灰葡萄孢对速克灵抗性遗传及病理生理学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以不同寄主来源的灰葡萄孢为供试菌株,通过抗药性诱变获得了对速克灵
    具有高抗性的突变株。进而对抗性突变株的致病力、致病生理生化机理、寄主抗病性
    生理生化机制等方面进行了较为系统的研究,探讨了灰葡萄孢抗药性变异及其致病力
    差异的机理,主要结果如下:
    1.灰葡萄孢抗药性研究
     实验表明,速克灵、多菌灵、乙霉威、代森锰锌四种农药中,速克灵与多菌灵对
    灰葡萄孢的防治效果较好,Ec50基本上均小于 0.5ug/ml。对于来自不同寄主的灰葡萄
    孢菌株,四种农药的防治效果各有高低,但整体而言,防效高低顺序为多菌灵>速克
    灵>乙霉威>代森锰锌。
     本实验通过药剂诱导灰葡萄孢产生对速克灵的高抗菌株 CF1-1,CF1-2, 其 Ec50值分
    别为 197.546 μg· ml-1与 370.984 μg· ml-1,抗性水平与敏感型菌株相比分别增加了 409
    倍与 911 倍。对抗性菌株毒力测定发现,CF1-1与 CF1-2不仅对速克灵抗性程度很高,
    对多菌灵抗性程度同样较高。抗性菌株在含低剂量速克灵的培养基上生长旺盛,生长
    速率较敏感菌株高,在无药培养基上菌丝生长较弱,菌落颜色较深并且菌丝畸形,说
    明这类抗性菌只适于有药的环境条件。抗性突变株与亲本菌株相比产孢量明显减少,
    说明抗速克灵突变株在繁殖能力上较亲本要减弱。接种草莓叶片实验表明,速克灵抗
    性菌株较敏感菌株而言发病较重且病斑较大,病斑边缘颜色深,致病力较强。即不仅
    获得了抗速克灵的高抗菌,同时具有较强的致病力。
     将抗性突变株继代培养可以发现,在一定时期内的无药培养,抗性菌对速克灵与
    多菌灵的抗性程度没有下降,只是随着转移代数的增加,菌丝生长速率有所降低,而
    对多菌灵和速克灵的抗性程度均无影响,但是第十代的菌丝生长速率明显下降,进一
    步对抗性菌在含药平板上的生长频率实验表明,前 5 代抗性菌株的生长频率均较高,
    生长状态较好。第 7 代抗性菌对多菌灵的存活率仍较高,但对速克灵的存活率下降至
    50%,第 10 代,菌株存活率均下降至 25%左右,证明经过长时间转接与离体培养后,
    抗药性在一定程度上降低或丧失。可以认为在一定期限内,灰葡萄孢对速克灵的抗性
    遗传是稳定的,但超出一定的期限就有可能减弱或丧失。
    2.灰葡萄孢致病机理的研究
     通过不同寄主来源的灰葡萄孢对不同寄主交互接种进行致病力的测定,可以看
    出,不同寄主来源的菌株之间有一定的差异,表现为在同种寄主植物上的发病情况有
    明显的差异;同一寄主来源的灰葡萄孢在不同的寄主上的致病力也表现出明显的差
    异。并且每一种菌株对其自身寄主与其它寄主来源的菌株相比并不具备致病力上的优
     i
    
    
    势。从这一意义上来说,灰葡萄孢对寄主植物的致病力的确存在明显分化。
     本文从草莓发病叶片中获得了灰葡萄孢的致病酶纤维素酶(Cx 和 ?-葡萄糖苷酶)
    与果胶酶(PMG)。在不同灰葡萄孢侵入同种草莓叶片后,产生的 Cx 与 ?-葡萄糖苷
    酶酶活性均随着培养天数的增加而升高,而对照的健康叶片在培养期间并没有明显变
    化,但不同菌株产生的纤维素酶活力有明显差异,强致病力的菌株产生的酶活力高,
    而侵染速率慢的菌株产生的纤维素酶活力较低。培养 10-15d 的灰葡萄孢均可测出果
    胶酶活性,酶活性差异不显著。接种草莓叶片后,果胶酶活性迅速升高,在第四天左
    右达到最大值,随后下降,而对照的变化并不明显。通过以上分析,可以认为灰葡萄
    孢的致病作用与致病酶有一定的相关性。测定的致病酶中,以 PMG 活性为最高,其次
    是 ?-葡萄糖苷酶,Cx 最少。由此可知,在病原菌致病过程中,主要是 PMG 起作用。
    3 灰葡萄孢诱导草莓抗病性的生理生化机制
     本实验结果表明灰葡萄孢侵染草莓后 PPO 和 POD 活性明显提高,活性的变化量
    与感病程度有显著的正相关。不同菌株侵染草莓叶片后诱导 PPO 和 POD 酶活性变化
    有显著差异,不同寄主来源的敏感菌株中 FX1诱导产生的酶活性最强,并且酶活力增
    长的速率与病斑扩展的速率正相关。寄主来源是草莓的 CF1侵染草莓叶片的发病速率
    反而比较慢,CF1 的抗速克灵诱导菌株 CF1-1 和 CF1-2 虽然病斑面积与扩展速率和亲
    本菌株差异不大,但诱导产生的防御酶活力却远远强于亲本菌株。草莓接种后 1~3
    天之间 PAL 活性显著高于对照,至第四天起活性逐渐下降。在灰葡萄孢感染番茄过
    程中,从感染部位到未感染区域病斑处和病斑周围植物组织的防御反应,导致 PAL
    酶活性的增强。草莓接种后 1~4 天之间 SOD 活性明显升高,在灰葡萄孢感染草莓过
    程中,从感染部位到未感染区域的边缘,SOD 活性有一个明显的下降梯度。
     本实验测试了不同灰葡萄孢接种草莓叶片后过氧化物酶同工酶(POD),多酚氧化
    酶同工酶(PPO),超氧化物岐化酶同工酶(SOD)酶谱,从酶谱中可以看出,接种灰葡
    萄孢后三种酶的同工酶都有明显变化,并且不同寄主来源的灰葡萄孢株接种草莓后产
    生的同工酶谱带在数目和颜色上都存在差异,其中以过氧化物酶同工酶(POD)的差异
