掺废旧轮胎橡胶粉混凝土耐久性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将废旧轮胎制得的橡胶粉掺入到混凝土中,既有效改善混凝土的多种性能,又能解决大量废旧橡胶的回收利用问题。因此对于橡胶混凝土的研究,具有资源循环利用、环保及材料改性的多重意义。由于橡胶混凝土的发展历史较短,相关的试验研究以及理论分析还不够成熟,特别是其耐久性能,这严重阻碍了橡胶混凝土的推广应用。
     本课题组的前期研究成果显示,80-150目废旧轮胎橡胶颗粒掺加到水泥混凝土中,能起到“固体引气剂”的作用,可以大大提高混凝土的抗冻耐久性,适当的粒径和掺加搅拌工艺下,可以替代引气剂使用。本课题正是在前期研究基础上,继续对该粒径范围的橡胶颗粒水泥混凝土的其他耐久性能(包括抗氯离子渗透性能、碱骨料反应试验、耐磨性能、抗硫酸侵蚀试验、蒸养条件下的抗冻性)进行试验研究,完善了耐久性能,为掺废旧橡胶轮胎颗粒水泥混凝土在实际工程中的推广应用提供理论依据。
     本文研究的成果主要有:
     (1)RCM法与NEL法测出的橡胶混凝土氯离子扩散系数的变化规律基本相同,其氯离子扩散性能随水灰比的增大而下降;当掺入量超过10kg/m3时,其抗氯离子扩散性能下降;在80目、100目、120目橡胶粉粒径范围内,120目橡胶粉抗氯离子渗透性能最好。
     (2)采用玻璃砂浆棒法研究了橡胶粉对碱骨料反应的影响。废旧橡胶颗粒可以有效地抑制试件的膨胀,其掺量为水泥质量的2.5%即可达到理想的效果。80目,100目,120目三种不同橡胶粉中,120目橡胶粉抑制碱骨料反应的效果最好。
     (3)橡胶混凝土耐磨性能优于普通混凝土,其耐磨性能随水灰比的增大而减小;掺入橡胶粉后混凝土的耐磨性随着橡胶粉的掺量先提高后降低;80目,100目,120目三种不同橡胶粉中,100目橡胶粉耐磨性能效果最好,并分析出其耐磨性能与抗压强度并没有必然的联系。
     (4)硫酸盐侵蚀采用干湿循环试验方法,橡胶混凝土抗硫酸侵蚀前期效果较普通混凝土好,后期强度急剧下降。随着橡胶粉掺量的增加,抗硫酸侵蚀能力会有所增强;100目,120目,150目三种不同橡胶粉中,150目抗硫酸盐侵蚀效果最好。
     (5)橡胶混凝土较有良好的蒸养适应性,抗冻性能并未出现劣化,并通过硬化气泡信息试验得出蒸汽养护基本对含气量无大的影响。
Putting scrap rubber powders into cement concrete can improve a lot of properties, and also solve problem about a large number of waste rubber recycling. Experimental study on rubberized concrete will play a significant role in utilization resources, environmental protection and modified materials. Due to the relatively short history of rubberized concrete, the related experimental studies and theoretical analysis are not very mature, especially the performance in durability, which seriously hindered the widespread application of rubberized concrete.
     The previous results of our research group show that putting scrap rubber powders into cement concrete can greatly enhance frost resistance. The effect of rubber powders is equal to adding air-entraining mixture, under the condition of right size and quantity. This topic which based on the previous studies continue to research other properties in durability(include chloride ion permeability resistance, alkali-aggregate reaction^abrasion resistance^sulphate attack resistance^freezing resistance under steam curing).Improving the durability can provide theoretical basis to widespread application of rubberized concrete.
     The results of this paper are:
     (1) This paper studies the chloride ions penetration resistance property of rubberized concrete based on RCM and NEL method, the variation is almost identical. The chloride ion permeability resistance of rubberized concrete decreased with the increasing of W/C; decreased when the contents of rubber powder get higher than lOkg/m; Among three different rubber particles of the sizes of80mesh, lOOmesh and120mesh, the120mesh has the best effect on chloride ion permeability resistance.
