天山根瘤菌群体感应调控蛋白MrtR与百脉根根瘤菌MrlI1/MrlR1群体感应调控体系的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群体感应体系是细菌调控基因表达的重要调控方式,在根瘤菌与植物的相互作用过程中,群体感应体系发挥着重要作用。在革兰氏阴性细菌中,群体感应体系由自体诱导物(AI)分子,自体诱导物合成酶以及自体诱导物受体蛋白组成。本研究通过对天山根瘤菌MrtR蛋白结构与功能的关系以及百脉根根瘤菌MrlI1/MrlRl群体感应体系的研究,探讨群体感应体系在根瘤菌与植物共生过程中的作用。
     天山根瘤菌HMZ0菌株的培养上清液浓缩物进行电喷雾电离质谱(ESI-MS/MS)分析可知,天山根瘤菌主要合成2种AHL分子,进行公式计算并同时结合根癌农杆菌R10(pCF218)菌株产生的AHLs作为对照,推测这2种AHLs分子分别是3-oxodocecanoyl-HSL(3-O-C12-HSL MW 300)和3-oxotetradecenoyl-HSL(3-O-C14-HSLMW 326)。而当MrtR蛋白与3-O-C12-HSL结合后,既可在体内诱导mrtI基因的表达,也可以在体外与mrtl基因的启动子区域结合。
     为研究MrtR蛋白的性质,把mrtR基因克隆到表达载体pET28,得到受T7启动子调控的His-MrtR融合蛋白表达质粒pMH61。把表达质粒转入大肠杆菌BL21λDE3,表达蛋白经过Ni+柱纯化后,对His-MrtR蛋白性质进行研究发现,His-MrtR蛋白在不与天山根瘤菌自体诱导物(MAI)结合的条件下,仍然可以以可溶性蛋白存在,这与其它一些典型的LuxR类蛋白有着明显的区别。对MrtR蛋白与mrtl基因的调控方式研究发现,只有当MrtR-MAI与mrt box结合后,mrtl基因才可以被转录和表达,这说明MrtR与MAI的作用,及其与mrt box的结合是mrtl基因表达所必需的。
     对MrtR蛋白进遗传学分析其结构与功能的关系发现,当MrtR蛋白氮端前50个氨基酸缺失后,对mrtl基因的诱导调控功能没有改变,而且当缺失40或50个氨基酸后,MrtR (A2-50)蛋白具有不依赖于MAI的调控作用,能在不含有MAI的条件下诱导mrtl的表达。而当加入MAI分子后,其诱导能力相当于野生型的2倍多。这可能是因为在40-50区域内的某些氨基酸缺失后,改变了MrtR蛋白的结构,使其表现出不依赖于MAI的蛋白活性。
     当MrtR缺失氮端80,120和140个氨基酸时,MrtR对mrtI的诱导调控功能完全丧失,推测这可能是由于当这些氨基酸缺失后,MrtR的蛋白结构被严重的改变所致。MrtR(Δ2-160)突变子尽管在加入MAI的条件下,对mrtl的诱导能力只是野生型的20%,但这与其在没有MAI的条件下的诱导能力相当,也就是MrtR (Δ2-160)突变子也表现出不依赖于MAI的诱导能力,推测这与LuxR-type蛋白的结构特点有关,即其氮端结构域与碳端结构域的结构与功能相对独立。。而当MrtR蛋白羧基末端40个氨基酸被缺失后,蛋白功能几乎完全丧失,这也跟多数LuxR类蛋白结构类似,说明MrtR蛋白具有典型的LuxR类蛋白结构特征。
     为研究MrtR蛋白关键氨基酸的功能,利用大肠杆菌XL1Red菌株,构建得到mrtR基因突变子文库,以LacZ作为报告基因筛选得到11株具有不同的突变位点的突变株,在自体诱导物不存在的条件下,都可以诱导mrtI基因的表达,即其MrtR蛋白活性均表现出的不依赖于与天山根瘤菌自体诱导物分子(MAI)的作用。与LuxR和TraR蛋白的同源比较发现,发生在氮端结构域的突变位点(V105A,G114S,M135I和H142R)位于蛋白的AI结合位点结构域附近,而S6L和R182C这两个位点则位于与蛋白形成二聚体相关的氨基酸序列附近,这些位点的突变有可能改变了蛋白与MAI分子的相互作用,从而使得MrtR蛋白在MAI分子不存在的条件下,仍然具有诱导mrtI基因表达的功能。在碳端结构域的突变位点(N204,P208,H219,T221和Y227)推测都是位于负责与DNA结合的HTH结构域周围,这些位点的突变可能影响蛋白与DNA的结合效率,从而提高蛋白的活性。对其中一个突变子MrtR G114S进行凝胶阻滞分析发现,在没有自体诱导物分子存在的条件下,该突变子仍然能与mrtI基因的启动子区域在体外结合。这说明这些突变株的表型特征是受其基因型的改变而产生的。
     本论文的第二部分是对百脉根根瘤菌NZP2213菌株的群体感应系统的研究,利用电喷雾电离质谱(ESI-MS/MS)的方法对百脉根根瘤菌自体诱导物分子进行分析得知,百脉根根瘤菌能合成4种自体诱导物分子,进行公式计算后,推测出这4种AHL分子分别是3-Oxohexanoyl-homoserine lactone (3-O-C6-HSL, MW 214), Octanoyl-HSL (C8-HSL, MW 228), decanoyl-HSL(C10-HSL, MW 256)和docecanoyl-HSL (C12-HSLMW 282)。通过研究百脉根根瘤菌MrlI1/MrlR1群体感应体系发现,MrlI1负责合成一种碳链长度较长的AHL分子,结合ESI-MS/MS方法,推测该种AHL分子为C12-HSL.