    最为明显,而超氧化物岐化酶同工酶(SOD)的差异最小。对同一品种而言,强致病力
    的菌株诱导产生的酶带颜色较深,带?
In this paper, different isolates of Botrytis cinerea were the research objects. The
    high-resistant mutants were obtained by inducing sensitive strains with Procymidone. The
    difference of pathogenicity, the physiological and biochemical mechanisms to
    pathogenicity, the physiological and biochemical mechanisms of host resistance were
    studied systematically, and the variation of fungicide resistance of B.cinerea was also
    discussed. The results were summary as follows:
    1. Study on fungicide resistance to procymidone of B.cinerea.
     The results showed that the control effect of procymidone and carbendazim was the
    best among the four kinds of fungicide including procymidone, carbendazim, mancozeb
    and dithofencarb. The Ec50 value of procymidone and carbendazim was less than 0.5ug/ml.
    There were significant differences between the control effects of different fungicides to
    diverse strains isolated from different hosts. In the whole, the sequences of the number of
    control effects were carbendazim > procymidone > dithofencarb > mancozeb.
     The Ec50 value of two high-resistant mutants CF1-1 and CF1-2 belonged to
    multi-resistant strains because the two strains had the high resistant level to procymidone
    and carbendazim, respectively the resistant mutants grew prosperously on the medium in
    which contained low content of procymidone. While the mycelial growth rate of resistant
    mutants was higher than that of sensitive strains. The color of resistant mutants colony
    became darker and more abnormal than that of sensitive. These characteristics were
    demonstrated that the resistant mutants were accustomed to the environment with low
    content of fungicide. The conidia bearing quantities of resistant mutants were less than that
    of parents strains, it showed that the reproductive capability of resistant mutants to
    procymidone decreased compared to inoculating the leaves of strawberry, the
    pathogenicity of resistant mutants to procymidone was stronger than that of sensitive
    strains, and the lesion area was larger than that of sensitive strains. Maybe the co-evolution
    effect resulted in the characteristic of CF1-1 and CF1-2, these were the two mutants owned
    the high resistant level to procymidone and strong pathogenicity.