     (2) The influence of scrap rubber powder on alkali-aggregate reaction is studied by the glass mortar bar method. The results indicate that the incorporation of scrap rubber powder could suppress the sample's expansion caused by alkali-aggregate reaction, the inhibition effect reaches ideal degree when the rubber mixing content is2.5%. Among three different rubber particles of the sizes of80-mesh,100-mesh and120-mesh, the120-mesh has the best inhibition effect on alkali-aggregate reaction.
     (3) The abrasion resistance of rubberized concrete is improved remarkly, and decreased with the increasing of W/C. With the increase of rubber powder, the abrasion resistance tends to decrease firstly and then increase. Among three different rubber particles of the sizes of 80-mesh,100-mesh and120-mesh, the100-mesh has the best effect on abrasion resistance. The outcome of the study indicated there were not necessary relation between compressive strength and abrasion resistance.
     (4) The influence of sulphate attack resistance on rubberized concrete is studied by wet-dry cycling method. Sulphate attack resistance of rubberized concrete is improved at the early stage and compressive strength is weakened sharply at the late stage. With the increase of rubber powder, resistance sulphate attack would be increased. Among three different rubber particles of the sizes of100-mesh,120-mesh and150-mesh, the150-mesh has the best effect on sulphate attack resistance.
     (5)The rubberized concrete demonstrates good adaptability on steam curing, frost resistance had no obvious decline. The bubble test shows steam curing has no effect on air content.
引文
[1]唐弢,漆新华,王维平,朱坦.我国废旧轮胎资源循环利用的现状、问题及对策研究[C].中国可持续发展研究会2005年学术年会会议论文集:196-199,上海,2005年9月.
    [2]中国橡胶工业协会废橡胶综合利用分会.废橡胶综合利用产业“十二五”科技发展规划提纲[EB/OL]. (2010,5,27). http://www. xj91. com. cn/xiehui/Newsf ile/2010527/201052718163470. htm.
    [3]耿鑫,韦静,夏季.浅析废旧橡胶粉的再生利用[J].北方交通,2008(6):74-76.
    [4]中国环保产业协会,中国橡胶工业协会联合调研组.废旧橡胶综合利用和环保调研报[N].中国化工报,2006,9,06.
    [5]刘日鑫,徐开胜,高炜斌.胶粉对混凝土韧塑性的影响研究[J].新型建筑材料,2009,(1):24-26.
    [6]潘东平,刘锋等.橡胶混凝土的应用和研究概况[J].橡胶工业,2007,54(3):182-185.
    [7]PAINE K A, DHIR R. Use of crumb rubber to achieve freeze thaw resisting concrete[C]. Proceedings of the International Conference on Concrete for Extreme Conditions. University of Dundee, Scotland,UK,2002.
    [8]ELDIN N, SENOUCI A B. Rubber-tire particles as concrete aggregate[J]. Journal of materials in civil Engineering,1993,5,478-496.
    [9]TOUTANGI H A. The use of rubber tire particles in concrete to replace mineral aggregates[J]. Cement and Concrete Composites.1996,18(2):135-139.
    [10]FATTUHI N I, CLARK L A. Cement-based materials containing shredded scrap truck tyre rubber[J]. Construction and Building Materials.1996,10(4):229-236.
    [11]ALI N A.Amos A D.ROBERTS M. Use of ground rubber tires in Portland cement concrete[C]. Proceedings of the International Conference on Concrete2000, University of Dundee, Scotland UK,1993,379-390.
    [12]TOPCU I B. Properties of rubberized concretes [J]. Cement and Concrete Research, 1995,25(2):304-310.
    [13]TOPCU I B, Avcular N. Assessment of the brittleness index of rubberized concrete [J]. Cement Concrete Research 1997,27(2):177-183.
    [14]TOPCU I B. Avcular N. Collision behaviors of rubberized concrete [J]. Cement and Concrete Research,1997,27(12):1893-1898.
    [15]SEGRE N, JOEKES I. Use of tire rubber particles as addition to cement paste[J]. Cement and Concrete Research,2000,30(9):1421-1425.
