧.O2/C02条件下煤焦颗粒孔隙结构及表面官能团演变:[硕士学位论文].武汉:华中科技大学,2009.
    [5]陈鹏.中国煤的分类、性质和用途.北京:化学工业出版社,2001.
    [6]胡松.煤焦颗粒的物理结构及其在燃烧过程中的非线性特性的试验研究:[博士学位论文].武汉:华中科技大学,2005.
    [7]E.B. Ledesma, C.Z. Li, P.F. Nelson, J.C. Mackie. Release of HCN, NH3, and HNCO from the Thermal Gas-Phase Cracking of Coal Pyrolysis Tars. Energy Fuels,1998, 12(3):536-541.
    [8]http://www.csnyw.cn/view.php?id=1912.
    [9]S. Badzioch, R.H. Biddulph, GK. Creffield, J.B. Martin, R. Thompson, A.J. Wickens. The production-scale extrusion of glass fibre-reinforced aluminium. Composites, 1978,9(4):278-282.
    [10]W. Nusselt. Die verbrennung und die vergasung der kohle auf dem rost. International Journal of Heat and Mass Transfer,1961,3(4):359-369.
    [11]K.H. Van Heek, W. Hodek. Structure and pyrolysis behaviour of different coals and relevant model substances. Fuel,1994,73(6):886-896.
    [12]H. Kobayashi, J.B. Howard, A.F. Sarofim. Coal devolatilization at high temperatures. Symposium (International) on Combustion,1977,16(1):411-425.
    [13]E.M. Suuberg, W.A. Peters, J.B. Howard. Product compositions and formation kinetics in rapid pyrolysis of pulverized coal—Implications for combustion. Symposium (International) on Combustion,1979,17(1):117-130.
    [14]D.B. Anthony, J.B. Howard, H.C. Hottel, H.P. Meissner. Rapid devolatilization of pulverized coal. Symposium (International) on Combustion,1975,15(1):1303-1317.
    [15]谢克昌.煤的结构与反应性.北京:科学出版社,2002.
    [16]P.E. Unger, E.M. Suuberg. Molecular weight distributions of tars produced by flash pyrolysis of coals. Fuel,1984,63(5):606-611.
    [17]E.M. Suuberg, P.E. Unger, D.L. William. Experimental study on mass transfer from pyrolysing coal particles. Fuel,1985,64(7):956-962.
    [18]GR. Gavalas, S. Kim. Periodic capillary models of diffusion in porous solids. Chemical Engineering Science,1981,36(7):1111-1122.
    [19]Y.C. Yortsos, G.R. Gavalas. Heat transfer ahead of moving condensation fronts in thermal oil recovery processes. International Journal of Heat and Mass Transfer, 1981,25(3):305-316.
    [20]K. Miura, M. Aimi, J. Naito, K. Hashimoto. Steam gasification of carbon effect of several metals on the rate of gasification and the rates of CO and CO2 formation. Fuel,1986,65(3):407-411.
    [21]M. Schnial, J.L.F. Monteiro, J.L. Castellan. Kinetics of coal gasification. Industrial Engineering Chemistry Process Design and Development,1982,21(2):256-266.
    [22]O. Levenspiel. Chemical Reactions Engineering. New Delhi:Wiley Eastern,1974.
    [23]周华,王强,陈志雄,王知彩,水恒福.神华煤热解特性与非等温动力学研究.煤化工,2010,2(147):27-31.
    [24]赵丽红,楚希杰,辛桂艳.煤热解特性及热解动力学的研究.煤质技术,2010,1(1):39-42.
    [25]王俊琪,方梦祥,骆仲泱,岑可法.煤的快速热解动力学研究.中国电机工程学报,2007,27(17):18-22.
    [26]姚昭章,韩永霞.不同煤化程度煤的热解动力学参数.煤化工,1994,67(2):34-40.
    [27]P. Grammelis, P. Basinas, A. Malliopoulou, G Sakellaropoulos. Pyrolysis kinetics and combustion characteristics of waster recovered fuels. Fuel,2009,88(1):195-205.
    [28]张妮,曾凡桂,降文萍.中国典型动力煤种热解动力学分析.太原理工大学学报,2005,36(5):449-552.
    [29]杨景标,张彦文,蔡宁生.煤热解动力学的单一反应模型和分布活化能模型比较.热能动力工程,2010,25(3):301-305.
    [30]Q.R. Liu, H.Q. Hu, Q. Zhou, S.W. Zhu, G.H. Chen. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel,2004,83(6):713-718.
    [31]朱学栋,朱子彬,张成芳.煤热失重动力学的研究.高校化学工程学报,1999,13(3):223-228.
    [32]A. Quek, R. Balasubramanian. An algorithm for the kinetics of tire pyrolysis under different heating rates. Journal of Hazardous Materials,2009,166(1):126-132.
    [33]王新运,陈明强,王君,万新军.生物质热解动力学模型的研究.化学与生物工程,2009,26(7):61-63.
    [34]S. Niksa. FLASHCHAIN theory for rapid coal devolatilization kinetics.3. Modeling the behavior of various coals. Energy Fuels,1991,5(5):673-683.