     The results of sub-culturing the resistant mutants showed the resistance level of
    resistant mutants did not declined when they grew on the medium in which did not contain
    the two fungicides. The mycelia growth rate declined with the increase of culture
    generation. Maybe it resulted from culture in vitro with long-term. While there were no
    any influence on the resistance level to procymidone and carbendazim, but the mycelia
    growth rate declined significantly when they grew to the tenth generation. The results of
    growth frequent on the medium with fungicides showed, the growth frequent of resistant
    mutants in the fifth generation was high and they grew prosperously. The percentage of
    survived of resistant mutants to carbendazim in the stage of the seventh generation was
    high, but that to procymidone decreased to 50%, the percentage of survival of resistant
    mutants in the stage of the tenth generations decreased to 25%. These characteristics
    suggested that the resistance level decrease or lose to some extent when these resistant
    mutants sub-cultured for a long time. The resistant inheritance of B.cinerea to procymidone
     iv
    
    
    was stable.
    2. The mechanism of pathogenicity of Botrytis cinerea
     Different hosts were inoculated by different strains of B.cinerea isolated from different
    hosts, and the intensity of pathogenicity was determined. The result showed that different
    strains had obvious diversities pathogenicity in the same plant, and the same strains had
    different expression in different plants.
     Making use of the measure of spectrophotometric analysis to study strawberry leaves
    were inoculated by several different B.cinerea strains the pathogenicity enzyme activity of
    carboxymethylcellulose(CMC), β-glucosi
引文
[1] 刘德蓉,谢丙炎,朱国仁,等.灰霉病菌(Botrytis cinerea)对杀菌剂抗药性研究进展.植
     物保护,21 世纪展望暨第三届全国青年植物保护科技工作学术研讨会论文集,172~178
    [2] 胡伟群,陈杰.灰霉病的化学防治进展.现代农药,2002(4):8~11
    [3] 师迎春,郑建秋.保护地小西葫芦主要病害防治技术,中国蔬菜,1996(4):41~42
    [4] 李云,郑德璋,郑松发,等.红树林海桑苗灰霉病研究初报,森林病虫通讯,1996(4):37~38
    [5] 潘洪玉,张浩,丁利,等.黄瓜灰霉病菌田间抗药性的测定,吉林农业大学学报,1996(3):
     27~31
    [6] 王建堂.克霉灵防治茄子灰霉病的效果,长江蔬菜,1996(2):15~16
    [7] 费显伟,张国英,王润珍,等.日光温室桃灰霉病的初步研究.植物保护,1999(3):20~22
    [8] 周秀兰,王杏元,李谷香.农利灵防治西瓜疫病灰霉病药效试验.长江蔬菜,1996(6):15~17
    [9] 朱建兰.番茄灰霉病毒素对种子发芽和组织生长的毒害作用,甘肃农业大学学报,1997(2):
     181~185
    [10] Madhu M., Bedi P.S., Krishan K.. Chemical control of grey mould of gram caused by Botrytis
     cinerea in Punjab, Journal of Research Punjab Agricultural University, 1986(3): 435~438
    [11] Kunihei K., Takao K.. Gray mold of white yam, Dioscorea alata linne cansed by Botrtinia
     fuckeliana (de Bary) whetzel, Annals of the Phytopathological Science of Japan, 1995, 61:
     586~589
    [12] Michiyoshi A.. Gray mold of hydrangea caused by Botrytis cinerea, Annals of the
     Phytopathological Science of Japan, 1996, 62: 87~90
    [13] Shinichi K., Kiyotugu O., Mituo K.. Gray mold of clematis caused by Botrytis cinerea, Annals of
     the Phytopathological Science of Japan, 1997, 63: 399~402
    [14] Schaffrath T., Krull R.. Knowledge about the occurrence of fungaldiseases on tomatoes in
     greenhouse in the country of Frankfurt, Nachrichtenblatt fur den Pflanzenschutz in der DDR, 1985,
     39(10): 198~201
    [15] Locke T., Fletcher J.T.. Incidence of benomyl and iprodione resistance in isolates of Botrytis
     cinerea in tomato crops in England and Wales in 1986, Plant Pathology, 1988, 37(3): 381~384
