番茄抗青枯病生理生化机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了6个青枯菌菌株的致病性、生化变种、胞外酶的变化,5个番茄品种(系)对青枯病的苗期和成株期抗病性鉴定,同时研究了接种后番茄根部和叶片发生的生理生化变化,以初步探讨番茄抗青枯病的生理生化机制。所得结果概括如下:
    经测定,供试6个青枯菌菌株均具有致病性,且致病性由强到弱依次为HF、HX、YS、FY、HN2、HN1。生化变种的测定结果表明,仅FY菌株不能利用甜醇,属生化变种Ⅲ的一个亚型,即Ⅲ-1,而其余5个菌株均属生化变种Ⅲ。胞外酶活性的测定结果表明,随培养时间的延长,果胶酶和纤维素酶两种酶活性都逐渐升高,培养7~9天酶活性均达最大值,但果胶酶活性最大值与菌株致病性之间相关性不大(r=0.6371),而各菌株纤维素酶活性最大值与致病性高度正相关(r=0.9526)。
    番茄苗期采用伤根灌注法接种,分别于接种后1周、2周、3周进行发病株率调查。3次调查结果一致,5个品种(系)苗期均为感病品种(系),但品种(系)间发病株率存在显著差异,强丰最高,新星最低,其余品种(系)介于两者之间。
    番茄成株期采用伤根灌注法接种鉴定,结果表明,新星、夏钻石、黄山1号3个品种(系)为抗病品种(系),抗性指数分别为12.9、12.3、10.9,黄山2号抗性指数为8.9,属中抗品种(系),而强丰抗性指数为2.5,属感病品种(系)。
    番茄苗期未接种处理各品种(系)叶片5种防御酶活性处在动态平衡中,接种后,各品种(系)叶片POD、PPO、PAL3种酶活性均升高,新星、夏钻石、黄山1号、黄山2号始终高于对照,且上升速度、最大增幅、峰值均高于强丰,而强丰接种后初期高于对照,后期则低于对照。接种后,各品种(系)叶片SOD和CAT活性变化紊乱,没有规律。所以,接种青枯菌后番茄叶片POD、PPO、PAL3种酶可以作为早期筛选抗病品种(系)的辅助指标,而SOD和CAT2种酶还有待于进一步研究。
    番茄成株期未接种处理各品种(系)根部和叶片5种防御酶(POD、PPO、PAL、SOD、CAT)酶活性处在动态平衡之中,均在一定范围内波动,但幅度不大,抗病品种(系)和中抗品种(系)POD和PAL活性始终高于感病品种(系)。接种后,无论是根部还是叶片,各品种(系)POD、PPO、PAL、SOD4种酶活性均升高,其中PAL和SOD表现较为敏感,活性高峰出现早,而且PAL出现两个活性高峰,其余3种酶只有一个活性高峰。各品种(系)根部POD、PPO、PAL酶活性的峰值和最大增幅均高于叶片,SOD恰好相反。总体上,无论是根部还是叶片,接种后抗病品种(系)和中抗品种(系)4种酶活性均高于对照,且酶活性上升速度和峰值均高于感病品种(系);而感病品种(系)前期高于对照,后期则低于对照。各品种(系)4种酶活性峰值的高低与品种(系)抗病性均呈正相关。接种后,各品种(系)根部CAT活性均先降低后升高,第6天达到高峰,且峰值和最大增幅与品种(系)抗病性呈正相关。抗病品种(系)叶片CAT活性变化与根部相同,中抗品种(系)接种后2天内基本没有变化,此后升高,并始终高于对照,第6天达到高峰;感病品种(系)接种后CAT活性缓慢升高,第6天达到高峰,此后下降,第8天后一直低于对照。番茄成株期接种青枯菌后体内POD、PPO、PAL、SOD 4种酶可以作为番茄抗青枯病的生理生化指标,而CAT还有待于进一步研究。
    番茄成株期未接种处理,无论是根部还是叶片,木质素含量与品种(系)抗病性梯度一致。接种后,无论是根部还是叶片,木质素含量均升高,抗病品种(系)始终高于中抗品种(系),后者又高于感病品种(系),而且木质素含量上升速度和最大增幅与品种(系)抗病性梯度一致。番茄成株期接种青枯菌后,无论是根部
    
    
    还是叶片,各品种(系)总酚含量均升高,抗病品种(系)和中抗品种(系)第2天和第6天出现两个高峰,且第一个峰值高于第二个,而感病品种(系)第4天达到高峰,峰值显著低于其余品种(系),这与PAL活性变化规律基本一致。接种后,各品种(系)总酚含量均始终高于对照,且峰值高低与品种(系)抗性梯度一致。番茄成株期接种青枯菌后体内木质素含量和总酚含量可以作为番茄抗青枯病的生理生化指标。
    番茄成株期接种青枯菌后,抗病品种(系)和中抗品种(系)根部和叶片POD同工酶谱带数没有变化,PPO同工酶多了1条新酶带,而感病品种(系)根部和叶片POD同工酶多了1条新酶带,PPO同工酶多了2条新酶带。接种后,抗病品种(系)和感病品种(系)的根部和叶片SOD同工酶多了2条新酶带,而中抗品种(系)根部多了3条新酶带,叶片多了2条新酶带。
In this paper, the pathogenicity, biovar, extracellular enzyme of six strains and the seedling and adult resistance identification of five tomato cultivars to bacterial wilt were studied. Meantime, the physiological and biochemical changes were studied after inoculation with Ralstonia solanacearum in order to clarify the physiological and biochemical resistance mechanism of tomato to bacterial wilt. The results were as following:
