软土地层中盾构隧道结构沉降与变形机制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地质条件和施工条件沿隧道纵向的变化,在软弱地层中隧道都会产生纵向不均匀沉降。隧道纵向不均匀沉降会使隧道混凝土管片局部应力过大,而导致隧道管片的开裂、螺栓屈服以及接头张开错开等问题,进而使隧道接头处漏水,甚至漏泥。长此以往,会大大影响隧道的正常使用,甚至威胁隧道本身结构的安全。因此,为了保证软土中隧道的安全运营,对隧道不均匀沉降的产生原因以及造成的结构问题进行研究具有重要的意义。
     近年来,对于隧道纵向沉降的研究逐渐增多,但现有的研究大多集中在施工期盾构的沉降及对周边环境影响、隧道长期沉降规律、隧道衬砌设计等方面,而对导致隧道纵向沉降的原因、隧道纵向结构受力和变形的研究还不够。
     为了进一步完善现有研究成果的不足,本文对隧道纵向沉降原因和隧道纵向结构受力变形机制进行了研究,主要做了如下工作:
     (1)对各种引起隧道沉降的原因及隧道纵向变形研究情况进行了归纳整理。在此基础上,计算分析整体渗漏和局部渗漏时隧道的沉降和变形规律。
     (2)对运营期车辆振动荷载下隧道下卧层不排水变形和孔压消散沉降进行了计算,并将三种运营期主要引起隧道沉降的因素进行比较,得到了不同渗漏情况和地质情况时各种因素导致隧道纵向沉降的组成比例。
     (3)对盾构隧道管片、螺栓进行精细化建模,研究了隧道结构在纵向不均匀沉降下的受力和变形机制。计算模型考虑了环缝接头螺栓、榫头以及螺栓孔间的相互作用。分析得到了隧道接头的破坏机理,并提出基于隧道纵向沉降的隧道接头安全评估临界值。
     (4)对集中力作用下隧道纵向沉降变形特性进行了分析,并提出了采用调整开口环拱顶处螺栓位置和增加开口环处的加劲框等措施减小集中力作用下的接头变形和螺栓内力。
The different geological setting and construction conditions will lead to the uneven longitudinal settlement of tunnel embedded in poor silty clay. And uneven longitudinal settlements will lead to over-stress the tunnel concrete segmental lining. The stress concentration will induce lining segment cracking, joint bolts yielding, joint dislocation and joint tenon crushing, which all will result in serious slurry and water leakage problems. These issues may bring great risk to metro operations and cause serious risks to the people travelling by subway. Therefore, the causes of the uneven settlement of tunnel and the failure mechanism of the tunnel lining and joints should be determined, insuring normal operations of metro, especially in deep soft soils.
     In recent years, the research of tunnel longitudinal settlement increases gradually. However, most of the studies focused on the tunnel settlement during construction stage, the influence on the surrounding environment, the long-term regularity of settlement and the tunnel lining design. The study of the causes of tunnel longitudinal settlement and the failure mechanisms of the tunnel is not enough.
     In general, some developments for tunnel longitudinal settlement are involved in this dissertation as follows:
     (1) The various causes of tunnel settlement and induced tunnel longitudinal deformation are summarized. On basis of these studies, the tunnel deformation and settlement during global leakage and local leakage were analyzed
     (2) The undrained deformation and the settlement induced by residue pore pressure dissipation under vibration load during the operation period were analyzed. Three main factors of tunnel settlement were compared and the ratios of the working factors were analyzed in different leakage conditions and geological settings.
     (3) To simulate the failure mechanism of tunnel segmental lining joints and longitudinal bolts under uneven longitudinal ground settlement, a numerical model with3D lining rings and bolts was established. The interactions between the lining tenons, bolts and their holes were determined. The results indicated that the deformation of the circumferential joints consisted of opening and dislocation, but the dislocation was dominant. The progressive failure of bolts and waterproofing measures were also revealed. The evaluation of structural integrity of circumferential joint and the mitigate measures were proposed in order to ensure the operational safety of a metro tunnel.
     (4) The deformation characteristics of tunnel lining and joints under the concentrated load were analyzed. Protection measures such as reinforced frames aroundceiling segments and a change in the location of the bolts at the crown were suggested to reduce dislocations of joints and force of bolts.
引文
1. ABAQUS lnc.,2007. Analysis User's Manual, Providence.
    2. Attewell P B.Ground movements caused by tunnelling in soil.1st Conf. on Large Ground Movements and Structures Pentech Press, London (1977):812-948
    3. Akaqi Komiya. Finite element analyses of interaction of a pair of shield tunnel. Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, 1997(10):1449-1452
    4. Baladi. G Y, Renoud-Lias. An elasto-plastic constitutive model for saturated sand subjected to monotonic and, or cyclic loading. Proc.3rd Inter. Conf. on Numerical Methods in Geomechnics, Achen,1979.