    [16] Zahar E., Barakat F.M., Dsman A.R., Elkhaleely M.L.. Effect of fungicides on ulocladium Botrytis
     and epiphytic microflora of tomato, Egyptian Journal of Phytopathology, 1986, 18(1): 1~10
    [17] Neena R., Grewal J.S.. Differential response of chickpea to grey mould, India Phytopathology,
     1989(2): 265~268
    [18] Akutsu K.. Growth inhibition of Botrytis spp. By serratia marcescens B2 isolated from tomato
     phylloplane, Annals of the Phytopathological Science of Japan, 1993, 59: 18~25
    [19] 薛照文,瞿洪梅,甑冬清.保护地主要蔬菜灰霉病的诊断与防治,长江蔬菜,1996(4):40~41
    [20] 李保聚,朱国仁.番茄灰霉病发生症状诊断及综合防治,植物保护,1998(6): 18~20
    [21] 史如峰,袁素玲.沛县温棚番茄灰霉病的发生特点与防治对策,植物保护,1996(1):47~48
    [22] Egashira H., Kuwashima A., Ishiguro H., Fukushima K.,Kaya T.. Screening of wild accessions
     resistant of grey mold (Botrytis cinerea pers.) in Iycopersicon, Acta Physiologiae Plantarum, 2000,
     22(3): 324~326
    [23] Lavy-Meir G., Barkai-Golan R., Kopeliovitch E.. Initiation at the flowering stage of postharvest
     Botrytis stem-end rot in normal and non-ripening tomato fruits, Annals of Applied Biology, 1988,
     112(3): 393~396
     42
    
    
    [24] Pappas A.C.. Epidemiology and control of Botrytis cinerea in tomato crops grown under cover in
     Greece, Bullentin OEPP, 2000(2): 269~274
    [25] 袁章虎,张小凤,韩秀英.灰霉菌抗药性研究进展.河北农业大学学报,1996(3): 107~109
    [26] 叶钟音,周明国,刘经芬.紫外光诱导灰葡萄孢产生抗多菌灵菌株的研究.植物保护,1987,
     14(4): 235~239
    [27] Akutsu K., Irino T., Kubo A.. Induction of dicarboximmide fungicide resistance with filtrates of the
     resistant strains of Botrytis cinerea, Annals of the Phytopathologiscal Science of Japan, 1998, 54:
     593~599
    [28] Tatsuyuki I., Takeshi E., Katsumi A., Satoshi O.. Characteristics of induced dicarboximide
     fungicide-resistance strains conferred by filtrates of the resistant strains of Botrytis cinerea, Annals
     of the Phytopathological Science of Japan, 1991, 57: 17~23
    [29] 周明国.南京市郊灰霉菌对苯并咪唑类杀菌剂田间抗性的检测,南京农业大学学报,1987(2):
     53~57
    [30] Delp. C. J. Resistance management strategies for benzmidazoles. In Fungicides Resistance in North
     America. Delp, C. J. America phytopathol. Soc. 1998, 41~44
    [31] 刘波,刘经芬,叶钟音.药剂诱导灰霉病菌产生抗速克灵菌株的研究.莱阳农学院学报,1991,
     8(1): 47~50
    [32] 刘德荣,谢丙炎.应用特异等位PCR快速鉴定灰霉病菌抗苯来特与乙霉威菌株.菌物系统,
     2001, 20(2): 238~243
    [33] 刘波,叶钟音,刘经芬.速克灵抗性灰霉病菌菌株性质的研究,植物保护学报,1992(4):
     297~301
    [34] 刘波.对多菌灵、速克灵聚多重抗性的灰霉病菌菌株性质的研究,南京农业大学学报,1993,
     16(3): 50~54
    [35] 戴富明,周世明.上海郊区保护地主要蔬菜灰霉病抗药性的初步研究.上海农业学报,1996,
     12(4): 73~76
    [36] Hanssler G., Pontzen R.. Effects of fenhexamid on the development of Botrytis cinerea,
     Pflanzenschutz-Nachrichen Bayer, 1999, 52(2): 162~180
    [37] Takeda Y., Nakamura R.. Physiological responses of stored tomato fruit in infection stress caused
     by grey mold, Journal of the Japaness Science, 1990, 59(3): 657~663
    [38] Gardiner R.B., Mckeen W.E., Lawrence T.M.. Inhibition of Botrytis cinerea spore germination by
     immunoglobulins, Canadian Journal of Botany, 1989, 67(3): 922~927
    [39] 董汉松.植物诱导抗病性原理和研究,科学出版社,1995
    [40] 章元寿,陈绍江.大豆紫斑病菌毒素研究.植物病理学报,1996,26(1): 45~48
    [41] 陈捷,咸洪泉,宋佐衡,等.玉米茎腐病菌毒素的初步研究(1).沈阳农业大学学报,1993,
     24(2): 45~48
    [42] 铃木直治著,张际中,齐显章,许泳峰,等译.近代植树物病理化学.上海科学技术出版
     社,1985
    [43] Wijesundera R.L.C.. Cell wall degrading enzyme of C.lindemuthianum; the role in the
     development of bean anthracnose.. Physiol. Mol. Plant Pathol. 1989, 34: 403~413
    [44] Benhamou N. Cell surface interaction between bean leaf cells and C.lindemuthianum. Plant Physiol.