    [35]J.A. Conesa, J.A. Caballero, A.M.R. Font. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochimica Acta,1995,254:175-192.
    [36]C.D. Blasi. Influence of model assumptions on the prediction of cellulose pyrolysis in the heat transfer controlled regime. Fuel,1996,75(1):58-66.
    [37]G.Y. Chen, M.X. Fang, J. Andries, Z.Y. Luo, H. Spliethoff, K.F. Cen. Kinetics study on biomass pyrolysis for fuel gas production. Journal of Zhejiang University Science, 2003,4(4):441-447.
    [38]J.M. Jones, P.M. Patterson, M. Pourkashanian, A.Williams, A. Arenillas, F. Rubiera, J.J. Pis. Modelling NOx formation in coal particle combustion at high temperature: an investigation of the devolatilisation kinetic factors. Fuel,1999,78(10): 1171-1179.
    [39]V.Vand. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proceedings of the Physical Socielty,1943,55(3):222-246.
    [40]G.J. Pitt. The kinetics of the evolution of volatile products from coal. Fuel,1962, 41(3):267-274.
    [41]D.B. Anthony, J.B. Howard, H.C. Hottel, H.P. Meissner. Devolatilization and Hydrogasification of Bituminous Coal. Fuel,1976,55(1):121-128.
    [42]K. Miura. A New and Simple Method to Estimate f(E) and ko(E) in the Distributed Activation Energy Model from Three Sets of Experimental Data. Energy Fuels,1995, 9(2):302-307.
    [43]刘旭光,李保庆DEAM模型研究大同煤及其半焦的气化动力学.燃料化学学报,2000,28(4):289-293.
    [44]X.G. Liu, B.Q. Li, K. Miura. Analysis of pyrolysis and gasification reactions of hydrothermally and supercritically upgraded low-rank coal by using a new distributed activation energy model. Fuel Processing Technology,2001,69(1):1-12.
    [45]E. Biagini, F. Lippi, L. Petarca, L. Tognotti. Devolatilization rate of biomasses and coal-biomass blends:an experimental investigation. Fuel,2002,81(8):1041-1050.
    [46]J.M. Cai, L.Q. Ji. Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass. Journal of Mathematical Chemistry,2007,42(3):547-553.
    [47]J.M. Cai, R.H. Liu. New distributed activation energy model:Numerical solution and application to pyrolysis kinetics of some types of biomass. Fuel,2008,99(8): 2795-2799.
    [48]C.C. Lakshmanan, N. White. A new distributed activation energy model using Weibull distribution for the representation of complex kinetics. Energy Fuels,1994, 8(6):1158-1167.
    [49]P.R. Solomon, M.A. Serio, R.M. Carangelo, R. Bassilakis. Analysis of the Argonne premium coal samples by thermo-gravimetric Fourier transform infrared spectroscopy. Energy Fuels,1990,4(3):319-333.
    [50]P. R. Solomon, D.G. Hamblen, R. Carangelo, M. A. Serio, G.V. Deshpande. General model of coal devolatilization. Energy Fuels,1988,2(4):405-422.
    [51]S. Sommariva, T. Maffei, G. Migliavacca, T. Faravelli, E. Ranzi. A predictive multi-step kinetic model of coal devolatilization. Fuel,2010,89(2):318-328.
    [52]阴秀丽.固体生物质循环流化床气化炉数学模型的研究:[硕士学位论文].广州:中国科学院广州能源研究所,1993.
    [53]徐振刚,刘国海,于涌年.煤催化气化反应的收缩模型.化工学报,1988,39(4):488-494.
    [54]张泽凯,王黎,刘业奎,冯霄.煤催化气化的修正收缩核反应模型研究.西安交 通大学学报,2003,37(11):1190-1193.
    [55]吴学成,王勤辉,骆仲泱,方梦祥,岑可法.不同常压流化床煤气化方案的模型预测:Ⅰ模型建立及验证.燃料化学学报,2004,32(3):287-291.
    [56]T.W. Kwon, S.D. Kim, P.C. Fung. Reaction kinetics of char-CO2 gasification. Fuel, 1988,67(4):530-535.
    [57]M. A. Hastaoglu, M. S. Hassam. Application of a General Gas-solid Reaction Model to Flash Pyrolysis of Wood in a Circulating Fluidized Bed. Fuel,1995,74(5): 697-700.
    [58]向银花,李海滨,黄戒介,张建民,王洋.气氛对神木煤部分气化煤焦再气化动力学参数的影响.燃料化学学报,2004,32(2):151-154.
    [59]R.P.W.J. Struis, C. von Scala, S. Stucki, R. Prins. Gasification reactivity of char coal with Co2. Part I:Conversion and structural phenomena. Chemical Engineering Science,2002,57(17):3581-3592.
    [60]S.K. Bhatia, B.J. Vartak. Reaction of microporous solids:the discrete random pore model. Carbon,1996,34(11):1383-1391.