     百脉根根瘤菌MAFF30399菌株的基因组全序列已经公布,参考mlr5638和mlr5637基因的序列,设计引物,利用PCR的方法扩增得到百脉根根瘤菌NZP2213的mrlll和mrlRl基因。通过基因序列分析发现,mrlll和mrlR1基因与mlr5638和mlr5637基因的氨基酸序列同源性分别为95%和92%。在大肠杆菌中异源表达mrlll发现,mrlll在大肠杆菌中也可以合成自体诱导物分子,而且通过薄层层析(TLC)分析表明mrlll在大肠杆菌中合成的自体诱导物分子与其在根瘤菌中合成的分子相似。
     对mrlll的表达调控方式分析发现,mrlll的表达依赖于其自身合成的AHL分子和MrlR1的共同作用,并表现出典型的群体感应调控方式,即其表达与细菌的浓度相关,当细菌生长达到一定阈值时,mrtI的表达表现出明显的提高。而且,当MrlI1/MrlR1群体感应体系突变后,突变株在与植物结瘤的前期结瘤数量表现出明显的减少,推测MrlI1/MrlR1群体感应体系影响到百脉根根瘤菌与植物之间的结瘤效率。
As one of the most important signal transduction pathways in bacteria, quorum sensing system is involved in many regulatory circuits in rhizobia, especially the communication between rhizobia and their plant hosts. The typical QS system in Gram-negative bacteria is the marine symbiotic bacteria Vibrio fisheri LuxI/R-type regulatory system. The key regulatory components of these signaling systems are LuxI-type AHL synthases, and LuxR-type AHL receptors and AHL-dependent transcription factors. Here, both of the regulatory mechanism of quorum sensing regulator MrtR of Mesorhizobium tianshanense CCBAU 3306 and Mrlll/MrlRl quorum sensing system of Mesorhizbium loti NZP 2213 were studied.
     Mesorhizobium tianshanense, a nitrogen-fixing symbiont for at least eight different plant species, including Glycyrrhiza (licorice), produces most diversity of AHL signaling molecules. Interestingly, the MrtI/R quorum sensing system in M. tianshanense seems to be responsible for the synthesis of all of the AHL molecules and controls its symbiotic nodulation. To further study the role of MrtI/MrtR QS system during the symbiosis process of M. tianshanense and Glycyrrhiza, the structure and function of MrtR was analyzed in detailed. Detected by the electrospray ionization mass spectrometry (ESI MS/MS), the acyl homoserine lactone (AHL) signal molecules produced by M. tianshanense (MAI) were suspected to be 3-oxodocecanoyl-HSL (3-O-C12-HSL, MW300) and 3-oxotetradecenoyl-HSL (3-O-C14-HSL,MW 326). And MrtR can specifically bind with the mrt box inside the promoter region of mrtI in vitro and activate the expression of mrtI in vivo by binding with the autoinducer,3-O-C12-HSL (MAI).
     The way of mrtI expression regulated by MrtR shown that mrtI could only be expressed when the predicted mrt box, the invert repeated sequence located in the-69 to-52 region of mrtI promoter, was bound by MrtR-MAI complex. That is MrtR, MAI and mrt box were indispensable for expression of mrtI, which is also the typical characteristics of regulatory mechanism of LuxR-type protein.