    The results indicated, the six tested strains all had pathogenicity and the pathogenicity order from strong to weak was HF,HX,YS,FY,HN2,HN1.The FY strain couldn’t utilize eulcital and belonged to a subtype of biovar Ⅲ —Ⅲ–1,while others strains belonged to biovar Ⅲ. The results of extracellular enzyme activities indicated, the extracellular enzyme(PG and EG) activities increased accompanied with the prolongation of cultivation time gradually, and the enzyme activities reached the max in 7~9 days after cultivation. The relativity between the max of PG activity and pathogenicity was not too large(r=0.6371),while the relativity between the max of EG activity and pathogenicity was very large (r=0.9526).
    Tomato cultivars were inoculated with R.solanacearum with the pouring method of the seedling’s hurt root and the diseased plant rate was investigated at the first, second, third week respectively after inoculation. Three times investigation results were coincident. Five tomato cultivars were all susceptible in seedling, but there were significant difference on the diseased plant rate among cultivars. Qiangfeng was the highest and Xinxing was the lowest, while others cultivars were between Qiangfeng and Xinxing.
    Tomato cultivars were inoculated with R.solanacearum with the pouring method of the adult’s hurt root. The result showed: Xinxing, Xiazuanshi, Huangshanyihao were resistant cultivars and the resistance indexes were 12.9,12.3,10.9 respectively. Huangshanerhao was middle–resistant cultivar and the resistance index was 8.9.While Qiangfeng was susceptible cultivar and the resistance index was only 2.5.
    Five defensive enzymes’ activities in leaves of tomato were under homeostasis without inoculation in seedling. The enzyme activities of POD,PPO and PAL in leaves of all cultivars ascended after inoculation. The enzyme activities of POD,PPO and PAL of Xinxing, Xiazuanshi, Huangshanyihao, Huangshanerhao were always higher than those of CK after inoculation, and the ascending speed ,the largest increasing rate, the peak values of the four cultivars were higher than those of Qiangfeng. The enzyme activities of POD,PPO and PAL of Qiangfeng in early days was higher than those of CK after inoculation, while was lower than those of CK in late days after inoculation. The changes
    
    
    of enzyme activities of SOD and CAT in leaves of all cultivars were turbulent and were absence of orderliness after inoculation. So, the three enzymes (POD, PPO, PAL) of leaves of tomato could be used as assistant guidelines of filtrating the resistance cultivars in early phase after inoculation with R.solanacearum, while SOD and CAT needed more studies.