    [61]J.S. Gupta, S.K. Bhatia. A modified discrete random pore model allowing for different initial surface reactivity. Carbon,2000,38(1):47-58.
    [62]H. Liu, C.H. Luo, M. Kaneko, S. Kato, T. Kojima. Unification of gasification kinetics of char in CO2 at elevated temperatures with a modified random pore model. Energy Fuels,2003,17(4):961-970.
    [63]T. Morimoto, T. Ochiai, S. Wasaka, H. Oda. Modeling on Pore Variation of Coal Chars during CO2 Gasification Associated with Their Submicropores and Closed Pores. Energy Fuels,2006,20(1):353-358.
    [64]A. Gomez-barea, P. Ollero. An approximate method for solving gas-solid non-catalytic reactions. Chemical Engineering Science,2008,61(11):3725-3735.
    [65]H.H. Rafsanjani, E. Jamshidi, M. Rostam-Abadi. A new mathematical solution for predicting char activation reactions. Carbon,2002,40(8):1167-1171.
    [66]Q. Chen, R. He, X.C. Xu, Z.G. Liang. Experimental Study on Pore structure and Apparent Kinetic Parameters of Char Combustion in Kinetics-Controlled Regime. Energy Fuels,2004,18(5):1562-1568.
    [67]X.L. Wang, R. He, Y.L. Chen. Evolution of porous fractal properties during coal devolatilization. Fuel,2008,87(6):878-884.
    [68]P.U. Sastry, D. Sen, S. Mazumder, K.S. Chandrasekaran. Structural variations in lignite coal:a small angle X-ray scattering investigation. Solid State Communication, 2000,114(6):329-333.
    [69]R. He, X.C. Xu, C.H. Chen, H.L. Fan, B. Zhang. Evolution of pore fractal dimensions for burning porous chars. Fuel,1998,77(12):1291-1295.
    [70]S. Hu, M. Li, J. Xiang, L. Sun, P. Li, S. Su, X. Sun. Fractal characteristic of three Chinese coals. Fuel,2004,83(10):1307-1313.
    [71]S.K. Bhatia, D.D. Perlmutter. A Random Pore Model for Fluid solid Reactions:I Isothermal, kinetic Control. AIChE Journal,1980,26(3):379-386.
    [72]杨帆,范晓雷,周志杰,刘海峰,龚欣,于遵宏.随机孔模型应用于煤焦与CO2气化的动力学研究.燃料化学学报,2005,33(6):71-76.
    [73]郭树才.煤化学工程.北京:冶金工业出版社,1991.
    [74]沙兴中,孙淑君,李延龙.展望21世纪中国洁净煤技术.洁净煤技术,1999,5(2):5-8.
    [75]N.V. Russell, J.R. Gibbins, C.K. Man, J. Williamson. Coal char thermal deactivation under pulverized fuel combustion conditions. Energy Fuels,2000,14(4):883-888.
    [76]R.G. Jenkins, S. Nandi, P. L. Walker. Reactivity of heat-treated coal air at 500℃. Fuel, 1973,52(4):288-293.
    [77]J.M. Jones, A.W. Harding, S.D. Brown, K.M. Thomas. Detection of reactive intermediate nitrogen and sulfur species in the combustion of carbons that are models for coal chars. Carbon,1995,33(1):833-843.
    [78]S. Middleton, J.W. Patrick, A. Walker. The release of coal nitrogen and sulfur on pyrolysis and partial gasification in a fluidized bed. Fuel,1997,76(13):1195-1200.
    [79]A. J. Bushell, J. Williamson. The fate of trace elements in coal during gasification. Fuel and Energy Abstracts,1996,37(6):421-425.
    [80]梁杰,刘淑琴,余力,项友谦,刘庄.煤气化反应动力学特征的研究.中国矿业大学学报,2000,29(4):400-402.
    [81]C.J. Hindmarsh, K.M. Thomas, W.X. Wang, H.Y. Cai, A.J. Guell, D.R. Dugwell, R. Kandiyoti. A comparison of the pyrolysis ofcoalinwire-mesh and entrained-flow reactors. Fuel,1995,74(8):1185-1190.
    [82]程晓青.煤焦气化特性研究:[硕士学位论文].武汉:华中科技大学,2008.
    [83]杨景标,蔡宁生,李振山.几种金属催化褐煤焦水蒸气气化的实验研究.中国电机工程学报,2007,27(26):8-12.
    [84]K. Kuramoto, K. Ohtomo, K. Suzuki, S. Fujimoto, S. Shibano, K. Matsuoka, Y. Suzuki, H. Hatano, O. Yamada, L. Shi-Ying. Localized interaction between coal-included minerals and Ca-based CO2 sorbents during the high-pressure steam coal gasification (HyPr-RING) process. Industrial Engineering Chemistry Research, 2004,43(25):7989-7995.
    [85]许慎启,周志杰,杨帆,于广锁,于遵宏.快速热解温度下的淮南煤焦与水蒸汽气化反应的研究.高校化学工程学报,2008,22(6):947-953.