     To determine the regions of MrtR necessary for transcriptional activation of mrtI, a serial of deletion mutations of MrtR were generated. Eight MrtR mutant encoding truncated MrtR proteins with deletions of residues of 2-30,2-40,2-50,2-80,2-120,2-140,2-160 and 230-272 were constructed by PCR amplying and cloning into pBBR-MCS5 vector under the control of Plac promoter. All of these constructs were transformed into a M. tianshanense MrtR/MrtI quorum sensing system deleted mutant MHT9 strain, with PmrtI-lacZ (pMH1) report gene. Based on analysis of the activity of LacZ, the result showed that similar to C-terminal truncations of LuxR, RhlR, and TraR, MrtRΔ233-271 which lacks the conserved HTH DNA binding domain, had no activity. And MrtRΔ2-30 was similar to that of full-length MrtR. However, deletion of up to 50 N-terminal amino acids enhanced MrtR activity even in the absence of 3OC12-HSL. MrtRΔ2-80,Δ2-120, andΔ2-140 showed no activity; however, MrtRΔ2-160 displayed a low level of autoinducer-independent activity. Previous studies of LuxR and TraR suggest that in activators of the LuxR-family, the N-terminal domain masks the C-terminal DNA binding domain in the absence of autoinducer, thus interfering with DNA binding, and the C-terminal domain alone was shown to function in AHL-independent activation.
     To further characterize the structure and function of MrtR, we screened for MrtR constitutive mutants. We used E. coli mutator strain XL-1 Red to introduce mutations to the Plac-mrtR plasmid. The mutated plasmids were then transformed into M. tianshanense MHT9 strain containing a PmrtI-lacZ plasmid, and the transformants were spread on X-gal plates without any autoinducer. Approximately 25,000 colonies were screened, of which exhibited a LacZ+ phenotype in the absence of autoinducer and had point mutations in the mrtR gene. Compared to wild-type MrtR, all eleven MrtR mutants had enhanced ability to activate the expression of mrtI in the absence of 3OC12-HSL. However, a cluster of mutations located in the C-terminal DNA binding domain (N204D, P208S, H219R, T221M, and Y227C) were hypersensitive mutants as they still responded to the 3OC12-HSL stimulation. The constitutive MrtR mutants that activated mrtI independent of and with no further stimulation by 3OC12-HSL were clustered in the N-terminal autoinducer binding domain (S6L, V105A, G114S, M135I, H142R, and R182C). We further characterized the mutant, MrtRG114S, with the highest activity in the absence of 3OC12-HSL by purifying it as His6-tagged recombinant protein. The MrtRG114S protein could efficiently retard mrtI promoter DNA in the absence of 3OC12-HSL.
     The second part of this desertation is about the study of MrlRl/Mrlll quorum sensing system of Mesorhizobium loti NZP2213. Detected by ultrasensitive bioassay strain JZA1, AHLs could be found in the supernatant of M. loti NZP2213 culture in TY medium (not, in MM medium) and displayed a typical cell density-dependent pattern, which indicated that there was quorum sensing system in M. loti NZP2213. The supernatant of M.loti culture was extracted with ethyl acetate and subjected to TLC and electrospray ionization mass spectrometry (ESI MS/MS) analysis, and the results showed that M. loti could produce at least four distinct AHL-like molecules, which were suspected to be3-Oxohexanoyl-homoserine lactone (3-O-C6-HSL, MW 214), Octanoyl-HSL (C8-HSL, MW 228), decanoyl-HSL(C10-HSL, MW 256) and docecanoyl-HSL (C12-HSL MW 282)。
     Based on the sequence of mlr5638 and mlr5637 of M. loti MAFF303099 strain, autoinducer synthase gene mrlI1 and relevant transcriptional regulator mrlR1 from the M. loti NZP2213 were successfully amplified by PCR. mrlI1 and mrlR1 were 95% and 92% homologus to mlr5638 and mlr5637 at amino acid level respectively. By hetro-expressing mrlI1 in E. coli and constructing a mrlll deletion mutant in M. loti genetic background, we found that MrlI1 was responsible for synthesizing AHL molecules with long carbon train (C12-HSL) in M. loti and the expression of mrlI1 was shown to be growth phase-dependent, regulated by MrlR1 and the autoinducer produced by the protein itself, which is of typical autoinducing and quorum sensing charateristics. To examine whether the MrlR1/MrlI1 quorum sensing system would affect nodulation, nodulation assays of AHL-deficient mutants on their native plant host Lotus japonicus was performed and it was found that the efficiency of nodulation was reduced in mutation of mrlI1, suggesting that quorum sensing system in M.loti may play an important role in successful establishment of a rhizobium-legume symbiosis.