     1991, 97: 234~244
    [45] 王金生编著.分子植物病理学[M].北京:中国农业出版社,1998
    [46] Barber M.S.et al. Aquantitative assay for induced ligification in wounded wheat leaves and its use
     to survey potential elicitors of the response [J]. Physiol. Mol. Plant Pathol. 1988, 32: 179~185
     43
    
    
    [47] Parbery D.G.. Effect of susstances associated with leaf surfaces on appressorium formation by
     C.lindemuthianum. Physiol. Mol. Plant Pathol [J]. 1986, 28: 99~105
    [48] Hwang B.K. et al. Biochemical characteristic of apple rot caused by Macrophoma spp. Phenolic
     compound content in infected fruits. Korean J. Plant Prot [J]. 1982, 21(4): 222~226
    [49] Adikarman N.K.et al. Phytoalexin involvement in the latent infection of C.annuum L.fruit by
     G.cingulata. Physiol. Plant Pathol [J]. 1982, 21: 161~170
    [50] Barker F.C. et al. Biosynthesis of the sesquiterpenoid capsidiol in sweet pepper fruit inoculated
     with fungal spores. Phytochem [J]. 1976, 15: 689~694
    [51] Guedes M.E.M. et al. Accumulation of six sesquiterpenoid phytoalexins in tobacco leaves
     infiltrated with Pseudomonas lachrymans. Phytochem [J]. 1982, 21(12): 2987~2988
    [52] Lo S.C.et al. Phytoalexin accumulation in sorghum: Identification of a methyl ether of luteolinidin.
     Physiol. And Mol. Plant Pathol [J]. 1996, 49: 21~31
    [53] 董汉松.植物抗病防卫基因表达调控与诱导抗性遗传的机制 [J]. 植物病理学报,1996, 26(4):
     289~293
    [54] Beardmore J.et al. Cellular lignification as a factor in the hypersensitive resistance of wheat to stem
     rust [J]. Physiol. Plant pathol. 1983, 22: 209~220
    [55] 董汉松主编.植物诱导抗病性原理和研究[M].第一版.北京:科学出版社,1995
    [56] Goy A.H.L. et al. Resistance to disease in the hybrid N.glutinosa ia associated with high
     constitutive levels of B-1,3-glucanase, peroxidase and PPO. Physiol. Mol Plant Pathol [J]. 1992, 41:
     11~21
    [57] Grelinska A.I. Changes in protein level and activity of several enzymes in susceptible and resistant
     tomato plant after inoculation F.oxysporum. Phytopathol [J]. Z. 1969, 65: 374~380
    [58] Hammerschimidt R.et al. Association of enhanced peroxidase activity with induced systemic
     resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol [J]. 1982b, 20: 73~82
    [59] 刘进元,余荔华.植物抗病基因工程的研究进展 [J].生物工程进展,1994, 14(2): 31~34
    [60] 谢春艳.多酚氧化酶及其生理功能.生物学通讯 [J], 1999, 34(6): 11~13
    [61] Cai D., Kleine M., Kifle S.et al. Positional cloning of a gene for nematode resistance in sugar
     beer[J]. Science. 1997, 275: 832~834
    [62] Hain R.et al. Disease resistance results from foreign phytoalexin expression in a novel plant.
     Nature[J]. 1993, 361(14): 153~156
    [63] Jones L.B. et al. POD changes in wheat isoline with compatible and incompatible leaf rust
     infection. Physiol. Plant Pathol [J]. 1978, 13: 173~181
    [64] 余叔文,汤章成主编.植物生理与分子生物学[M].第二版.北京:科学出版社,1999
    [65] Ishii H. DNA-based approaches for diagnosis of fungicide resistance. In:Clark J M. Yamaguchi
     Ieds. Agrochenical Resistance Extent, Mechanism and Detection. Washington DC: American
     Chemical Society, 2002. 242-259.