    [86]王明敏,张建胜,岳光溪,吕俊复,须田俊之,高藤诚.煤焦与水蒸气的气化实验及表观反应动力学分析.高校化学工程学报,2008,28(5):34-38.
    [87]M.A. Hastaoglu, M.S. Hassam. Application of a General Gas-solid Reaction Model to Flash Pyrolysis of Wood in a Circulating Fluidized Bed. Fuel,1995,74(5): 697-700.
    [88]周静,龚欣,郭小雷,于遵宏.煤低温实验研究(Ⅰ)氮气中煤低温加热性质变化.煤炭转化,2002,25(4):13-18.
    [89]周静,龚欣,于遵宏.反应气流量和煤样粒度对煤焦气化影响.煤炭转化,2003,26(2):34-38.
    [90]M.R. Khan. Significance of char active surface area for appraising the reactivity of low- and high-temperature chars. Fuel,1987,66(12):1626-1634.
    [91]H. Liu, M. Kaneko, C.H. Luo, S. Kato, T. Kojima. Effect of pyrolysis time on the gasification reactivity of char with CO2 at elevated temperatures. Fuel,2004,83(7-8): 1055-1061.
    [92]王明敏,张建胜,张守玉,吴晋沪,岳光溪.热解条件对煤焦比表面积及孔隙分布的影响.煤炭学报,2008,33(1):76-79.
    [93]S. Kambara, T. Takarada, Y. Yamamoto, K. Kato. Relation between Functional Forms of Coal Nitrogen and Formation of NOx Precursors during rapid pyrolysis. Energy Fuels,1993,7(6):1013-1020.
    [94]Q.R. Liu, H.Q. Hu, Q. Zhou. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel,2004,83(6):713-718.
    [95]Q.R. Liu, B.Q. Li, K. Miura. Analysis of pyrolysis and gasification reactions of hydrothermally and supercritically upgraded low-rank coal by using a new distributed activation energy model. Fuel Processing Technology,2001,69(1):1-12.
    [96]M.A. Wojtowicz, R. Bassilakis, W.W. Smith, Y.G. Chena, R.M. Carangelo. Modelling the evolution of volatile species during tobacco pyrolysis. Journal of Analytical and Applied Pyrolysis,2003,66(1-2):235-261.
    [97]M. Giine, S. Gune. A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data. Applied Mathematics and Computation, 2002,130(2-3):619-628.
    [98]M. Giine, S. Gune. The influences of various parameters on the numerical solution of nonisothermal DAEM equation. Thermochimica Acta,1999,336(1-2):93-96.
    [99]W.J. Tang, Y.W. Liu, H. Zhang, Z.Y. Wang, C.X. Wang. New Temperature Integral Approximate Formula for Non-isothermal Kinetic Analysis. Journal of Thermal Analysis and Calorimetry,2003,74(1):309-315.
    [100]J.M Cai, F. He, W.M. Yi, F.S. Yao. A new formula approximating the Arrhenius integral to perform the nonisothermal kinetics. Chemical Engineering Journal,2006, 124(1-3):15-18.
    [101]Y. Sezen. A method for determination of chemical rate mostly encountered in coal combustion processes. International Journal of Heat and Mass Transfer,1988,31(6): 1319-1322.
    [102]K. Miura, T. Maki. A Simple Method for Estimating f(E) and ko(E) in the Distributed Activation Energy Model. Energy Fuels,1998,12(5):864-869.
    [103]G. Wang, W. Li, B.Q. Li, H.K. Chen. TG study on pyrolysis of biomass and its three components under syngas. Fuel,2008,87(4-5):552-558.
    [104]D.K. Shen, S. Gu, B.S. Jin, M.X. Fang. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresource Technology,2011,102(2):2047-2052.
    [105]常丽萍,赵娅鸿.煤中固有矿物质在热解过程中对氮释放的影响.煤炭转化,2005,28(2):36-38.
    [106]刘辉,吴少华,孙锐,徐睿,邱朋华,李可夫,秦裕琨.快速热解褐煤焦的比表面积及孔隙结构.中国电机工程学报,2005,25(12):86-90.
    [107]尤先锋.煤热解产物的关联性研究:[硕士学位论文].太原:太原理工大学,2002.
    [108]闫金定,崔洪.热重质谱联用研究兖州煤的热解行.中国矿业大学学报,2003,32(3):311-315.
    [109]赵丽红,郭慧卿,马青兰.煤热解过程中气态产物分布的研究.煤炭转化,2007,30(1):5-9.
    [110]孙庆雷,李文,陈皓侃,李保庆,刘旭光DAEM和Coats-Red fern积分法研究煤半焦燃烧动力学的比较.化工学报,2003,54(11):1598-1602.
    [111]朱学栋,朱子彬,张成芳.煤热失重动力学的研究.高校化学工程学报,1999,13(3):223-228.
    [112]张彦文,杨景标,蔡宁生.煤粉热解组分析出特性的实验研究和DAEM模拟.热能动力工程,2008,23(6):661-665.
    [113]亓自强,刘旭光.分布活化能模型用于模拟蒸馏的初步研究.煤炭转化,2000,23(1):942-961.