引文
1. Long, S.R. Genes and signals in the rhizobium-legume symbiosis. Plant Physiol 125,69-72 (2001).
    2. Barnett, R.F.F.a.M.J. Global gene expression in the rhizobial-legume symbiosis. Symbiosis 42,1-24 (2006).
    3. Perret, X., Staehelin, C.& Broughton, W.J. Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64,180-201 (2000).
    4. Oldroyd, GE.D., J. A. Calcium, kinases and nodulation signalling in legumes. Nature Rev. Mol. Cell Biol.5,566-576 (2004).
    5. Timmers, A.C., Auriac, M.C.& Truchet, G. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126,3617-28 (1999).
    6. Sieberer, B.J., Timmers, A.C.& Emons, A.M. Nod factors alter the microtubule cytoskeleton in Medicago truncatula root hairs to allow root hair reorientation. Mol Plant Microbe Interact 18, 1195-204 (2005).
    7. Cardenas, L. et al. The role of nod factor substituents in actin cytoskeleton rearrangements in Phaseolus vulgaris. Mol Plant Microbe Interact 16,326-34 (2003).
    8. de Ruijter, N.C.A., Bisseling, T.& Emons, A. M. C. Rhizobium Nod factors induce an increase in subapical fine bundles of actin filaments in Vicia sativa root hairs within minutes. Mol. Plant Microbe Interact.12,829-832 (1999).
    9. Esseling, J.J., Lhuissier, F.G.& Emons, A.M. Nod factor-induced root hair curling:continuous polar growth towards the point of nod factor application. Plant Physiol 132,1982-8 (2003).
    10. Gage, D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68,280-300 (2004).
    11. Foucher, F.& Kondorosi, E. Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Mol Biol 43,773-86 (2000).
    12. Brewin, N.J. Plant cell wall remodelling in the Rhizobium-Legume symbiosis. Crit. Rev. Plant Sci. 23,293-316(2004).
    13. Kathryn M. Jones, H.K., Bryan W. Davies, Michiko E. Taga and Graham C. Walker. How rhizobial symbionts invade plants:the Sinorhizobium-Medicago model. Nature Reviews 5,619-633 (2007).
    14. Denarie, J., Debelle, F.& Prome, J.C. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65,503-35 (1996).
    15. Franssen, H.J., Vijn, I., Yang, W.C.& Bisseling, T. Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol Biol 19,89-107 (1992).
    16. Mergaert, P.e.a. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc. Natl Acad. Sci. USA 103,5230-5235 (2006).
    17. Kondorosi, E., Roudier, F.& Gendreau, E. Plant cell-size control:growing by ploidy? Curr Opin Plant Biol 3,488-92 (2000).
    18. Fuqua, C.& Greenberg, E.P. Listening in on bacteria:acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3,685-95 (2002).
    19. Fuqua, C., Winans, S.C.& Greenberg, E.P. Census and consensus in bacterial ecosystems:the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50,727-51 (1996).
    20. Costerton, J.W., Stewart, P.S.& Greenberg, E.P. Bacterial biofilms:a common cause of persistent infections. Science 284,1318-22 (1999).
    21. Wisniewski-Dye, F.& Downie, J.A. Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek 81, 397-407 (2002).
    22. Hastings, J.W.& Nealson, K.H. Bacterial bioluminescence. Annu Rev Microbiol 31,549-95 (1977).
    23. Nealson, K.H.& Hastings, J.W. Bacterial bioluminescence:its control and ecological significance. Microbiol Rev 43,496-518 (1979).
    24. Ruby, E.G. Lessons from a cooperative, bacterial-animal association:the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annu Rev Microbiol 50,591-624 (1996).
    25. Visick, K.L.& McFall-Ngai, M.J. An exclusive contract:specificity in the Vibrio fischeri-Euprymna scolopes partnership. JBacteriol 182,1779-87 (2000).
    26. Visick, K.L., Foster, J., Doino, J., McFall-Ngai, M.& Ruby, E.G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182,4578-86 (2000).
    27. Eberhard, A. et al. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20,2444-9 (1981).
    28. Engebrecht, J., Nealson, K.& Silverman, M. Bacterial bioluminescence:isolation and genetic analysis of functions from Vibrio fischeri. Cell 32,773-81 (1983).
    29. Engebrecht, J.& Silverman, M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA 81,4154-8 (1984).
    30. Engebrecht, J.& Silverman, M. Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Res 15,10455-67 (1987).
    31. Bassler, B.L. How bacteria talk to each other:regulation of gene expression by quorum sensing. Curr Opin Microbiol 2,582-7 (1999).