    5. Barksdale R D. Laboratory evaluation of rutting in base course materials. In Proceedings of the Third International Conference on Structural Design of Asphalt Pavements, London,1972: 161-174.
    6. Ben, C.G.,2007. Construction of Marine and Offshore Structures, Third ed, CRC Press, New York.
    7. Bergado, D., Ahmed, S., Sampaco, C, and Balasubramaniam, A. Settlements of Bangna-Bangpakong Highway on Soft Bangkok Clay. Journal of Geotechnical Engineering, vol.116(1),1990:136-155.
    8. Bergado, Dennes T. Smear Effects of Vertical Drains on Soft Bangkok Clay. Journal of geotechnical engineering, vol.117(10),1991:1509
    9. Bergado D., J.C. Chai, H.O. Abiera, M.C. Alfaro, A.S. Balasubramaniam. Interaction between cohesive-frictional soil and various grid reinforcements. Geotextiles and Geomembranes. Vol.12, Issue 4,1993:327-349.
    10. Blom C.B.M., van der Horst E.J., Jovanovic P.S. Three-dimensional structural analyses of the shield-driven "Green Heart" tunnel of the high-speed line South. Tunnelling and Underground Space Technology, Vol.14, Issue 2,1999:217-224
    11. Carter J.P. Elastic consolidation around a deep circular tunnel. International Journal of Solids and Structures. Vol.18, Issue 12,1982:1059-1074
    12. Carter J P, Booker J R. Creep and consolidation around circular openings in infinite media. International Journal of Solids and Structures, Vol.19(8),1983:663-675
    13. Cater J P, Booker J R, Wroth C P. A critical state soil model for cyclic loading. Soil Mechanics-Transient and Cyclic Loading. Chichester:John Wiley & Sons,1982:219-252.
    14. Chai J C, Minura N, et al.Traffic-load-induced permanent deformation of road on soft subsoil. Journal of geotechnical and geoenvironmental engineering.2002,128(11):907-916.
    15. Chai J C, Miura N. Investigation of factors affecting vertical drain behavior. Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.3,1999(3):216-226
    16. Chai J C, Miura N. Traffic load induced permanent deformation of road on soft subsoil. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(11):907-916
    17. Chen J S, Mo H H. Numerical study on crack problems in segments of shield tunnel using finite element method. Tunnelling and Underground Space Technology 24 (2009) 91-102
    18. Chen, B., Wen, Z. Y.. Elasto-plastic Analysis for the effect of longitudinal uneven settlement[C]. Proceedings of the ITA World Tunneling Congress, Balkema,2003.
    19. Dafalias Y F, Herrmann L R. Bounding surface formulation of soil plasticity. Soil Mechanics-Transient and Cyclic Loads, John Wiley and Sons, Chichester, U. K.., 1982:153-182.
    20. Ding W.Q., Yue, Q.Z., Tham, G.L., Zhu, H.H., Lee, C.F., Hashimoto, T.,2004. Analysis of shield tunnel. International Journal for Numerical and Analytical Methods in Geomechancis (58),57-91.
    21. El Tani, M. Circular tunnel in a semi-infinite aquifer. Tunnelling and Underground Space Technology Vol 18, Issue 1,2003(2):49-55.
    22. Gregory, T,1995. Marine Structures Engineering:Specialized applications,1 edition, Springer, New York.
    23. Hansbo S, Jamiolkowski M, Kok L. Consolidation by vertical drains. GEOTECHNIQUE, 1981(3):45-66.
    24. Hird C C, Pyrah I C, Russell D, Cinicioglu F. Modelling the effect of vertical drains in two-dimensional finite element analyses of embankments on soft ground. Canadian Geotechnical Journal,1995,32(5):795-807
    25. Huang, Z., Wei, Z., Liang, J., Jian, L., Rui, J.,2005. Three-dimensional numerical modeling of shield tunnel lining. Tunneling and Underground Space Technology 21,434.
    26. Holtz, R. D. and Holm, B. G.1973. Excavation and sampling around some sand drains in Ska-edeby, Sweden. Sartryck och Preliminara Rapporter,51:79-85.