    [114]刘旭光,李保庆.分布活化能模型的理论分析及其在半焦气化和模拟蒸馏体系中的应用.燃料化学学报,2001,29(1):54-59.
    [115]N. Sarkar, B.B. Chaudhuri. An efficient approach to estimate fractal dimension of textural images. Pattern Recognit,1992,25(5):1035-1041.
    [116]H.P. Xie, J.A. Wang. Direct fractal measurement of fracture surfaces International. International Journal of Solids and Structures,1999,36(20):3073-3084.
    [117]任有中,符建,陈智波,曹源泉.碳焦结构的电镜分析及其分形描述.燃烧科学与技术,1996,2(1):8-14.
    [118]A.K. Bisoia, J. Mishra. On calculation of fractal dimension of images. Pattern Recognition Letters,2001,22(6-7):631-637.
    [119]J.M. Keller, S. Chen, R.M. Crownover. Texture description and segmentation through fractal geometry. Computer Vision, Graphics, and Image Processing,1989, 45(2):150-166.
    [120]R. Diduszko, A. Swiatkowski, B.J. Trznadel. On surface of micropores and fractal dimension of activated carbon determined on the basis of adsorption and SAXS investigations. Carbon,2000,38(8):1153-1162.
    [121]X. Wang, R. He, Y. Chen. Evolution of porous fractal properties during coal devolatilization. Fuel,2008,87(6):878-884.
    [122]M.M. Mahamud. Textural changes during CO2 activation of chars:A fractal approach. Applied Surface Science,2007,253(14):6019-6031.
    [123]M.M. Mahamud. Textural characterization of active carbons using fractal analysis. Fuel Processing Technology,2006,87(10):907-917.
    [124]M. Mahamud, O. Lopez, J.J. Pis, J.A. Pajares. Textural characterization of chars using fractal analysis. Fuel Processing Technology,2004,86(2):135-149.
    [125]S. Hu, X. Sun, J. Xiang, M. Li, P. Li, L. Zhang. Correlation characteristics and simulations of the fractal structure of coal char. Communications in Nonlinear Science and Numerical Simulation,2004,9(3):291-303.
    [126]S. Guo, J. Peng, W. Li, K. Yang, L. Zhang, S. Zhang, H. Xia. Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Applied Surface Science,2009,255(20):8443-8449.
    [127]N. Passe-Coutrin, V. Jeanne-Rose, A. Ouensanga. Textural analysis for better correlation of the char yield of pyrolysed lignocellulosic materials. Fuel,2005, 84(16):2131-2134.
    [128]J. Hayashi, T. Horikawa, K. Muroyama, V.G. Gomes. Activated carbon from chickpea husk by chemical activation with K2CO3:preparation and characterization. Microporous and Mesoporous Materials,2002,55(1):63-68.
    [129]S.H. Goldthorpe, P.J.J Cross, J.E. Davison. System studies on CO2 abatement from power plant. Energy Conversion Management,1992,33(5-8):459-466.
    [130]S. Nakayama, Y. Noguchi. Pulverized coal combustion in O2/CO2 mixtures on a power plant for CO2 recovery. Energy Conversion Management,1992,33(5-8): 379-386.
    [131]W.F. Wu, C.S. Zhao, Q.Z. Li, W. Zhou. Experimental investigation on calcination/sulphation characteristics of limestone modified by acetic acid solution in O2/CO2 atmosphere. Proceedings of the Combustion Institute,2011,33(2): 3455-3462.
    [132]Y.W. Tan, E. Croiset, M.A. Douglas, K.V. Thambimuthu. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel,2006,85(4): 507-512.
    [133]A.Klas, J. Filip. Process evaluation of an 865MWe lignite fired O2/CO2 power plant. Energy Conversion and Management,2006,47(18-19):3487-3498.
    [134]J.C. Chen, Z.S. Liu, J.S. Huang. Emission characteristics of coal combustion in different O2/N2, O2/CO2 and O2/RFG atmosphere. Journal of Hazardous Materials, 2007,142(1-2):266-271.
    [135]刘彦丰,阎维平,宋之平.炭/碳粒在O2/CO2气氛中燃烧速率的研究.工程热物理学报,1999,20(6):669-672.
    [136]毛玉如,方梦祥,骆仲泱.O2/CO2气氛下煤焦热重试验研究.电站系统工程,2004,20(5):17-18.
    [137]N. Kimura, K. Omata, T. Kiga, S. Shikisima The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recover. Energy Conversion and Management,1995,36(6-9):805-808.
    [138]J. Andersen, C.L. Rasmussen, T. Giselsson, P. Glarborg. Global Combustion Mechanisms for Use in CFD Modeling under Oxy-Fuel Conditions. Energy Fuels, 2009,23(3):1379-1389.
    [139]J. Krzywanski, T. Czakiert, W. Muskala, R. Sekreta, W. Nowak. Modeling of solid fuels combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler: Part 1. The mathematical model of fuel combustion in oxygen-enriched CFB environment. Fuel Processing Technology,2010,91(3):290-295.