    [16]ROSTAMI H,LEP0RE J, Silverstraim T et al. Use of recycled robber tires in concrete [C]. In:Dhir, R.K. (Ed.), Proceedings of the International Conference on Concrete 2000, University of Dundee, Scotland, UK,1993:391-399.
    [17]SEGRE N, MONTEIRO P J M, SPOSITO G. Surface characterization of recycled tire rubber to be used in cement paste matrix[J]. Journal of Colloid and Interface Science. 2002(2):521-523.
    [18]SIDDIQUE R, NAIK T R. Properties of concrete containing scrap-tire rubber-an overview[J]. Waste Management,2004,24(6):563-569.
    [19]KHATIB Z K.BAYOMY F M. Rubberized Portland cement concrete[J]. ASCE Journal of Materials in Civil Engineering,1999,11(3):206-213.
    [20]PAPAKONSTANTINOU C G, TOBOLSKI M J. Use of waste tire steel beads in Portland cement concrete[J]. Cement Concrete Research,2006,36(9):1686-1691.
    [21]KEW H Y,CAIRNS R,KENNY M J. The use of recycled rubber tyres in concrete[C]. Proceedings of the International Conference on Sustainable Waste Management and Recycling:Used/Post-Consumer Tyres,2004:135-142.
    [22]GUNEYISI E, GESOGLU M, OZTURAN T. Properties of rubberized concretes containing silica fume[J]. Cement and Concrete Research,2004(34):2309-2317.
    [23]BIGNOZZI M C, SANDROLINI F.Tyre rubber waste recycling in self-compacting concrete[J]. Cement Concrete Research,2006(36):735-739.
    [24]BENAZZOUK A, DOUZANE O, QUENEUDEC M. Transport of fluids in cement-rubber composites[J]. Cement and Concrete Composites.2004,26(1):21-29.
    [25]SAVAS B Z, AHMAD S, FEDROFF D. Freeze-thaw durability of concrete with ground waste tire rubber. Transportation Research[J]. Transportation Research Board, 1997(1574),80-88.
    [26]HERNANDEZ-OLIVARES F, BARLUENGA G. Fire performance of re cycled rubber filled high strength concrete[J]. Cement and Concrete Research,2004,34(1):109-117.
    [27]OIKONOMOU N, MAVRIDOU S. Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tires[J]. Cement and Concrete Composites,2009,31(6):403-407.
    [28]TOPCU I B,Avcular N. Analysis of rubberized concrete as a composite material [J].Cement Concrete Research,1997,27(8):1135-1139.
    [29]HERNANDEZ-OLIVARES F, BARLUENGA G, WITOSZEK B et al. Static and dynamic behavior of recycled tire rubber-filled concrete [J]. Cement and Concrete Research.2002, 32(10):1587-1596.
    [30]FEDROFF D, AHMAD S, SAVAS S Z. Mechanical properties of concrete with ground waste tire rubber[J]. Transportation Research Board,1996, V1532,66-72.
    [31]GUNEYISI E, GESOGLU M, OZTURAN T. Properties of rubberized concretes containing silica fume[J]. Cement and Concrete Research,2004,34 (12):2309-2317.
    [32]BENAZZOUK A,MEZREB K, DOYEN G et al. Effect of rubber aggregates on the physico-mechanical behaviour of cement-rubber composites-influence of the alveolar texture of rubber aggregates[J]. Cement and Concrete Composites, 2003,25(7):710-720.
    [33]TURATSINZE A, GRANJU J L, BONNET S. Positive synergy between steel-fibres and rubber aggregates:Effect on the resistance of cement-based mortars to shrinkage cracking[J]. Cement and Concrete Research,2006,36(9):1692-1697.
    [34]KALOUSH K E, WAY G B, ZHU H. Properties of crumb rubber concrete[J]. Transportation Research Record,2005(1914):8-14.
    [35]RAGHAVAN D, HUYNH H, FERRARIS C F. Workability, mechanical properties and chemical stability of a recycled tyre rubber-filled cementitious composite[J]. Journal of Material Science.1998,33(7):1745-1752.