    32. Miller, M.B.& Bassler, B.L. Quorum sensing in bacteria. Annu Rev Microbiol 55,165-99 (2001).
    33. Hanzelka, B.L. et al. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J Bacteriol 181,5766-70 (1999).
    34. More, M.I. et al. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272,1655-8 (1996).
    35. Parsek, M.R., Val, D.L., Hanzelka, B.L., Cronan, J.E., Jr.& Greenberg, E.P. Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci USA 96,4360-5 (1999).
    36. Keller, L.& Surette, M.G Communication in bacteria:an ecological and evolutionary perspective. Nat Rev Microbiol 4,249-58 (2006).
    37. Lazdunski, A.M., Ventre, I.& Sturgis, J.N. Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2,581-92 (2004).
    38. Callahan, S.M.& Dunlap, P.V. LuxR-and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri. JBacteriol 182,2811-22 (2000).
    39. Lupp, C., Urbanowski, M., Greenberg, E.P.& Ruby, E.G The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol Microbiol 50,319-31 (2003).
    40. Cha, C., Gao, P., Chen, Y.C., Shaw, P.D.& Farrand, S.K. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11, 1119-29(1998).
    41. von Bodman, S.B., Majerczak, D.R.& Coplin, D.L. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci U SA 95,7687-92 (1998).
    42. Fuqua, W.C.& Winans, S.C. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite.J Bacteriol 176,2796-806 (1994).
    43. Pirhonen, M., Flego, D., Heikinheimo, R.& Palva, E.T. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. Embo J 12,2467-76 (1993).
    44. McGowan, S. et al. Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141 (Pt 3),541-50 (1995).
    45. Wagner, V.E., Bushnell, D., Passador, L., Brooks, A.I.& Iglewski, B.H. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons:effects of growth phase and environment. J Bacteriol 185,2080-95 (2003).
    46. Schuster, M., Lostroh, C.P., Ogi, T.& Greenberg, E.P. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes:a transcriptome analysis. J Bacteriol 185, 2066-79 (2003).
    47. Vasil, M.L. DNA microarrays in analysis of quorum sensing:strengths and limitations. J Bacteriol 185,2061-5 (2003).
    48. Cubo, M.T., Economou, A., Murphy, G., Johnston, A.W.& Downie, J.A. Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol 174,4026-35 (1992).
    49. Gonzalez, J.E.& Marketon, M.M. Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67,574-92 (2003).
    50. Gilson, L., Kuo, A.& Dunlap, P.V. AinS and a new family of autoinducer synthesis proteins. J Bacteriol 177,6946-51 (1995).
    51. Lithgow, J.K. et al. The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37,81-97 (2000).
    52. Kleerebezem, M., Quadri, L.E., Kuipers, O.P.& de Vos, W.M. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24,895-904(1997).
    53. Hamoen, L.W., Venema, G.& Kuipers, O.P. Controlling competence in Bacillus subtilis:shared use of regulators. Microbiology 149,9-17 (2003).
    54. Grossman, A.D. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29,477-508 (1995).
    55. Lazazzera, B.A.& Grossman, A.D. The ins and outs of peptide signaling. Trends Microbiol 6, 288-94 (1998).
    56. Ji, G., Beavis, R.C.& Novick, R.P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci USA 92,12055-9 (1995).
    57. Ji, G, Beavis, R.& Novick, R.P. Bacterial interference caused by autoinducing peptide variants. Science 276,2027-30 (1997).
    58. Mayville, P. et al. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci U S A 96,1218-23 (1999).
    59. Otto, M., Sussmuth, R., Vuong, C., Jung, G.& Gotz, F. Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett 450,257-62(1999).
    60. Surette, M.G., Miller, M.B.& Bassler, B.L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi:a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A 96,1639-44 (1999).
    61. Xavier, K.B.& Bassler, B.L. LuxS quorum sensing:more than just a numbers game. Curr Opin Microbiol 6,191-7(2003).
    62. Bassler, B.L., Wright, M., Showalter, R.E.& Silverman, M.R. Intercellular signalling in Vibrio harveyi:sequence and function of genes regulating expression of luminescence. Mol Microbiol 9, 773-86 (1993).
    63. Cao, J.G.& Meighen, E.A. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. JBiol Chem 264,21670-6 (1989).
    64. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415,545-9 (2002).
    65. Bassler, B.L., Greenberg, E.P.& Stevens, A.M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. JBacteriol 179,4043-5 (1997).
    66. Sun, J., Daniel, R., Wagner-Dobler, I.& Zeng, A.P. Is autoinducer-2 a universal signal for interspecies communication:a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4,36 (2004).
    67. Schauder, S., Shokat, K., Surette, M.G.& Bassler, B.L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41,463-76 (2001).