    Five defensive enzymes activities in leaves and roots of tomato were under homeostasis without inoculation in adult. They fluctuated in a certain scope , but the extent was small. The enzyme activities of POD and PAL in leaves and roots of resistant cultivars and middle–resistant cultivar were higher than those of the susceptible cultivar without inoculation. The enzyme activities of POD, PPO, PAL, SOD in leaves and roots of all cultivars ascended after inoculation. The PAL and SOD were more susceptive than others and their activities peaks appeared earlier than others’. The enzyme activity of PAL appeared two peaks, while others appeared only one peak. The peak values and the largest increasing rates of enzyme activities of POD,PPO,PAL in roots of all cultivars were higher than those of leaves, while SOD was reverse to others. As a whole, the activities of four enzymes in leaves and roots of resistant cultivars and middle–resistant cultivar were h
引文
1.何礼远,康耀卫.植物青枯菌(Pseudomonas solanacearum)致病机理.自然科学进展—国家重点实验室通讯,1995,5(1):7~16.
    2.任欣正,申道林,谢贻格.番茄青枯病的生物防治.南京农业大学学报,1993,16(1):45~49.
    3.方中达.植病研究方法(第三版).北京:中国农业出版社,1998.
    4.张衔荣,赵秀娟.番茄抗青枯病育种研究进展[J].长江蔬菜,1999(3):1~4.
    5.Kelman A.Hartman G L and Hayward A C.Introduction in Bactierial Wilt:The disease and its causative agent Pseudomonas solanacearum. CAB International,1994,1~7.
    6.吴文珍.番茄青枯病的流行发生和防治.福建农业科技,1996(6):37.
    7.郑锦荣.番茄抗青枯病材料的鉴定与筛选.中国蔬菜,1998(6):8~10.
    8.Yabbuchi E Y.et al.Proposal of Burkholderia gen.Nov.and transfer of seven species of the genus
    Pseudomonas homologu group Ⅱ to the new genus with the type species Burkholderia
    cepacia(Palleroni and Holmes 1981)comb.nov.Microbiol.Immunol.,1992,36:1251~1275.
    9. Yabuuchi E Y.,Kosako I.,Yano H.et al.Transfer of two Burkholderia and an Alcalibenes species to
    Ralstonia Gen.Nov.:Proposal of Ralstonia pickettii(Raston,Palleroni and Doudoroff
    1973)Comb.Nov.,Ralstonia solanacearum (Smith 1896) Comb.Nov.and Ralstonia eutrophus(Davis 1
    969)Comb.Nov.Microbiol.Immunol.,1995,39:897~904.
    10.王金生. 植物病原细菌学[M].北京:中国农业出版社,2000.
    11.姬广海,张世光.植物病原细菌的分类进展[J].云南农业大学学报,1999,14(1):113~118.
    12.卢同.我国作物细菌性青枯病的研究进展[J].福建农业学报,1998,13(2):33~40.
    13. Buddenhagen I W,L Sequeira and A.Kelman.Designation of races in Pseudomonas solanacearum.Phytopathol,1962,52:726.
    14. He L Y, Sequeira L, Kelman A. Characteristics of strains of Pseudomonas solanacearum from China. Plant Disease,1983,67(12):1357~1361.
    15. Hayward A.C. Characteristics of Pseudomonas solanacearum. Joul.Appl.Bact,1964,27:265~277.
    16. Qi huang and Caitilyn Allen. Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants[J]. Physiological and Molecular Plant Pathology. 2000,57:77~83.
    17. 康耀卫,毛国璋,何礼远,等.利用青枯菌胞外蛋白输出缺失突变体防治番茄青枯病的研究[J].植物保护学报,1995,22(3):287~288.
    18. 刘焕利,何礼远,毛国璋,等.植物青枯细菌胞外蛋白在致病中作用的研究.中国农业科学,2000,33(1):57~61.
    19. 毛国璋,白小军.青枯假单胞菌野生型菌株的运动性和趋向性.自然科学进展—国家生物学重点实验室通讯,1997,7(6):755~758.
    20. 毛国璋. 青枯假单胞菌的运动性及其在侵染过程中的作用.植物病理学报,1998,28(1):95~96.
    21. 白小军,王晓菁,毛国璋.青枯菌的运动性野生型菌株的发现和鉴定[J].西北农业学报,2000,
    9(2):28~32.
    22. Julie Tans—Kersten, Huayu huang and Caitilyn Allen. Ralstonia solanacearum Needs Motility for Invasive Virulence on Tomato[J]. Journal of Bacteriology,2001,183:3597~3605.
