埋入式压电沥青混凝土的制备及其电学输出研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界上拥有众多的人口,由于经济的发展,能源是一个非常基础的需求。要提高生活水平、发展经济,都缺不了能源。但是,能源紧缺已经成为当今世界发展的瓶颈,寻找新能源迫不及待。通过压电材料收集周围环境的振动能量并把它转化为可使用的电能,其原理简单、无污染、能量转换效率高,是近年来新能源领域的研究热点。但是,目前有关压电集能的研究主要集中在为微机电系统的供电上,利用压电材料来进行发电的研究并不多见,国内这方面的研究更是接近空白。因此,本文以道路工程为背景,对埋入式压电沥青混凝土的制备与电学输出进行了研究。
     第一,利用ANSYS12.0软件对压电元件尺寸进行优化。经过仿真分析,外径18mm,内径10mm,厚度4mm的压电元件在施加0.7MPa的瞬间压应力下可以产生63.146V的电压。并通过传统氧化物固相反应方法,制备出掺杂0.45wt%Fe2O3的PMnS-PZN-PZT埋入式压电元件,具有良好的压电性能及耐久性能。
     第二,通过马歇尔设计方法,借鉴Superpave体积制备设计方法,设计出的AC-10沥青混合料的体积性能,高温稳定性能,水稳定性能均能满足我国的沥青混合料技术规范,具有良好的路用性能,并与压电元件具有良好的相容性。
     第三,以压电方程为基础,建立了埋入式压电沥青混凝土的力电耦合模型,推导了埋入式沥青混凝土的开路电压方程,利用Bisar3.0软件对埋入式压电沥青混凝土的竖向压应力进行分析,并且埋入式压电沥青混凝土的开路电压计算值与实测数据基本吻合。
     第四,压电元件的开路峰值电压随着压应力的增加而增加,且单片厚度大的元件的开路峰值电压比较高,增加的趋势更快。但是,施加较低的频率对压电元件的电压输出影响非常小。埋入式压电沥青混凝土的开路电压随着埋铺深度的增加而减小,随着压电元件总厚度的增加而增加,随着车轮荷载的增加而增加;开路电流随着压电元件并联数量的增加而增加。
     第五,LTC3588-1芯片的电能采集效果和效率均优于桥式整流电路+MAX666型DC-DC单元的采集电路。并且,超级电容更适合作为埋入式压电沥青混凝土的储能装置。
     本文的研究结果表明埋入式压电沥青混凝土具有良好的路用性能,但是其存储的电能输出功率小仅能对无线传感器等微功率电子器件使用。
The world has numerous populations, with the development of economy, energy sources has been a fundamental demand. The improvement of living standards and the development of economy cannot without the lack of energy sources. But, nowadays the shortage of energy has been the world development bottleneck, it's high time that seeking for new energy. Though the piezoelectric material collecting the vibration energy around the environmental and translate it into workable electric energy. In recent years the principle is the study hot pints in the new energy sources because its' simple, non-pollution, the high energy conversion efficiency. However, at present, the study about piezoelectric energy collection focuses on the power supply for the MEMS (micro electro mechanical system). The study which is in relation to use piezoelectric materials to generate power cannot be common, it also nearly blank in domestic. Hence, this paper concentrates on the preparation of embedded piezoelectric asphalt concrete and electricity output which is under the road engineering background.
     First, use ANSYS12.0software optimized the piezoelectric element size. After simulation analyzes, the piezoelectric element that external diameter is18mm, inner diameter is10mm, thickness is4mm will produces63.146V voltage under the0.7MPa of Instant compressive stress. Though the traditional oxide solid-phase reaction, produce PMnS-PZN-PZT piezoelectric element which mixed0.45wt%Fe2O3and it has a good piezoelectric performance and endurance quality.
     Second, by means of marshall design method, take Superpave Volume preparation design method as an example, we can design the volume performance of AC-10mixture asphalt, high temperature stability, water stability, and both of them can satisfy our Asphalt mixture technical specifications. It has good pavement performance and it also has good compatibility with piezoelectric element.
     Third, we build a force coupling model electricity of embedded piezoelectric asphalt concrete based on piezoelectric equation and deduce an open-circuit voltage equation of embedded piezoelectric asphalt concrete. By use of Bisar3.0software, analyses the vertical pressure stress of embedded piezoelectric asphalt concrete, and the open-circuit voltage calculated value of embedded piezoelectric asphalt concrete is basically coincide with actual measurement data.
     Fourth, the open-circuit peak voltage of piezoelectric element will increasing by pressure stress, the peak voltage element that monolithic large thickness is higher and increased tendency is faster. However, impose a lower frequency will has a small effect on voltage output of piezoelectric element. The open-circuit voltage of embedded piezoelectric asphalt concrete will reduce by the increasing lay buried depth, it will increased by the total thickness of piezoelectric element and wheel load added. The open-circuit current will increase by the parallel number of piezoelectric element.