    68. Elasri, M. et al. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67,1198-209 (2001).
    69. Marketon, M.M., Glenn, S.A., Eberhard, A.& Gonzalez, J.E. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. JBacteriol 185,325-31 (2003).
    70. Mathesius, U. et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100,1444-9 (2003).
    71. Sheng, J.& Citovsky, V. Agrobacterium-plant cell DNA transport:have virulence proteins, will travel. Plant Cell 8,1699-710 (1996).
    72. Winans, S.C. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev 56, 12-31 (1992).
    73. Zhang, L., Murphy, P.J., Kerr, A.& Tate, M.E. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362,446-8 (1993).
    74. Piper, K.R., Beck von Bodman, S.& Farrand, S.K. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362,448-50 (1993).
    75. Hwang, I. et al. TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc Natl Acad Sci USA 91,4639-43 (1994).
    76. Zhang, R.G. et al. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417,971-4 (2002).
    77. Zhu, J.& Winans, S.C. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci U S A 98,1507-12 (2001).
    78. Zhu, J.& Winans, S.C. Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc Natl Acad Sci U S A 96,4832-7(1999).
    79. Fuqua, C., Burbea, M.& Winans, S.C. Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. JBacteriol 177,1367-73 (1995).
    80. Swiderska, A. et al. Inhibition of the Agrobacterium tumefaciens TraR quorum-sensing regulator. Interactions with the TraM anti-activator. JBiol Chem 276,49449-58 (2001).
    81. Zhang, H.B., Wang, L.H.& Zhang, L.H. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 99,4638-43 (2002).
    82. Schultze, M.& Kondorosi, A. Regulation of symbiotic root nodule development. Annu Rev Genet 32, 33-57 (1998).
    83. He, X. et al. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. JBacteriol 185,809-22 (2003).
    84. Marketon, M.M.& Gonzalez, J.E. Identification of two quorum-sensing systems in Sinorhizobium meliloti. JBacteriol 184,3466-75 (2002).
    85. Tun-Garrido, C., Bustos, P., Gonzalez, V.& Brom, S. Conjugative transfer of p42a from rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. JBacteriol 185,1681-92 (2003).
    86. Wilkinson, A., Danino, V., Wisniewski-Dye, F., Lithgow, J.K.& Downie, J.A. N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. JBacteriol 184,4510-9 (2002).
    87. Wisniewski-Dye, F., Jones, J., Chhabra, S.R.& Downie, J.A. raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. J Bacteriol 184, 1597-606(2002).
    88. Rodelas, B. et al. Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. JBacteriol 181,3816-23 (1999).
    89. Marketon, M.M., Gronquist, M.R., Eberhard, A.& Gonzalez, J.E. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 184,5686-95 (2002).
    90. Dibb, N.J., Downie, J.A.& Brewin, N.J. Identification of a rhizosphere protein encoded by the symbiotic plasmid of Rhizobium leguminosarum. J Bacteriol 158,621-7 (1984).
    91. Daniels, R. et al. The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. JBiol Chem 277,462-8 (2002).
    92. Rosemeyer, V., Michiels, J., Verreth, C.& Vanderleyden, J. luxI-and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. JBacteriol 180,815-21 (1998).
    93. Pueppke, S.G.& Broughton, W.J. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12,293-318 (1999).
    94. Caetano-Anolles, G.& Gresshoff, P.M. Plant genetic control of nodulation. Annu Rev Microbiol 45, 345-82 (1991).
    95. Schaefer, A.L., Val, D.L., Hanzelka, B.L., Cronan, J.E., Jr.& Greenberg, E.P. Generation of cell-to-cell signals in quorum sensing:acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci USA 93,9505-9 (1996).
    96. Parsek, M.R., Schaefer, A.L.& Greenberg, E.P. Analysis of random and site-directed mutations in rhⅡ, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Mol Microbiol 26,301-10 (1997).
    97. Milton, D.L. et al. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl)homoserine lactone and N-hexanoylhomoserine lactone. J Bacteriol 183, 3537-47(2001).
    98. Bassler, B.L., Wright, M.& Silverman, M.R. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi:sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13,273-86 (1994).
    99. Hanzelka, B.L., Stevens, A.M., Parsek, M.R., Crone, T.J.& Greenberg, E.P. Mutational analysis of the Vibrio fischeri LuxI polypeptide:critical regions of an autoinducer synthase. J Bacteriol 179, 4882-7 (1997).
    100. Watson, W.T., Minogue, T.D., Val, D.L., von Bodman, S.B.& Churchill, M.E. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9, 685-94 (2002).