    23. 李海涛. 茄科蔬菜对青枯病的抗性特性及育种方法的研究:[博士学位论文]. 沈阳:沈阳农
    
    
    业大学,2000.
    24. 林维英,夏怡厚,王金陵. 福建省番茄青枯病菌的生化型和品种抗性鉴定研究.福建农业科技,1992(4):17~18.
    25. 黄雅芳.番茄抗青枯病组合的选育.广西农业科学,1990(3):21~23.
    26. 林美琛,陈华平,陆民强,等.浙江省番茄青枯病菌生化型及其分布的研究.植物病理学报,1993,23(2):105~106.
    27. 乐素菊,梁承愈,吴定华. 番茄青枯病抗、感品种(系)结构性差异初探.华南农业大学学报,1996,17(2):50~53.
    28. 武万荣,孙维登,黄业东,等. 不同番茄品种对青枯病的抗性研究.安徽农业大学学报,1998,25(2):145~147.
    29. 郑福庆. 拮抗番茄青枯病菌株的筛选及生防试验.长江蔬菜,1998(11):12~13.
    30. 刘达凤,陈须文,汪金莲. 番茄不同品种抗青枯病研究.江西农业大学学报,1996,18(3):360~362.
    31. 乐素菊,吴定华,梁承愈. 番茄青枯病的抗性遗传研究.华南农业大学学报,1995,16(4):91~95.
    32. 李华平,T.H.Barksdale. 番茄抗青枯病品系(种)在恶劣条件下的抗性反应.中国蔬菜,1990,(2):1~3,6.
    33. 黎壁然,黄爱兴,郑锦荣,等.番茄抗青枯病品种夏星的选育. 广西农业科学,1991(6):17~19.
    34. 黄业东,武万荣,叶正荷. 合肥郊区番茄青枯病病原细菌致病力测定.安徽农业大学学报,1995,22(4):409~412.
    35. 刘爱媛,尹仁国,李治平. 几个番茄品种对青枯病抗性测定.长江蔬菜,1993(4):28~29.
    36. 何自福,虞皓. 广东省主要番茄品种对青枯病的抗性研究初报.广东农业科学,2001(3):42~44.
    37. Grimault V. Comparative histology of resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. Physiological and Molecular Plant Pathology, 1994,44(2):105~123.
    38. 王卉,任欣正. 青枯菌(Pseudomonas solanacearum)在番茄抗、感病品种根部的吸附、侵入和繁殖.植物病理学报,1993,23(2):143~149.
    39. 汪国平,吴定华,曾宪铭. 番茄愈伤组织对青枯病菌及其培养滤液的抗性研究. 华南农业大学学报,1998,19(1):54~57.
    40. Vasse J. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Milecular Plant Microbe Interactions, 1995,8(2):241~251.
    41. Grimault V. Invasiveness of virulent strains of Pseudomonas solanacearum in tomato cultivars,resistant or susceptible to bacterial wilt. Journal of Phytopathology, 1994,141(2):195~201.
    42. Grimault V. Grafting tomato cultivars resistant or susceptible to bacterial wilt: analysis of resistance mechanisms. Journal of Phytopathology,1994,141(3):330~334.
    43. Gopinath G. Inheritance of certain physio–biochemical characters in egg plant(Solanum melongena L.). Mysore Journal of Agricultural Sciences,1987,21(1):47~49.
    44. Raheem A. Formation of tomatine in tomato plants infected with Streptonmyces species and treated with herbicides,correlated with reduction of Pseudomonas solanacearum and Fusarium oxysporum f.sp lycopersici. Acta Microbiologica Polonica, 1995,44(3):255~266.
    45. Hanudin. Evaluation of resistance of tomato cultivars to Pseudomonas solanacearum E.F. Smith
    
    
    infection. Buletin Penelitian Hortikultura, 1987,15(1):114~119.
    46. Sitaramaiah K. Reaction of brinjal cultivars to bacterial wilt caused by Pseudomonas solanacearum. Indian Journal of Mycology and Plant Pathology, 1984,14(3):218~222.