     Fifth, the electrical energy acquisition effect and efficiency of LTC3588-1chip is superior to the acquisition circuit of bridge rectifier+MAX666type DC-DC unit. In addition, super capacitor is more suitable for the energy storing device of embedded piezoelectric asphalt concrete.
     The result of this paper shows that the embedded piezoelectric asphalt concrete has a good pavement performance, but its'electricity output can only be used for the power electronic devices such as wireless sensors.
引文
[1]J.范兰德拉特,R.E.塞德林.压电陶瓷[M].彭浩波译.北京:科学出版社,1982.
    [2]电子陶瓷情报网编.压电陶瓷应用[M].济南:山东大学出版社,1985.
    [3]贾菲等著.压电陶瓷[M].林声和译.北京:科学出版社,1979.
    [4]山东大学压电铁电物理教研室编.压电陶瓷及其应用[M].济南:山东人民出版社,1974.
    [5]丁毓峰ANSYS 12.0有限元分析完全手册[M].北京:电子工业出版社,2011.
    [6]陈精一ANSYS工程分析实例教程[M].北京:中国铁道出版社,2007.
    [7]阚前华,谭长建,张娟,等ANSYS高级工程应用实例分析与二次开发[M].北京:电子工业出版社,2006.
    [8]Vincent PiefotI, Andr'e Preumont. Finite Element Modeling of Piezoelectric Structures. Active Structures Laboratory, ULB-CP 165/42
    [9]Oliver M. Fein. A model for piezo-resistive damping of two-dimensional structures [J]. Journal of Sound and Vibration,2008,310(4-5):865-880
    [10]M.Kekana. Finite Element Modelling of Laminated Piezo-Elastic Structures:Lyapunov Stability Analysis [J]. Journal of Sound and Vibration,2002,256(3):463-473.
    [1]]黄世峰,叶正茂,王守德,等.1-3型水泥基压电复合材料的制备及性能[J].复合材料学报,2007,(24)1:122-126.
    [12]李雪,黄世峰,刘福田,等.掺杂对0-3型水泥基压电复合材料性能的影响[J].济南大学学报,2008,(22)1:4-7.
    [13]Biqin Dong, Zongjin Li. Cement-based piezoelectric ceramic smart composites [J]. Composites Science and Technology,2005,65(9):1363-1371
    [14]毛洁冰,周静,郑惠清,等.氧化铁掺杂对PMnS PZN PZT压电陶瓷性能的影响[J].人工晶体学报,2010,(39)1:72-76.
    [15]张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993.
    [16]黄晓明,吴少鹏,赵永利.沥青与沥青混合料[M].南京:东南大学出版社,2002.
    [17]郝培文.沥青与沥青混合料[M].北京:人民交通出版社,2009.
    [18]吕伟民,孙大权.沥青混合料设计手册[M].北京:人民交通出版社,2007.
    [19]沈金安.沥青及沥青混合料的路用性能[M].北京:人民交通出版社,2001.
    [20]刘立新.沥青混合料粘弹性力学及材料学原理[M].北京:人民交通出版社,2006.
    [21]张肖宁.沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006.
    [22]彭波,李文瑛,危拥军.沥青混合料组成与特性[M].北京:人民交通出版社,2007.
    [23]中华人民共和国交通部.(JTJ 052-2000).公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2000.
    [24]中华人民共和国交通部.(JTG F40-2004)公路沥青路面施工技术规范[S].北京:人民交通出版社,2004.
    [25]中华人民共和国交通部.(JTG D50-2006)公路沥青路面设计规范[S].北京:人民交通出版社,2006.
    [26]Lucy Edery-Azulay, Haim Abramovich. Active damping of piezo-composite beams [J]. Composite Structures,2006,74:458-466.
    [27]Matthew Yocum, Haim Abramovich. Static behavior of piezoelectric actuated beams [J]. Composite Structures,2002,80:1797-1808.
    [28]Lucy Edery-Azulay, Haim Abramovich. Piezoelectric actuation and sensing mechanisms closed form solutions [J]. Composite Structures,2004,64:443-453.
    [29]Lucy Edery-Azulay, Haim Abramovich. Rectangular Composite Plates with Extension and Shear Piezoceramic Layers and Patches. TAE Report No. 951
    [30]陈雨,文玉梅,李平,等.混凝土中压电陶瓷在变载荷作用下的特性研究[J].压电与声光,2005,(27)6:700-703.