    27. Japan Tunnelling Association:Tunnelling activities in Japan 1990. Tokyo.
    28. JSCE (Japan Society of Civil Engineering),2000. Japanese Standard for Shield Tunnelling. The third edition.
    29. Kolymbas D.& Wagner, P. Groundwater ingress to tunnels-the exact analytical solution. Tunnelling and Underground Space Technology,2007,Vol22, Issue 1:Pages 23-27
    30. Krieg R D. A practical two-surface plasticity theory. J. Appl. Mech., ASCE,1975,42: 641-646.
    31. Lee, K.M., and Ge, X.W,2001. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure. Canadian Geotechnical Journal,38(3),461-483.
    32. Li D, Selig E T. Cumulative plastic deformation for fine-grained subgrade soils. J. Geotech Engrg., ASCE,1994,120(6):939-957.
    33. Li X S, Dafalias Y F, Wang Z L. State dependent dilatancy in critical state constitutive modeling of sand. Canadian Geotechnical Journal,1999,36(4):559-611.
    34. Liao S M, Peng F., Shen S L.Analysis of shearing effect on tunnel induced by load transfer along longitudinal direction. Tunnelling and Underground Space Technology 23 (2008): 421-430
    35. Mair R.J., Taylor R.N., Bored tunneling in the urban environment. Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, 1997:2353-2380.
    36. Mair R J. Tunnelling and geotechnics:new horizons. Geotechnique,2008,2008, vol.58(9): 695-736
    37. Mashimo, H., Ishimura, T.,2003. Evaluation of the load on shield tunnel lining in gravel. Tunneling and Underground Space Technology 18,233-241.
    38. Meyerhof GG. The Ultimate Bearing Capacity of Foudations. Geotechnique,1951(4), Vol2, Issue 4:301-332.
    39. Miura, N., Park, Y. and Madhav, M. R.1993. Fundamental study on drainage performance of plastic-board drains. J. Geotech. Eng.-JSCE,481 (111-25):31-40. (in Japanese)
    40. Mo, H.H., Chen, J.S.,2007.Study on inner force and dislocation of segments caused. Tunneling and Underground Space Technology 23,281-291.
    41. Monismith C L, Ogawa N, Freeme C R. Permanent deformation characteristics of subsoil due to repeated loading. Transportation Research Record,1975, (537):1-17.
    42. Mroz. Z, Norris V A, Zienkiewicz O C. An anisotropic hardening model for soils and its application to cyclic loading. International Journal for Numerical and Analytical Methods in Geomechanics,1978,2:203-221.
    43. Mroz Z. On the description of anisotropic hardening. J. Mech. Phys. Solids,1967,15: 163-175.
    44. Mroz. Z, Norris V A, Zienkiewicz O C. Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils. Geotechnique,1979,29(1):1-34.
    45. O'Reilly M P, Mair R J, Alderman G H. Long-term settlements over tunnels:an eleven-year study at Grimsby. Proceedings of Conference Tunnelling, London, Institution of Mining and Metallurgy,1991:55-64.
    46. Palmer J H L, Belshaw D J. Deformations and pore pressures in the vicinity of a precast, segmented, concrete-lined tunnel in clay. Canadian Geotechnical Journal,1980,17(2): 174-184.
    47. Park K H, Tontavanich B, Lee J G. A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses. Tunnelling and Underground Space Technology Vol 23, Issue 2,2008(3):151-159
    48. Provest J H. Mathematical modeling of monotonic and cyclic undrained clay behavior. International Journal for Numerical and Analytical Methods in Geomechanics,1977,(1): 195-216.
    49. Shalabi, F.I.,2001. Behavior of gasketed segmental concrete tunnel lining. Ph.D.Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
    50. Shin, J.H., Addenbrooke, T. L., and Pots, D. M.. A numerical study of the effect of ground water movement on long-term tunnel behavior. Geo-technique.2001,52(6):391-403.
    51. Supot, T.,Tanan, C.,2010. The influence of segmental joints on tunnel lining. Tunneling and Underground Space Technology 25,290-294.
    52. Shirlaw J N. Pore pressures around tunnels in clay. Canadian Geotechnical Journal.1993, 30(6):1044-1046.
    53. Van Empel, W.H.N.C., Kaalberg, F.J.,2002. Advanced modeling of innovative bored tunnel design Amsterdam North-South line. In:Proceedings of the DIANA World Conference. Tokyo, pp.439-448.
    54. Vervuurt, A.H.J.M., Van del Veen, C., gijsbers, F.B.J., Den Uijl, F.B.I.,2002. Numerical simulations of tests on a segmented tunnel lining. In:Proceedings of the DIANA World Conference. Tokyo, pp.429-437.
    55. Wang Z L,Dafalias Y F, Shen C K. Bounding surface hypoplasticy model for sand. J. Engng. Mech.ASCE,1990,116(5):983-1001.