    [36]GOULIAS D G.ALI A H. Non-Destructive Evaluation of Rubber Modified Concrete[C]. In:Proceedings of a Special Conference, ASCE,New York,1997.111-120.
    [37]SUKONTASUKKUL P. Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel[J]. Construction and Building Materials,2009(23): 1084-1092.
    [38]PAINE K A, MORONEY R C, DHIR R K. Performance of concrete comprising shredded rubber tyres[C]. Recyeling and Reuse of Waste Materials, Proceedings of the International Symposium London:Thomas Telford Services Ltd,2003:719-729.
    [39]邓宗才,刘希成.路用橡胶混凝土的研究现状分析与展望[J].国防交通工程与技术,2010(6):1-4.
    [40]HERNANDEZ-OLIVARES F, BARLUENGA, PARGA-LANDA et al. Fatigue behaviour of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements[J].2007(21):1918-1927.
    [41]李红燕.橡胶改性水泥基材料的性能研究[D].南京:东南大学,2004.
    [42]王涛,洪锦祥,缪吕文等.橡胶混凝土的试验研究[J].混凝土,2009(1):67-69.
    [43]覃峰,包惠明.橡胶粉水泥混凝土性能试验的研究[J].混凝土,2007(9)69-72.
    [44]刘爱军,朱涵,王旻.橡胶微粒对混凝土可泵性的影响[J].济南大学学报(自然科学版),2007(1):31-33.
    [45]刘加平,洪锦祥,万贇.橡胶混凝土的拌合物性能研究[C].“全国特种混凝土技术及工程应用”学术交流会暨2008年混凝土质量专业委员会年会,2008年9月,陕西.
    [46]李悦,Yunping Xi废橡胶粉改性混凝土的研究[c].第九届全国水泥和混凝土化学及应用技术年会论文集,广州,2005:444-449.
    [47]杨林虎,朱涵,王庆余.路而橡胶集料混凝土抗折强度的试验研究[J].工业建筑,2007(9):97-100.
    [48]朱涵.新型弹性混凝十的研究综述[J].天津建设科技,2004(2):35-37.
    [49]亢景付,张平祖.废旧轮胎橡胶颗粒对水泥浆和砂浆抗裂性能的影响[J].天津大学学报,2006,39(9):1026-1030.
    [50]孟云芳,王德志,韩静云.粉煤灰橡胶粉改善混凝土抗裂性能研究[J].混凝土,2006(6):49-55.
    [51]朱涵,刘春生,张永明等.橡胶集料掺量对混凝土压弯性能的影响[J].天津大学学报,2007,(7):761-765.
    [52]王婧一,王立燕,张亚梅.弹性橡胶混凝士压、弯变形性能试验研究[J].混凝土与水泥制品.2008(2):6-10.
    [53]郭灿贤,黄少文,徐玉华.用于水泥混凝土的废轮胎胶粉的改性方法研究[J].混凝土,2006(1):60-62.
    [54]赵丽妍.掺废旧轮胎橡胶改性水泥混凝土实验研究[D].大连:大连理工大学,2009.
    [55]范国兵.橡胶混凝土的材料特性及其应用技术研究[D].郑州:郑州大学,2007.
    [56]陈胜霞.橡胶改性水泥基材料的性能研究[D].南京:东南大学,2005.
    [57]刘春生.橡胶集料混凝土的耐久性能及在桥面铺装上的应用研究[D].天津:天津大学,2009.
    [58]刘伟.掺废旧轮胎橡胶粉混凝土抗冻耐久性试验研究[D].大连:大连理工大学,2011.
    [59]王开惠.橡胶集料混凝土抗硫酸镁盐、氯盐侵蚀性能研究[D].天津:天津大学,2006.
    [60]亢景付,范昆.橡胶混凝凝土抗冲磨性能[J].天津大学学报,2011(8),727-731.
    [61]覃峰,马福荣,黄琼念等.橡胶粉水泥混凝土路面冲磨性能试验研究[J].铁道标准设计,2010(10),42-47.