    [140]M. Schnial, J.L.F. Montero, J.L. Castellan. Kinetics of coal gasification. Industrial Engineering Chemistry Process Design and Development,1982,21(2):256-266.
    [141]J. Ochoa, M.C. Cassanello, P.R. Bonelli, A.L. Cukierman. CO2 gasification of Argentinean coal chars:a kinetic characterization. Fuel Processing Technology, 2001.
    [142]S. Tanaka, T. U-emura, K. Ishizak, K. Nagayoshi, N. Ikenaga, H. Ohme, T. Suzuki, H. Yamashita, M. Ampo. CO2 Gasification of Iron-Loaded Carbons:Activation of the Iron Catalyst with CO. Energy Fuels,1995,9(1):45-52.
    [143]于遵宏,龚欣,沈大才.加压下煤催化气化动力学研究.燃料化学学报,1990,18(4):324-329.
    [144]K.J. Falconer. Fractal geometry-mathematical foundation and applications. Chichester:Wiley,1990.
    [145]W.K. Chi, D.D. Perlmutter. The Effect of Pore Structure on the Char-steam Reaction. AIChE Journal,1989,35(11):1791-1802.
    [146]L.H. Su, D.D. Perlmutter. Effect of Pore Structure on Char Oxidation Kinetics. AIChE Journal,1985,31(6):973-981.
    [147]S. Balci, G. Dogu, T. Dogu. Structural Variations and a Deactivation Model for Gasification of Coal. Industrial Engineering Chemistry Research,1987,26(7): 1454-1458.
    [148]P.R. Bonelli, P.A. Della Rocca, E.G. Cerrella, A.L. Cukierman. Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil Nut shells. Bioresource Technology,2001,76(1):15-22.
    [149]M. Guerrero, M. Pilar Ruiz, Angela Millera, M.U. Alzueta, R. Bilbao. Characterization of Biomass Chars Formed under Different Devolatilization Conditions:Differences between Rice Husk and Eucalyptus. Energy Fuels,2008, 22(2):1275-1284.
    [150]Y. Hu, S. Natio, N. Kobayashi. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel,2000,79(15):1925-1932.
    [151]Y.Q. Hu, N. Kobayashi, M. Hasatani. Effects of coal properties on recycled-NOx reduction in coal combustion with O2/recycled flue gas. Energy Conversion Management,2003,44(14):2331-2340.
    [152]H. Liu, R. Zailani, B.M. Gibbs. Pulverized coal combustion in air and in O2/CO2 mixtures with NOx recycle. Fuel,2005,84(17):2109-2115.
    [153]E. Croiser, K.V. Thambimuthu. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel,2001,80(14):2117-2121.
    [154]C.M. Chen, C.S. Zhao. Mechanism of highly efficient in furnace desulfurization by limestone under O2/CO2 coal combustion atmosphere. Industrial Engineering Chemistry Research,2006,45(14):5078-5085.
    [155]P. Salatino, O. Senneca, S. Masi. Gasification of a coal char by oxygen and carbon dioxide.1998,36(4):443-452.
    [156]毛玉如,方梦祥,骆仲泱.O2/CO2气氛下煤焦热重试验研究.电站系统工程,2004,20(5):17-18.
    [157]N. Kimura, K. Omata, T. Kiga, S. Takano, S. Shikisima. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recover. Energy Conversion and Management,1995,36(6-9):805-808.
    [158]李英杰,赵长遂,段伦博.O2/CO2气氛下煤燃烧产物的热力学分析.热能动力工程,2007,22(3):332-335.
    [159]刘彦,周俊虎,方磊,李艳昌,曹欣玉,岑可法.O2/CO2气氛煤粉燃烧及固硫特性研究.中国电机工程学报,2004,24(8):224-228.
    [160]陈传敏,赵长遂,庞克亮.O2/CO2气氛下燃煤过程中NOx排放特特性实验研究.东南大学学报,2005,35(5):738-7411.
    [161]L.G. Zheng, E. Furimsky. Assessment of coal combustion in O2/CO2 by equilibrium calculations. Fuel Processing Technology,2003,81(1):23-24.
    [162]J.S. Chern, A.N. Hayhurst. A model for the devolatilization of a coal particle sufficiently large to be controlled by heat transfer. Combustion and Flame,2006, 14(3):553-571.
    [163]W.H. Chen. A simplified model of predicting coal reaction in a partial oxidation environment. International Communications in Heat and Mass Transfer,2007,34(5): 623-629.
    [164]J.S. Andrade, J.Y. Shibusa, Y. Arai, C. McGreavy. A network model for diffusion and adsorption in compacted pellets of bidisperse grains. Chemical Engineering Science,1995,50(12):1943-1951.
    [165]T.W. Kwon, S.D. Kim, P.C. Fung. Reaction kinetics of char-CO2 gasification. Fuel, 1988,67(4):530-535.
    [166]颜金培,杨林军,凡凤仙,沈湘林.基于分形理论的水汽在燃煤细颗粒表面异质 核化数值研究.中国电机工程学报,2009,29(11):50-56.