    47. 董继新,董海涛,李德葆.植物抗病基因研究进展[J].植物病理学报,2001,31(1):1~8
    48. Ende, G.V.D.et al. Cutinolytic enzymes in relation to pathogenesis[J]. Ann.Rev.Phytopathol. 1974.12:247~258.
    49. Ende,G.V.D.et al. Cutinolytic enzymes inrelation to pathogenesis[J]. Annu.Rev.Phytopathol. 1992,30:369~389.
    50. Espelie K.E.et al. Composition o suberin-associated waxes from the subterranean storage organs of seven plants[J].Planta.1980,148:468~476.
    51. Fisher,I. The role of exocarp thickness in the production,consumption and selection of paprika for consumption[J].Genet.Breed.Capsicum. 1994,8:106~109.
    52. Koller,W.et al. Role of cutinase and cell wall degrading enzyme in infection of pisum sativum by Fusarium solani[J].Physiol.Plant Pathol. 1982,20:47~60.
    53. Koller,W.et al. Role of cutinase in the penetration of apple leaves by Venturia inaequalis[J].Phytopathol. 1991.81:1375~1379.
    54. Kuranda M.J.et al. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae[J].J.Biological Chem. 1991,226(29):19758~19767.
    55. Lafitte C.et al. Cell surfaces in plant-microorganism interactions[J].Plant Physiol.1979,64:320~326.
    56. 王金生编著.分子植物病理学[M].北京:中国农业出版社,1998.
    57. Barber M.S.et al. Aquantitative assay for induced ligification in wounded wheat leaves and its use to survey potential elicitors of the response[J] .Physiol.Mol.Plant Pathol.1988,32:185~179.
    58. Beardmore J.et al. Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust[J].Physiol.Plant pathol. 1983,22:209~220.
    59. Beardmore J.et al. Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum[J].Physiol.Plant Pathol.1984,24:43~47.
    60. Hammerschimidt R.et al. Lignification as a mechanism for induced SAR in cucumber[J].Physiol.Plant Pathol.1982a.,60:61~71.
    61. Hammerschimidt R.et al. Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust[J].Physiol.Plant Pathol.1983,22:209~220.
    62. Noubize T.O.C.et al. Relations of phenolic inhibitors to resistance of immature apples fruit to rot.J.Hort.Sci[J]. 1976,51:311~319.
    63. O’connell,R.I.et al. Immunigold labeling of fungal antigens in cells of Phaseolus vulgaris infected by C.lindemuthianum.Physiol.Mol.Plant Pathol[J]. 1986,28:99~105.
    64. Parbery D.G. Effect of susstances associated with leaf surfaces on appressorium formation by Colletotrichum acutatum.Trans.Br.Mycol.Soc[J]. 1978,70(1):7~19.
    65. Hwang B.K.et al. Biochemical characteristic of apple rot caused by Macrophoma spp.:phenolic compound content in infected fruits.Korean J.Plant Prot[J]. 1982,21(4):222~226.
    66. Adikarman N.K.B.et al. Phytoalexin involvement in the latent infection of C.annuum L.fruit by G.cingulata.Physiol.Plant pathol[J]. 1982,21:161~170.
    67. Barker F.C.et al. Biosynthesis of the sesquiterpenoid capsidiol in sweet pepper fruits inoculated with fungal spores.Phytochem[J]. 1976,15:689~694.
    
    68. Guedes M.E.M.et al. Accumulation of six sesquiterpenoid phytoalexins in tobacco leaves infiltrated with Pseudomonas lachrymans.Phytochem[J]. 1982,21(12):2987~-2988.
    69. Hain R.et al. Disease resistance results from foreign phytoalexin expression in a novel plant.Nature[J]. 1993,361(14):153~156.
    70. Lo S.C.et al. Phytoalexin accumulation in sorghum:Identification of a methyl ether of luteolinidin.Physiol.And Mol.Plant Pathol[J]. 1996,49:21~31.
    71. 董汉松. 植物抗病防卫基因表达调控与诱导抗性遗传的机制[J].植物病理学报,1996,26(4):289~293。
    72. 董汉松主编.植物诱导抗病性原理和研究[M].第一版.北京:科学出版社,1995年。
    73. Goy,A.H.L.et al. Resistance to disease in the hybrid N.glutinosa is associated with high constitutive levels of B-1,3-glucanase,peroxidase and PPO.Physiol.Mol Plant Pathol[J]. 1992,41:11~21.