    [62]史巍,张雄,陆沈磊.橡胶粉水泥砂浆隔声功能研究[J].建筑材料学报,2005(10):553-557
    [63]马福荣,黄琼念,覃峰.橡胶粉水泥混凝土降噪防噪性能初探[J].人民长江,2010(5)71-74.
    [64]宋少民,刘娟红,金树新.橡胶粉改性的高韧性混凝土研究[J].混凝土与水泥制品,1997(1):10-12.
    [65]赵志远,毕乾,王立燕等.废橡胶颗粒改性水泥基材料的塑性开裂和抗冲击性能[J].混凝土与水泥制品,2008(4):1-5.
    [66]陈振富,柯国军,胡绍全等.橡胶混凝十小变形阻尼研究[J].噪声与振动控制,2004(3):32-34.
    [67]许静,朱涵,刘春生等.橡胶集料混凝土阻尼比的初步试验研究[J].混凝土,2005(11):40-42.
    [68]刘娟红,宋少民.表面处理的橡胶颗粒对混凝土阻尼性能的影响[J].北京工业大学学报2009(12):1619-1623.
    [69]袁琳.橡胶集料钢筋混凝土梁受弯性能初探[J].混凝十,2005(6):70-75.
    [70]杨林虎,朱涵,李强.橡胶集料钢筋混凝土梁截面的延性[J].济南大学学报(自然科学版),2007(21):28-30.
    [71]章传兵.橡胶集料混凝十在连梁中的应用初探[D].天津:天津大学,2007.
    [72]DHIR R K, JONES M R, AHMED HEH. Rapid estimation of chloride diffusion concrete[J]. Magazine of Concrete Research,1990(152):177-185.
    [73]AL-BAHAR S,ATTIOGHE E K, KAMAL HASAN. Investigation of corrosion damage in a reinforced concrete structure in Kuwait [J]. ACI Materials Journal,1998(3):226-231.
    [74]BASHEER L, KROPP J, CLELAND D J. Assessment of the durability of concrete from its permeation properties:a review[J]. Construction and Building Materials,2001 (15): 93-103.
    [75]RODRIGUEZ P, RAMIREZ E, GONZALEZ J A. Methods for studying corrosion in reinforced concrete[J]. Magazine of Concrete Research,1994 (167)::81-90.
    [76]冯乃谦,蔡军旺,牛全林等.山东沿海钢筋混凝土公路桥的劣化破坏及其对策的研究[J].混凝土,2003(1):3-12.
    [77]贡金鑫,赵国藩.钢筋混凝土结构耐久性研究的进展[J].工业进展,2000,30(5):1-5.
    [78]洪定海.钢筋混凝土的腐蚀与防护[M].北京:中国铁道出版社,1998.
    [79]赵卓,蒋晓东.受腐蚀混凝土结构耐久性检测诊断[M].郑州:黄河水利出版社,2006.
    [80]金伟良,赵羽习.混凝十结构耐久性[M].北京:科学出版社,2002.
    [81]SHI C J. Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test(ASTM C1202 or ASSHTO T277)result[J]. Cement and Concrete Research,2004(34):537-545.
    [82]路新瀛,李翠玲.混凝土渗透性的电学评价[J].混凝土与水泥制品,1999(5):12-14.
    [83]陈伟,许宏发.确定混凝土中氯离子扩散系数的方法及适用性评价[J].混凝土,2004(12):12-14.
    [84]钱刚,姚志雄.RCM与ASTMC1202的相关性研究[J].福建建材,2009(5):51-53.
    [85]刘俊龙,余红发,孙伟等.混凝土氯离子结合能力的影响因素规律性研究.硅酸盐通报[J].2011(2):172-176.
    [86]ZHU H. Crumb Rubber Concrete, Papra Handbook on Polymers Use in Construction[M]. Shawbury, SY44NR, UK:Rapra Technology,2004.
    [87]杨医博,梁松,莫海鸿等.混凝土抗氯离子渗透性能试验方法的探讨[J].中国港湾奸设,2007(2):46-48.
    [88]欧兴进,朱涵.橡胶集料混凝土氯离子渗透性试验研究[J].混凝土,2006(3):46-49.
    [89]王增忠.混凝十碱集料反应及耐久性研究[J].混凝土,2001(8):16-18.