    [167]A. Sina, K. Sinek, A.T. Teke, Z.M. lu, M. Canel, L. Wang. Study on CO2 gasification reactivity of chars obtained from Soma-Isiklar lignite (Turkey) at various coking temperatures. Chemical Engineering and Processing,2003,42(12):1027-1031.
    [168]S. Lee, J.C. Angus, R.V. Edwards, N.C. Gardner. Noncatalytic coal char gasification. AIChE Journal,1984,30(4):583-593.
    [169]G.Q. Lu, D.D. Do. Comparison of structural models for high-ash char gasification. Carbon,1994,32(2):247-263.
    [170]G.Q. Lu, D.D. Do. A kinetic study of coal reject-derived char activation with CO2, H2O and air. Carbon,1992,30(1):21-29.
    [171]G Brem, J.J.H.Brouwers. Analytical solutions for non-linear conversion of a porous solid particle in a gas—Ⅰ:isothermal conversion. Chemical Engineering Science, 1990,45(7):1905-1913.
    [172]E. Jamshidi, H. Ale-Ebrahim. A new solution technique of moving boundary problems for gas-solid reactions:application to half-order volume reaction model. Chemical Engineering Journal,1996,63(22):79-83.
    [173]E. Jamshidi, H. Ale-Ebrahim. A quantized solution for the nucleation model in gas-solid reactions. Chemical Engineering Journal,1997,68(1):1-6.
    [174]E. Jamshidi, H. Ale-Ebrahim. An incremental analytical solution for gas-solid reactions, application to the grain model. Chemical Engineering Science,1996, 51(18):4253-4257.
    [175]E. Jamshidi, H. Ale-Ebrahim. A new solution technique for gas-solid reactions with structural changes. Chemical Engineering Science,1999,54(6):859-864.
    [176]费华,胡松,向军,孙路石,王贲,苏胜,江龙,陈刚.非线性扩散模型解析煤焦O2/C02高温燃烧特征.中国电机工程学报,2011,31(17):32-37.
    [177]H.H. Rafsanjani, E. Jamshidi. Kinetic study and mathematical modeling of coal char activation. Chemical Engineering Journal,2008,140(1-3):1-5.
    [178]A. Jess, A.K. Andresen. Influence of mass transfer on thermogravimetric analysis of combustion. Fuel,2010,89(7):1541-1548.
    [179]刘彦丰.煤粉在高浓度C02下的燃烧与气化:[博士学位论文].北京:华北电力 大学,2001.
    [180]胡松,孙学信,李敏,向军,孙路石,李玲,程俊峰.煤燃烧过程中表面结构变化的SEM图像分析.燃料化学学报,2001,29(5):463-467.
    [181]W. Chi, D.D. Perlmutter. The Effect of Pore Structure on the Char steam Reaction. AIChE Journal,1989,33(11):1791-1802.
    [182]T. Dogu. The importance of pore structure and diffusion in the kinetics of gas-solid non-catalyst reactions. Reaction of calcined limestone with SO2. Chemical Engineering Journal,1981,21(3):213-221.
    [183]N. Wakao, J.M. Smith. Diffusion in catalyst pellets. Chemical Engineering Science, 1962,17(11):825-834.
    [184]E. Bar-Ziv, I.I. Kantorovich. Mutual effects of porosity and reactivity in char oxidation. Progress in Energy and Combustion Science,2001,27(6):667-697.
    [185]J.L. Yu, J.A. Lucas, T.F. Wall. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties:A review. Progress in Energy and Combustion Science,2007,33(2):135-170.
    [186]胡松,孙学信,向军,李培生,金峰,李敏,马新灵.淮南煤焦颗粒内部孔隙结构在燃烧过程中的变化.化工学报,2003,54(1):107-111.
    [187]E. Bar-Ziv, I.I. Kantorovich. Role of porous structure in char oxidation. Applied Thermal Engineering,1998,18(11):991-1003.
    [188]I.I. Kantorovich, E. Bar-Ziv. Role of the pore structure in the fragmentation of highly porous char particles. Combustion and Flame,1998,113(4):532-541.
    [189]J.L. Yu, J. Lucas, T. Wall, G.S. Liu, C.D. Sheng. Modeling the development of char structure during the rapid heating of pulverized coal. Combustion and Flame,2004, 136(4):519-532.
    [190]H. Lorenz, E. Carrea, M. Tamura, J. Haas. The role of char surface structure development in pulverized fuel combustion. Fuel,2000,79(10):1161-1172.
    [191]G. Liu, P. Benyon, K.E. Benfell, G.W. Bryant, A.G. Tate, R.K. Boyd, D.J. Harris, T.F. Walla. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions. Fuel,2000, 79(6):617-626.
    [192]I. Kulaots, I. Aarna, M. Callejo, R.H. Hurt, E.M. Suuberg. Development of porosity during coal char combustion. Proceedings of the Combustion Institute,2002,29(1): 495-501.
    [193]刘辉,吴少华,孙锐,徐睿,邱朋华,李可夫,秦裕琨.快速热解褐煤焦的比表面积及孔隙结构.中国电机工程学报,2005,25(12):86-90.