    56. Wang Li-Zhong, Wang Zhan, Li Ling-Ling, Wang JingChang,2011. Construction behavior simulation of a hydraulic tunnel during standpipe lifting. Tunneling and Underground Space Technology 26,675-685.
    57. Wang Li-Zhong,Shen Kai-lun,Ye Sheng-Hua. Undrained Shear Strength of KO Consolidated Soft Soils. International Journal Of Geomechnics,2008,112.
    58. Ward W H, Thomas H S H. The development of earth loading and deformation in tunnel lining, in London clay, Proc.6th Int. Conf. on soil Mech. And Found. Engineering. Vol. 2:432-436.
    59. Ward, W.H., Pender, M.J.,1981. Tunnelling in soft ground-General report. In:10th Int. Conf. on Soil Mechanics and Foundation Engineering, vol.4, Stockholm:261-275
    60. Working Group No.2, International Tunneling Association. Guidelines for the design of shield tunnel lining,2000. Tunneling and Underground Space Technology 15,303-331.
    61.包鹤立.衬砌局部渗漏条件下软土盾构隧道的长期性态研究[D].同济大学,上海,2008.
    62.陈基炜,詹龙喜.上海市地铁一号线隧道变形测量及规律分析[J].上海地质,2000(2):51-56.
    63.黄宏伟,臧小龙.盾构隧道纵向变形性态研究分析[J].地下空间,2002,22(3):244-251,280.
    64.黄宏伟,徐凌,严佳梁,余占奎.盾构隧道横向刚度有效率研究.岩土工程学报,2006.28(1):-11-18.
    65.黄茂松,李进军,李兴照.饱和软粘土的不排水循环累计变形特性.岩土工程学报,2006,28(7):891-895.
    66.黄毅.上海软土地区运营地铁盾构隧道通缝拼装衬砌结构性能研究[D]同济大学,上海,2012.
    67.黄钟晖.盾构法隧道错缝拼装衬砌受力机理的研究[D].同济大学,上海,2001.
    68.姜启元,管攀峰,叶蓉.软土盾构隧道的纵向变形分析[J].地下工程与隧道,1999(4):2-6.
    69.蒋通,苏亮.地震作用下盾构法隧道的弹塑性受力分析[J].岩土工程学报,1999,21(2):200-204
    70.李进军.交通荷载作用下饱和软粘土长期沉降分析[D].同济大学:上海,2005.
    71.李进军,黄茂松,王育德.交通荷载作用下软土路基累积塑性变形分析方法.中国公路学报,2006,19(1):1-5.
    72.廖少明.圆形隧道纵向剪切传递效应研究[D].同济大学:上海,2002.
    73.林永国.地铁隧道纵向变形结构性能研究[D].同济大学:上海,2001.
    74.林永国,廖少明,刘国彬.地铁隧道纵向变形影响因素的探讨[J].地下空间,2000,20(4):264-267.
    75.刘干斌,谢康和,施祖元.横观各向同性土体中压力隧道的应力和位移计算[J],岩土力学,25(3):459-.463
    76.刘建航,候学渊主编.盾构法隧道.中国铁道出版社,北京,1991.
    77.刘建航,侯学渊.基坑工程手册.中国建筑工业出版社,北京,2000.
    78.刘明.饱和软粘土动力本构模型研究与地铁隧道长期振陷分析[D].同济大学.2006
    79.刘学山.考虑接触问题的粘弹性介质中盾构隧道的抗震分析[D].同济大学:上海,2000.
    80.刘印,张冬梅,黄宏伟.基于纵向不均匀沉降的盾构隧道渗漏水机理分析[J].铁道工程学报,2011,5:66-70.
    81.上海申通轨道交通研究咨询有限公司,同济大学,上海交通大学等.软土地区地铁隧道长期沉降效应及隧道结构分析研究报告[R].上海:上海申通轨道交通研究咨询有限公司,2010.
    82.上海市建设委员会科学技术委员会,地铁一号线工程[M].上海:上海科学技术出版社,1998.
    83.沈珠江.工程断裂力学,西安交通大学出版社,1987.
    84.田敬学,张庆贺.盾构法隧道的纵向刚度计算方法.中国市政工程,2001(3):35-37
    85.王建华,要明伦.软粘土不排水循环特性的弹塑性模拟.岩土工程学报,1996,18(3):11-18.
    86.王金昌.ABAQUS在土木工程中的应用.浙江大学出版社,2006,12
    87.王立忠,叶盛华,沈恺伦,胡亚元.K0固结软土不排水抗剪强度.岩土工程学报,2006,28(8):970-977.