    [90]杨华全,李鹏翔,李珍著.混凝土碱骨料反应[M].北京:中国水利水电出版社,2010.
    [91]J.本斯迪德P.巴恩斯.水泥的结构和性能[M].北京:化学工业出版社,2008.
    [92]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004.
    [93]冯乃谦,邢峰.混凝土与混凝土的耐久性.[M].北京:机械工业出版社,2008.
    [94]于洋,李国忠.锂盐对水泥砂浆碱骨料反应抑制效果的研究[J].混凝土,2009(3):50-51.
    [95]王文娇,娄宗科.减水剂抑制混凝土碱骨料反应的试验研究[J].路基工程,2009(1):10-11.
    [96]徐惠忠.活性Al2O3对碱-骨料反应(ASR)的抑制与制动作用[J].建筑材料学报,2000(9): 213-217.
    [97]文梓芸.碱-硅酸集料反应的化学原理[J].硅酸盐学报,1994(12):596-603.
    [98]田桂茹.采用活性掺合料抑制碱-骨料反应的试验研究[J].建筑技术,30(1):38-40.
    [99]陈瑜,张大千.水泥混凝土路面磨损机理及其耐磨性[J].混凝土与水泥制品,2004(2):16-19.
    [100]龙亭.掺矿渣微粉道路混凝土耐磨性研究[D].长沙:中南大学,2008.
    [101]罗琦.橡胶粒子改性混凝土的物理力学性能及耐久性研究[D].南昌:南昌大学,2007.
    [102]彭松枭.再生混凝土耐磨性能研究[D].长沙:中南大学,2009.
    [103]LANGAN B W, JOSHI R C, WARD M A. Strength and durability of concrete containing 50% Portland cement replacement by fly ash and other materials [J]. Canadian Journal of Civil Engineering,1990,17(1):19-27.
    [104]NAIK T R, SINGH S S, RAMME B W. Mechanical Properties and Durability of Concrete Made with Blended Fly Ash[J].Materials Journal,1998,95(4):454-462.
    [105]GJORV 0 E, BAERLAND T, RONNING H R. Abrasion resistance of high-strength concrete pavements[J]. Concrete International,1990,12(1):45-48.
    [106]ATIS C D. High Volume Fly Ash Abrasion Resistant Concrete [J]. Journal of materials in civil engineering,2002,14(3):274-277.
    [107]覃丽香.混凝土的硫酸盐侵蚀机理及影响因素[D].武汉:武汉工业大学,1998.
    [108]杜健民梁咏宁张凤杰著.地下结构混凝土—硫酸盐腐蚀机理及性能退化[M].北京:中国铁道出版社,2011.
    [109]C. S. Ouyang, Antonio Nanni. Internal and External Sources of Sulface Ions in Portland Cement Mortar:Two Types of Chemical Attack[J]. Cemment and Concrete Research.1988(18):699-709.
    [110]冷发光,马孝轩,田冠飞.混凝土抗硫酸盐侵蚀试验方法[J].东南大学学报(自然科学版),2006(11):45-48.
    [111]高润东,赵顺波,李庆斌,陈记豪.干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究[J].土木工程学报,2010(2):48-54.
    [112]张亚梅,陈胜霞,高岳毅.浸-烘循环下作用下橡胶水泥混凝土的性能研究[J].建筑材料学报,2005(12):665-671.
    [113]POWERS T C. A working hypothesis for further studies of frost resistance of concrete[J].ACI Journal Proceedings.1945(41):245-272.
    [114]李燕,于艳丽.采用合理措施,提高蒸养混凝土构件抗冻性[J].东北水利水电,1994(4):25-28.
    [115]李中华,巴恒静,邓宏卫.混凝土抗冻性试验方法及评价参数的研究评述[J].混凝土,2006,(6):9-11.
    [116]张勇,谢永江,仲新华等.含气量对蒸养预制混凝十若干性能的影响[C].第十二届全国混凝土及预应力混凝土学术会议论文,2003:404-409.
    [117]李俊毅.硬化混凝土气泡间距系数的临界值[J].港口工程,1997(3):27-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700