    74. Grelinska,A.I. Changes in protein level and activity of several enzymes in susceptible and resistant tomato plant after inoculation F.oxysporum.Phytopathol[J].Z.1969,65:374~380.
    75. Hammerschimidt R.et al..Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium.Physiol.Plant Pathol[J]. 1982b,20:73~82.
    76. 刘进元,余荔华.植物抗病基因工程的研究进展[J].生物工程进展,1994,14(2):31~34。
    77. Shah DM.et al.TIBTECH[M].1995.13:362.
    78. 谢春艳. 多酚氧化酶及其生理功能.生物学通讯[J],1999,34(6):11~13.
    79. Cai D.Kleine M.Kifle S.et al.Positional cloning of a gene for nematode resistance in sugar beer[J].Science.1997.275:832~834.
    80. Jones,L.B.et al. POD changes in wheat isoline with compatible and incompatible leaf rust infection.Physiol.Plant Pathol[J]. 1978,13:173~181.
    81. 余叔文,汤章城主编. 植物生理与分子生物学[M].第二版.北京:科学出版社,1999.
    82. M.Salanoubat,S.Genin,F.Artiguenave,et.al. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature,2002,415(31):497~502.
    83. 任欣正. 植物病原细菌的分类和鉴定[M].北京:中国农业出版社,1994.
    84. 蒋传葵, 金承德, 吴仁龙,等. 工具酶的活力测定.上海:上海科学技术出版社, 1982
    85. 张龙翔,张庭芳,李令媛. 生化实验方法和技术. (第二版). 北京:高等教育出版社,1997.
    86. 朱广廉,钟海文,张爱琴. 植物生理学实验指导. 北京:北京大学出版社,1990.
    87. 薛应龙,欧阳光察,澳绍根. 植物苯丙氨酸解氨酶的研究Ⅳ 水稻幼苗中PAL活性的动态变化. 植物生理学报,1983,9(3):301~305.
    88. 张宪政,陈凤玉,王荣富主编.植物生理学实验技术[M]. 辽宁:辽宁科学技术出版[M],1992.
    89. 陈利锋,宋玉立,徐雍皋,等. 抗感赤霉病小麦品种超氧化物歧化酶和过氧化氢酶的活性比较. 植物病理学报,1997,27(3):209~213.
    90. X .H .波钦诺克著[苏],荆家海,丁钟荣译.植物生物化学分析方法[M].北京:科学出版社,1981
    91. 庄炳昌,王玉民,谢雪菊,等. 抗性不同大豆品种感染灰斑病后若干生化反应. 作物学报,1993,19(6):567~570.
    92. 李瑶,田秋元,程邦根.两种同工酶与猕猴桃植株抗溃疡病关系的研究[J].中国农学通报,2001,17(3):28~30.
    93. 薛应龙主编. 植物生理学实验手册[M]. 上海:上海科学技术出版社,1985.
    94. 阚光锋,张广民,房保海.烟草野火病菌(Pseudomonas syringae pv.tabaci)对烟草细胞内5种防御酶系统的影响[J].山东农业大学学报(自然科学版),2002,33(1):28~31.
    
    95. 李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,1991,21(4):277~283.
    96. 李保聚,李风云.黄瓜不同抗性品种感染黑星病菌后过氧化物酶和多酚氧化酶的变化[J].中国农业科学,1998,31(1):86~88.
    97. 何忠效,张树政主编.电泳(第二版)[M].北京:科学出版社,1999.
    98. 胡能书,万贤国. 同工酶技术及其应用[M].长沙:湖南科学技术出版社,1985.
    99. 罗广华,王爱国. 植物SOD的凝胶及活性的显示[J].植物生理学通讯,1983,(6):44~45.
    100.赵莉,云兴福. 对霜霉病抗性不同的黄瓜品种组织中SOD同工酶的分析[J].内蒙古农业科技,1995(4):1~3.
    101. 陈建中,盛炳成,刘克钧. 过氧化物同工酶与苹果抗轮纹病的关系[J].果树科学,1996,13(2):103~104
    102. 华静月,张长龄,何礼远.我国植物青枯菌的生化型和其他生理差异.植物保护学报,1984,11(1):43~50.