    88.王立忠等,温州煤场软土结构性试验研究,土木工程学报,2002,35(1): 93-38.
    89.王立忠,丁利,陈云敏,李玲玲,结构性软土压缩特性研究.土木工程学报,2004,37(4):46-53.
    90.王立忠,李玲玲.结构性土体的施工扰动及其对沉降的影响.岩土工程学报,2007,29(5):697-704.
    91.王立忠,吕学金,复变函数分析盾构隧道施工引起的地基变形,岩土工程学报,2007,29(3):319-327.
    92.王如路.上海软土地铁隧道变形影响因素及变形特征分析[J].地下工程与隧道,2009,1:1-6
    93.王如路.上海地铁盾构隧道纵向变形分析[J].地下工程与隧道,2009(4):1-6.
    94.王如路,刘建航.上海地铁监护实践[J].地下工程与隧道.2004(1):27-34
    95.王如路,周贤浩.近年来上海地铁监护发现的问题及对策.中国土木工程学会隧道及地下工程学会地下铁道专业委员会第十四届学术交流会论文集.2001
    96.项兆池,楼如岳,傅德明.最新泥水盾构技术[R].上海:上海隧道施工技术研究所科技情报室,2001.
    99.小泉淳等.盾构隧道管片设计—从容许应力法到极限状态设计法.中国建筑工业出版社,北京,2012.
    100.徐干成,谢定义,郑颖人.饱和砂土循环动应力应变特性的弹塑性模拟研究.岩土工程学报,1995,17(2):1-12.
    101.徐凌.软土盾构隧道纵向沉降研究[D].同济大学:上海,2005.
    102.严佳梁.盾构隧道管片接头性态研究[D].同济大学:上海,2006.
    103.叶耀东.地铁振动对隧道周围软粘土动力性状及微结构影响试验研究[D].同济大学,2003.
    104.叶耀东,朱合华,王如路.软土地铁运营隧道病害现状及成因分析[J].地下空间与工程学报,2007,3(1):157-166.
    105.叶耀东,朱合华,王如路.软土运营地铁隧道病害现状及成因分析[J].地下空间与工程学报.2007,3(1):157-160,166.
    106.余占奎,黄宏伟,娄宇,叶正强,李文婷.局部均布荷载作用下软土盾构隧道结构分析.特种结构,2006.23(4):75-77
    107.郁寿松,石兆吉,谢君裴等.上海地铁隧道振陷的计算分析[J].地震工程与工程振动,6(3),1986:51-60.
    108.袁勇,赵庆丽.盾构隧道衬砌截面的承载能力功能函数[J].铁道工程学报,2009,5(128):59-63
    109.减小龙.软土盾构隧道纵向结构变形研究[D].同济大学:上海,2003,
    110.詹美礼,钱家欢,陈绪禄.软土流变特性试验及流变模型[J]岩土工程学报,1993,(3):54-62.
    111.张冬梅.软粘土的时效特性分析及隧道长期沉降的预测[D].上海:同济大学,2003.
    112.张冬梅,黄宏伟,杨俊.衬砌局部渗流对软土隧道地表长期沉降的影响研究[J].岩土工程学报,27(12):1430-1437
    113.张劲,王庆扬,胡守营,王传甲.ABAQUS混凝土损伤塑性模型参数验证[J].建筑结构,2008,38(8):127-130.
    114.张学志,黄维平,李华军.考虑流固耦合时的海洋平台结构非线性动力分析[J].中国海洋大学学报,35(5):823-826.
    115.张志强,何川,佘才高.南京地铁盾构掘进施工的三维有限元仿真分析[J].铁道学报,2005,27(1):84-89
    116.郑永来,韩文星,童琪华,杨柳峰,潘杰.软土地铁隧道纵向不均匀沉降导致的管片接头环缝开裂研究[J].岩石力学与工程学报,2005(24):4552-4558.
    120.钟小春,张金荣,秦建设,朱伟.盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J],岩土力学,2011(1):132-136.
    121.周宁,袁勇.越江盾构隧道纵向变形曲率与管环渗漏的关系[J].同济大学学报(自然科学版),2009(11):1446-1451
    122.周文波.盾构法隧道施工技术及应用.中国建筑工业出版社,北京,2004.
    123.朱蕾,黄宏伟.软土地区盾构掘进对已建隧道影响的研究现状[J].地下空间与工程学报,2010(6):1692-1695
    124.朱祖亭,周健,胡晓燕.长期动力荷载作用下饱和软粘土振陷分析[J],港口工程,1998(3):1-5.
    125.朱祖熹,陆明,柳献.隧道工程防水设计与施工[J].中国建筑工业出版社,北京,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700