    101. Uchiumi, T. et al. Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. JBacteriol 186,2439-48 (2004).
    102. Vannini, A. et al. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. Embo J 21,4393-401 (2002).
    103. Hanzelka, B.L.& Greenberg, E.P. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. JBacteriol 177,815-7 (1995).
    104. Ledgham, F. et al. Interactions of the quorum sensing regulator QscR:interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol Microbiol 48,199-210 (2003).
    105. Schuster, M.a.G.E.P. in Chemical Communication among Bacteria. (ed. L., W.S.C.a.B.B.) 133-144 (AMS Press, Washington, DC.,2008).
    106. Schuster, M., M. L. Urbanowski, and E. P. Greenberg. Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci 101, 15833-15839 (2004).
    107. Weingart, C.L., C. E. White, S. Liu, Y. Chai, H. Cho, C. S. Tsai, Y. Wei, N. R. Delay, M. R. Gronquist, A. Eberhard, and S. C. Winans Direct binding of the quorum sensing regulator CepR of Burkholderia cenocepacia to two target promoters in vitro. Mol Microbiol 57,452-467 (2005).
    108. Lee, J.H., Y. Lequette, and E. P. Greenberg Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol Microbiol 59,602-609 (2006).
    109. Urbanowski, M.L., C. P. Lostroh, and E. P. Greenberg. Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. JBacteriol 186,631-637 (2004).
    110. Minogue, T.D., A. L. Carlier, M. D. Koutsoudis, and S. B. von Bodman. The cell density-dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA gene. Mol Microbiol 56,189-203 (2005).
    111. Castang, S., S. Reverchon, P. Gouet, and W. Nasser. Direct evidence for the modulation of the activity of the Erwinia chrysanthemi quorum-sensing regulator ExpR by acylhomoserine lactone pheromone. JBiol Chem 281,29972-29987 (2006).
    112. Henikoff, S., Wallace, J.C.& Brown, J.P. Finding protein similarities with nucleotide sequence databases. Methods Enzymol 183,111-32 (1990).
    113. Choi, S.H.& Greenberg, E.P. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc Natl Acad Sci U S A 88,11115-9 (1991).
    114. Anderson, R.M., Zimprich, C.A.& Rust, L. A second operator is involved in Pseudomonas aeruginosa elastase (lasB) activation. JBacteriol 181,6264-70 (1999).
    115. Welch, M. et al. N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. Embo J19,631-41 (2000).
    116. Minogue, T.D., Wehland-von Trebra, M., Bernhard, F.& von Bodman, S.B. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii:evidence for a repressor function. Mol Microbiol 44,1625-35 (2002).
    117. Devine, J.H., Shadel, G.S.& Baldwin, T.O. Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc Natl Acad Sci USA 86,5688-92 (1989).
    118. Egland, K.A.& Greenberg, E.P. Conversion of the Vibrio fischeri transcriptional activator, LuxR, to a repressor. JBacteriol 182,805-11 (2000).
    119. You, Z. et al. Purification and characterization of LasR as a DNA-binding protein. FEMS Microbiol Lett 142,301-7 (1996).
    120. Fuqua, W.C., Winans, S.C.& Greenberg, E.P. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators. JBacteriol 176,269-75 (1994).
    121. Gray, K.M., Passador, L., Iglewski, B.H.& Greenberg, E.P. Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. JBacteriol 176,3076-80 (1994).
    122. Rhodius, V.A.& Busby, S.J. Positive activation of gene expression. Curr Opin Microbiol 1,152-9 (1998).
    123. Egland, K. A.& Greenberg, E.P. Quorum sensing in Vibrio fischeri:elements of the luxl promoter. MolMicrobiol31,1197-204 (1999).
    124. Finney, A.H., Blick, R.J., Murakami, K., Ishihama, A.& Stevens, A.M. Role of the C-terminal domain of the alpha subunit of RNA polymerase in LuxR-dependent transcriptional activation of the lux operon during quorum sensing. JBacteriol 184,4520-8 (2002).
    125. Stevens, A.M.& Greenberg, E.P. Quorum sensing in Vibrio fischeri:essential elements for activation of the luminescence genes. JBacteriol 179,557-62 (1997).
    126. Egland, K.A.& Greenberg, E.P. Quorum sensing in Vibrio fischeri:analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. JBacteriol 183,382-6 (2001).
    127. Zhu, J.& Winans, S.C. Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens
    is inhibited by a truncated, dominant defective TraR-like protein. Mol Microbiol 27,289-97 (1998).
    128. Chai, Y., Zhu, J.& Winans, S.C. TrlR, a defective TraR-like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers. Mol Microbiol 40,414-21 (2001).
    129. Hwang, I., Smyth, A.J., Luo, Z.Q.& Farrand, S.K. Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes. Mol Microbiol 34,282-94 (1999).