    103. 丁爱云,郑继法,时呈奎,等.山东省植物青枯菌的生化型研究. 山东农业大学学报(自然科学版),2002,33(1):50~52.
    104.李淼. 猕猴桃品种对溃疡病的抗性及其机理研究:[硕士学位论文].合肥:安徽农业大学,2003.
    105. Van Huystee, R.B. Ann.Rev.Plant physiology, 1987,38:205~219.
    106. 铃木直治等,张际中等译. 近代植物病理化学. 上海:上海教育出版社,1981.
    107. 余叔之. 植物生理与分子生物学.北京:科学出版社,1992.
    108. H.惠勒. 沈崇尧译. 植物病程. 北京:科学出版社,1979.
    109.沈其益,阎隆飞,李庆基,等. 棉花感染枯萎病菌后过氧化物酶同工酶的变化. 植物学报,1978,20(2):108~112.
    110.夏正俊,顾本康,吴蔼民,等. 棉花品种抗黄萎病性与体内生化成分相关分析. 植物保护学报,1994,21(4):305~310.
    111.徐朗莱,叶茂炳,徐雍皋,等. 过氧化物酶及同工酶与小麦抗赤霉病性的关系. 植物病理学报,1991,21(4):285~289.
    112.陈建中,盛炳成,刘克钧. 苹果感染轮纹病菌后过氧化物酶和多酚氧化酶活性的变化. 江苏农业学报,1997,13(1):63~64.
    113.吴元华,文才艺,李浩戈,等. 烟草感染马铃薯Y病毒脉坏死株系后六种酶活性变化的研究. 中国烟草学报,1999,5(2):30~33.
    114.吴岳轩,曾富华,王荣臣. 杂交稻对白叶枯病的诱导抗性与细胞内防御酶系统关系的初步研究. 植物病理学报,1996,26(2):127~131.
    115.徐建华,利容千,王建波. 黄瓜不同抗病品种感染镰刀菌枯萎病菌后几种酶活性的变化. 植物病理学报,1995,25(3):239~242.
    116.汪耀富,林学梧,朱长远,等. TMV对田间烟草生理生化的影响. 河南农业大学学报,1992,26增刊:126~130.
    117.Overeen J.C, Threlfall D.R. Biochemical aspect of plant parasite relationships. Academic press,1976,134.
    118.王生荣. 不同黄瓜品种感染黑星病菌后一些酶含量的变化. 山东农业大学学报,1999,30增刊:179~182.
    119.宋凤鸣,郑重,葛秀春. 活性氧及膜质过氧化在植物—病原物互作中的作用. 植物生理通讯,1996,32(5):377~385.
    
    120.Ekbote A.U. Mayee C.D. Biochemical changes in rust(Puccinia arachidis) resistant and susceptible varieties of groundnut after inoculation. Indian Phytopath, 1983,36(1):194.
    121.邵金旺,党俊梅,张家骅,等. 甜菜抗(耐)丛根病生理基础的研究(Ⅰ).内蒙古农业大学学报,1999,20(4):1~6.
    122.Gamm EL, Towers GHN. Review article phenylalanine ammonia lyase. Phytochemistry, 1973,12:961~973.
    123.杨家书. 植物苯丙氨酸类代谢与小麦对白粉病抗性的关系. 植物病理学报,1986,16(3):169~173.
    124.Grgen N.E, Hadwiger L.A, Graham S.O. Phenylalanine ammonia lyase, chloerogenic acid and lignin in potato tubertissue inoculated with Phytophthora infectans. Plant Pathology, 1973,3(4):495~507.
    125.许勇,王永健,葛秀春,等. 枯萎病菌诱导的结构抗性和相关酶活性的变化与西瓜枯萎病抗性的关系. 果树科学, 2000,17(2):123~127.
    126.叶茂炳,徐朗莱,徐雍皋,等. 苯丙氨酸解氨酶和绿原酸与小麦抗赤霉病性的关系. 南京农业大学学报,1990,13(3):103~107.
    127.Buonaurio R.,Torre G.D.,Montalbini P. Soluble superoxide dismutase (SOD) in susceptible and resistant host–parasite complex of Paseolus nulgatis and Uromyces phaseoli. Physiology Molecular Plant Pathology,1987,31:173.