    [31]Yu Chen, Yumei Wen, Ping Li. Characterization of PZT ceramic transducer embedded in concrete[J].Sensors and Actuators A:Physical,2006,128(1):116-124
    [32]Sung Woo Shin, Tae Keun Oh. Application of electro-mechanical impedance sensing technique for onlinemonitoring of strength development in concrete using smart PZT patches [J]. Construction and Building Materials 2009,23:1185-1188.
    [33]Mingqing Sun, W.J. Staszewski, R.N. Swamy, Zhuoqiu Li. Application of low-profile piezoceramic transducers for health monitoring of concrete structures [J]. NDT&E International,2008,41:589-595
    [34]田卉,文玉梅,李平,等.埋入混凝土结构中的PZT压电陶瓷温度特性研究[J].传感技术学报,2007,(20)9:1977-1981.
    [35]陈雨,文玉梅,李平.埋入混凝土中压电陶瓷应力及温度特性研究[J].应用力学学报,2006,(23)4:658-661.
    [36]周文委,文玉梅,李平,等.埋入混凝土中压电元的电-声换能特性研究[J].压电与声光,2004,(26)2:116-118.
    [37]郭浩,李平,文玉梅,等.埋入压电材料的机敏混凝土研究[J].传感技术学报,2007, (20)1:202-207.
    [38]Qingbin Li, Guang Li, Libo Yuan. Calibration of embedded fiber optic sensor in concrete under biaxial compression [J]. Measurement,2004,35:303-310.
    [39]T.Hehn, F.Hagedorn, Y.Manoli. Highly Efficient Energy Extraction from Piezoelectric Generators [J] Procedia Chemistry,2009,1:1451-1454
    [40]Kevin K Tseng, Liangsheng Wang. Structural Health Monitoring Using Smart Piezoelectric Material [J]. Vanderbilt University University journal,2004.
    [41]孙明清,李卓球.压电陶瓷-混凝土机敏结构研究[J].混凝土,2004,2:5-9.
    [42]J.Wauer, S.Suherman.Thickness vibrations of a piezo-semiconducting plate layer. [J].International Journal of Engineering Science,1997,35(15):1387-1404
    [43]邓学钧,孙璐.车辆-地面结构系统系统动力学[M].北京:人民交通出版社,2000.
    [44]沙爱民,江霞.路面动态特性分析[J].交通运输工程学报,2001,(1)2:63-67.
    [45]李皓玉,杨绍普,李韶华.车-路的相互作用下沥青路面动力学特性分析[J].振动与冲击,2009,(28)4:86-91.
    [46]Martin Kozek, Christian Benatzky, Alexander Schirrer, et al. Vibration damping of a flexible car body structure using piezo-stack actuators[J].Control Engineering Practic, 2009,28
    [47]朱孔源.车辆-柔性路面力学相互作用系统的研究[D].北京:中国农业大学,2001
    [48]杨果岳.车辆随机荷载与柔性路面相互作用的研究[D].长沙:中南大学,2007
    [49]Francesco dell'Isola, Maurizio Porfiri, Stefano Vidoli. Piezo-ElectroMechanical (PEM) structures:passive vibration control using distributed piezoelectric transducers [J]. Comptes Rendus Mecanique,2003,331(1):69-76.
    [50]刘立安.动荷载作用下沥青路面结构响应研究[D].西安:长安大学,2002
    [51]毛菊良,侯芸,郭忠印.动态荷载下刚柔复合结构路面变形和应力分析[J].同济大学学报,2004,(32)10:1403-1407.
    [52]张浩.竖向动态荷载作用下沥青路面力学响应分析[J].太原理工大学学报,2006,(37)3:355-357.
    [53]Joel Feenstra, Jon Granstroma, Henry Sodano. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack [J]. Mechanical Systems and Signal Processing,2008,22:721-734.
    [54]E. Minazara, D. Vasic, F. Costa. Piezoelectric Generator Harvesting Bike Vibrations Energy to Supply Portable Devices[C]. ICREPQ-2008
    [55]Shih-Nung Chen, Gou-Jen Wang, Ming-Chun Chien. Analytical modeling of piezoelectric vibration-induced micro power generator [J]. Mechatronics, 2006,16:379-387.
    [56]Christopher A Howells. Piezoelectric energy harvesting. [J] Energy Conversion and Management,2009,50:1847-1850
    [57]Geffrey K. Ottman, Heath F. Hofmann, George A. Lesieutre. Optimized Piezoelectric Energy Harvesting Circuit [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2003, (18)2:696-703
    [58]龚立娇.基于压电材料的能量采集研究[D].南京:南京航空航天大学,2008
    [59]潘家伟.基于压电效应的能量收集[D].南京:南京航空航天大学,2008
    [60]王强.基于压电材料的振动能量采集技术的研究[D].镇江:江苏大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700