    130. Luo, Z.Q., Qin, Y.& Farrand, S.K. The antiactivator TraM interferes with the autoinducer-dependent binding of TraR to DNA by interacting with the C-terminal region of the quorum-sensing activator. J Biol Chem 275,7713-22 (2000).
    131. Oger, P., Kim, K.S., Sackett, R.L., Piper, K.R.& Farrand, S.K. Octopine-type Ti plasmids code for a mannopine-inducible dominant-negative allele of traR, the quorum-sensing activator that regulates Ti plasmid conjugal transfer. Mol Microbiol 27,277-88 (1998).
    132. Ventre, I. et al. Dimerization of the quorum sensing regulator RhlR:development of a method using EGFP fluorescence anisotropy. Mol Microbiol 48,187-98 (2003).
    133. De Kievit, T.R., Gillis, R., Marx, S., Brown, C.& Iglewski, B.H. Quorum-sensing genes in Pseudomonas aeruginosa biofilms:their role and expression patterns. Appl Environ Microbiol 67, 1865-73 (2001).
    134. Blosser-Middleton, R.S.& Gray, K.M. Multiple N-acyl homoserine lactone signals of Rhizobium leguminosarum are synthesized in a distinct temporal pattern. JBacteriol 183,6771-7 (2001).
    135. Wang, H., Zhong, Z., Cai, T., Li, S.& Zhu, J. Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182,520-5 (2004).
    136. Chen, W. et al. Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int J Syst Bacteriol 45,153-9 (1995).
    137. Tan, Z.Y. et al. Characterization of bacteria isolated from wild legumes in the north-western regions of China. Int J Syst Bacteriol 49 Pt 4,1457-69 (1999).
    138. Zheng, H. et al. A LuxR/LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation. JBacteriol 188,1943-9 (2006).
    139. Kovach, M.E. et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166,175-6 (1995).
    140. Akakura, R.& Winans, S.C. Mutations in the occQ operator that decrease OccR-induced DNA bending do not cause constitutive promoter activity. JBiol Chem 277,15773-80 (2002).
    141. Bainton, N.J. et al. N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J288 (Pt 3),997-1004 (1992).
    142. Miller, J. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory Press,1972).
    143. Rippe, R.A., Brenner, D.A.& Tugores, A. Techniques to measure nucleic acid-protein binding and specificity. Nuclear extract preparations, DNase I footprinting, and mobility shift assays. Methods Mol Biol 160,459-79 (2001).
    144. Shaw, P.D. et al. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 94,6036-41 (1997).
    145. Swift, S., Throup, J.P., Williams, P., Salmond, G.P.& Stewart, GS. Quorum sensing:a population-density component in the determination of bacterial phenotype. Trends Biochem Sci 21, 214-9(1996).
    146. Salmond, GP., Bycroft, B.W., Stewart, GS.& Williams, P. The bacterial'enigma':cracking the code of cell-cell communication. Mol Microbiol 16,615-24 (1995).
    147. Schaefer, A.L., Hanzelka, B.L., Parsek, M.R.& Greenberg, E.P. Detection, purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods Enzymol 305,288-301 (2000).
    148. McAnulla, C., Edwards, A., Sanchez-Contreras, M., Sawers, R.G.& Downie, J.A. Quorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae. Microbiology 153,2074-82 (2007).
    149. Zhu, J., Chai, Y., Zhong, Z., Li, S.& Winans, S.C. Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules:detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69,6949-53 (2003).
    150. Metcalf, W.W. et al. Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35,1-13 (1996).
    151. Baikalov, I. et al. Structure of the Escherichia coli response regulator NarL. Biochemistry 35, 11053-61 (1996).
    152. Poellinger, K.A., Lee, J.P., Parales, J.V., Jr.& Greenberg, E.P. Intragenic suppression of a luxR mutation:characterization of an autoinducer-independent LuxR. FEMS Microbiol Lett 129,97-101 (1995).
    153. Sitnikov, D.M., Shadel, G.S.& Baldwin, T.O. Autoinducer-independent mutants of the LuxR transcriptional activator exhibit differential effects on the two lux promoters of Vibrio fischeri. Mol Gen Genet 252,622-5 (1996).
    154. Kalogeraki, V.S.& Winans, S.C. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188,69-75 (1997).
    155. Fahraeus, G The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. JGen Microbiol 16,374-81 (1957).
    156. Menghua Yang, Kejing Sun, Lei Zhou, Ruifu Yang, Zengtao Zhong, Jun Zhu. Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium sorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation. Canadian Journal of Microbiology,55 (2):210-4 (2009)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700