    128.王雅平,刘伊强,施磊,等. 小麦对赤霉病抗性不同品种的SOD活性. 植物生理学报,1993,19:353~358.
    129.李宝聚,李凤云. 黄瓜抗黑星病品种表皮结构和若干酶系活性的研究. 园艺学报,1999,26(3):198~200.
    130.叶钟音,刘经芬. 水稻对白叶枯病菌(Xanthomonas campestris pv. oryzae)的抗性与过氧化物酶和过氧化物酶同工酶活性的关系. 南京农学院学报,1984,(2):39~45.
    131.贾显禄. 小麦与小麦秆锈菌互作及非亲和机制研究[博士学位论文].沈阳:沈阳农业大学,1997.
    132.李兰真,赵会杰,杨会武,等. 小麦锈病与活性氧代谢的关系(简报). 植物生理学通讯,1999,35(2):115~117.
    133.薛应龙,欧阳光察.植物抗病的物质代谢基础[A].见:余叔文,汤章城主编.植物生理与分子生物学[C].第二版.北京:科学出版社,1998,770~783.
    134.Musel G,Schindler T,Spiegel R.Distribution of lignin in primary and secondary cell wall of maize coleoptiles analyzed by chemical and immunological probes[J].Planta,1997,201:146~159.
    135.胡景江,朱玮,袁雪丽.溃疡菌对杨树细胞壁中HRGP和木质素的诱导作用[J].西北林学院学报,1997,12(3)14~17.
    136.胡景江,文建雷,景耀. 杨树体内苯丙烷代谢与其对溃疡病抗性的关系[J].植物病理学报,1992,22(2):185~188.
    137.王雅平,吴兆苏,刘伊强. 小麦抗赤霉病性的生化研究及其机制的探讨[J].作物学报,1994,20(3):327~333.
    138.骆桂芬,邹艳华,张伟. 黄瓜叶片中木质素含量与抗霜霉病的关系[J].吉林农业大学学报,1995,17(2):18~21.
    139.王颖,胡景江,朱玮. 杨树溃疡病寄主抗病性的研究[J].西北林学院学报,1996,11(1):1~6.
    
    140.刘祖琪,张石城. 植物抗性生理学. 北京,中国农业出版社,1994.
    141.陈捷,高洪胜,吴友三. 酚类代谢对瓜果腐霉病产生的细胞降解酶活性的影响. 植物病理学报,1996,26(2):171~176.
    142.宋铁,冷怀琼. 梨酚类代谢与抗黑星病关系:Ⅰ总酚及OD酚与抗黑星病的关系. 四川农业大学学报,1991,9(2):285~290.
    143.谢为龙. 苹果褐纹病的研究:Ⅱ品种间抗性差异与理化性状的关系. 四川农业大学学报,1997,8(1):51~54.
    144.景涛,熊慧玉. 植物同工酶与抗病关系研究(综述)[J].亚热带植物通讯,1992,8(1):72~75.
    145.顾之中,高长寿,蒋伦伟. 葡萄(Vitis)不同种叶片中的过氧化物酶同工酶谱及其与抗病性关系的初步研究[J].江西农业大学学报,1989,11(4): 13~17.
    146.徐秀芳. 接种TMV后不同抗性番茄品种的同工酶分析[C].黑龙江省生化学术会议论文选编,1989
    147.吕金殿. 我国棉花枯萎病酯酶同工酶测定初报[J].植物病理学报,1982,12(2):41
    148.沈其益. 棉花感染枯萎病后过氧化物酶同工酶的变化[J].植物学报,1978,20(2):108.
    149.张士文. 番茄不同生育期酯酶同工酶的研究[J].哈尔滨师范大学学报(自然科学版),1986,1:45~42.
    150.三沁正生. 烟草感染CMV后过氧化物酶同工酶研究[J].日本植物病理学报,1971,37:348~354.
    151.梁子超. 木麻黄对青枯病的抗性及其与细胞膜透性和过氧化物同工酶的关系的探讨[J].华南农学院学报,1982,3(2):28.
    152.Weech J A. Localization of peroxidase in infected tobaccos susceptible and resistant to black shank[J].Phytopathology,1969,59:566~576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700