    [66] 李宝聚,陈立芹,孟伟军,等.温湿度调控对番茄灰霉病菌产生的细胞壁降解酶的影响.植
     物病理学报,2003, 33(3): 209~212
    [67] Akutsu K, Ko K, Misato T. Role of conidial fusion in infection by Botrytis cinerea on cucumber
     leaves [J]. Ann. Phytopathol. Soc. Jap. , 1981, 47:15~23
    [68] Campbell C L, Huang J S, Payne G A. Defense at the perimeter: the outer walls and the gates[A].
     Horafall J G, Cowling E B. Plant Disease, An Advanced Treatise. V. 5[M]. New York: Academic
     Press, 1980, 103~120, 534
    [69] Curtis M.D. Nucleotide sequence of a cationic POD gene from the tropical forage
     44
    
    
    legume Stylosanthes humilis. Plant Physiol.1995,108:1303~1305
    [70] Nadolny L. Increase in POD are not directly involved in induced resistance in tobacco.
     Physiol. Plant Pathol.1980, 16:1~8
    [71] 李保聚,李风云.黄瓜不同抗病品种感染黑腥病菌后过氧化物酶和多酚氧化酶的变化.中国
     农业科学,1998,31(1):86~88
    [72] 沈其益,阎龙飞,李庆基,等.棉花感染枯萎病后过氧化物同工酶的变化.植物学报,1978,
     20(2):108~113
    [73] 胡景江,文建雷,景耀,等.过氧化物酶和多酚氧化酶与杨树溃疡病抗性的关系.西北林学
     院学报,1990,5(1):46~51
    [74] 章元寿主编.植物病理生理学.南京:江苏科学技术出版社,1996
    [75] 陈建中,盛炳成,刘克均.苯丙酸类代谢与苹果对轮纹病抗性的关系.果树科学,1997,14
     (3):149~152
    [76] Fridovich I. Superoxide dismutase. Ann Rev Biochem.1975, 44:147~159
    [77] 陈利锋,宋玉立,徐雍皋,等.抗感赤霉病小麦品种超氧化物歧化酶和过氧化氢酶的活性比
     较.植物病理学报,1997,27(3):209~213
    [78] 宋凤鸣,葛秀春,郑重.活性氧及膜脂过氧化与棉花对枯萎病抗性的关系.植物病理学报,
     2001,31(1):110~116
    [79] 王建明,张作刚,郭春绒,等.枯萎病菌对西瓜不同抗感品种丙二醛含量及某些保护酶活性
     的影响.植物病理学报,2001,31(2):152~156
    [80] 景涛,熊慧玉.植物同工酶与抗病关系研究(综述)[J].亚热带植物通讯.1992, 8(1): 72~75
    [81] 徐朗莱,叶茂炳,徐雍皋.过氧化物酶与小麦抗赤霉病菌的关系[J].植物病理学报, 1991, 21(4):
     285~289
    [82] 顾之中,高长寿,蒋伦伟.葡萄(Vitis)不同种叶片中的过氧化物酶同工酶谱及其抗病性关系
     的初步研究[J].江西农业大学学报, 1989, 11(4): 13~17
    [83] 沈其益.棉花感染枯萎病后过氧化物酶同工酶的变化[J].植物学报,1978, 20(2): 108
    [84] 张士文.番茄不同生育期酯酶同工酶的研究[J].哈尔滨师范大学学报(自然科学版), 1986, 1:
     42~45
    [85] 梁子超.木麻黄对青枯病的抗性及其与细胞膜透性和过氧化物同工酶的关系的探讨[J].华南
     农学院学报,1982, 3(2): 28
    [86] Weech J A. Localization of peroxidase in infected tobaccos susceptible and resistant to black
     shank[J]. Phytopathology, 1969, 59: 566~576
    [87] 夏正俊,李清铣.江苏省几种作物丝核菌酯酶同工酶研究.江苏农业学报,1992,8(1):
     25~29
    [88] 李晓林. 苹果属植物酯酶同工酶分析.西南农业大学学报,1997,19(2):105~111
    [89] 王新宇,梁祖炳,蒲训,等.三种不同羊肚菌菌丝体的生长,蛋白质合成和酯酶同功酶的组
     成.真菌学报,1996,15(3):220~226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700