    [194]S. Brunauer, L.S. Deming, W.E. Deming, E. Teller. On a theory of the van der Waals adsorption of gases. Journal of American Chemistry Society,1940,62(7): 1723-1732.
    [195]J.H. de Boer. The structure and properties of porous materials. London:Butterworths, 1958.
    [196]S.J. Gregg, K.S.W. Sing. Adsorption, Surface Area and Porosity. New York: Academic press,1982.
    [197]M.M. Dubinin. Fundamentals of the theory of adsorption in micropores of carbon adsorbents:Characteristics of their adsorption properties and microporous structures. Carbon,1989,27(3):457-467.
    [198]A.C. Lua, J. Guo. Preparation and characterization of chars from oil palm waste. Carbon,1998,36(11):1663-1670.
    [199]P.A.D. Rocca, E.G. Cerrella, P.R. Bonelli, A.L. Cukierman. Pyrolysis of hardwoods residues:on kinetics and chars characterization. Biomass Bioenergy,1999,16(1): 79-88.
    [200]平传娟,周俊虎,程军,杨卫娟,岑可法.混煤热解过程中的表面形态.化工学报,2007,58(7):1798-1804.
    [201]费华,胡松,向军,孙路石,石金明,付鹏,陈刚.随机孔模型研究煤焦O2/CO2燃烧动力学特征.化工学报,2011,62(1):199-225.
    [202]M.E. Morgan, R.J. Jenkins, P.L. walker. Inorganic constituents in American lignites. Fuel,1981,60(2):189-193.
    [203]M.E. Morgan, R.J. Jenkins. Pyrolysis of a lignite in an entrained flow reactor:1. Effect of cations on total weight loss. Fuel,1986,65(6):757-763.
    [204]Y.W. Tan, E. Croiset, M.A. Douglas, K.V. Thambimuthu. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel,2006,85(4): 507-512.
    [205]李庆钊,赵长遂.02/C02气氛煤粉燃烧特性试验研究.中国电机工程学报,2007,27(35):39-43.
    [206]李庆钊,赵长遂,武卫芳,李英杰,陈晓平.高浓度C02气氛下煤粉的燃烧及其孔隙特性.中国电机工程学报,2008,28(32):35-41.
    [207]A.K. Sadhukhan, P. Gupta, K.R. Saha. Modelling of combustion characteristics of high ash coal char particles at pressure:Shrinking reactive core model. Fuel,2010, 89(1):162-169.
    [208]赵炜,冯杰,常丽萍,谢克昌,刘美蓉.煤气化过程中生成氮化物的研究.燃料化学学报,2002,30(6):519-522.
    [209]金革,刘桂芬,董求实.煤焦水蒸气气化过程中不同煤种的反应特性与碳结构变化.燃料化学学报,1988,16(1):68-74.
    [210]路霁钨,黎永,杨小勇,岳光溪,李钦义.煤焦的晶格结构、本征反应活性和密度初探.燃料化学学报,1998,26(6):492-496.
    [211]K. Kora, S. Ida. Gasification reactivities of metallurgical cokes with carbon dioxide, steam and their mixture. Fuel,1980,59(1):59-63.
    [212]陈波.不同煤种的高温气化反应性研究:[硕士学位论文].上海:华东理工大学,2003.
    [213]S. Dutta, Y.C. Wen, R.J. Belt. Reactivity of coal and char:I In carbon dioxide atmosphere. Industrial Engineering Chemistry Process Design and Development, 1977,16(1):20-30.
    [214]杨小风,周静,龚欣,于遵宏.煤焦水蒸气气化特性及动力学研究.煤炭转化,2003,26(4):46-50.
    [215]R.C. Messenbock, D.R. Dugwell, R. Kandiyoti. Coal gasification in CO2 and steam: Development of a steam injection facility for high pressure wire-mesh reactors. Energy Fuels,1999,13(1):122-129.
    [216]王同华,林器.褐煤快速热解半焦的孔结构特性.燃料化学学报,1987,15(1):73-78.
    [217]张林仙,黄戒介,房倚天,王洋.中国无烟煤焦气化活性的研究—水蒸气与二氧 化碳气化活性的比较.燃料化学学报,2006,34(3):265-269.
    [218]吴学成,王勤辉,骆仲泱,方梦祥,岑可法.气化参数影响气流床煤气化的模型研究(Ⅰ)—模型建立及验证.浙江大学学报,2004,38(10):1361-1365.
    [219]吴学成,王勤辉,骆仲泱,方梦祥,岑可法.气化参数影响气流床煤气化的模型研究(Ⅱ)—模型建立及验证.浙江大学学报,2004,38(11):1483-1489.
    [220]李政,王天骄,韩志明,郑洪韬,倪维斗Texaco煤气化炉数学模型研究(Ⅱ)—计算结果及分析.动力工程,2001,21(4):1316-1319.
    [221]A. Molina, F. Mondragon. Reactivity of coal gasification with steam and CO2. Fuel, 1998,77(15):1831-1839.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700