模块化多电平功率变换系统基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来电力电子变换器技术得到了飞速发展,高压大功率能量转换系统的需求也日益增长。多电平变换器通过改进变换器自身拓扑结构来突破功率半导体器件容量的限制,已成为高压大功率电能变换应用领域中的一种理想的解决方案。模块化多电平变换器(Modular Multilevel Converter, MMC)以其突出的技术特点,克服了传统多电平变换器的缺陷,是目前高压大功率电力系统中最有吸引力的多电平变换器拓扑结构。为此,本文围绕模块化多电平功率变换系统的电压平衡方法、调制技术、容错控制策略以及在光伏发电领域的应用进行了深入细致的研究。具体内容包括以下几个方面:
     论文首先分析了MMC的子模块电容电压平衡问题。从MMC运行机制出发,建立MMC广义动态模型,分析和比较了两种传统子模块电容电压平衡方法,然后在此基础上提出一种基于归并网络的预测排序算法,分别从提高排序算法的效率和限制排序算法的工作频率两方面进行了改进,使子模块电压平衡控制方法对硬件的依赖程度降低,能够减轻控制器负担,降低变换器的开关频率。
     论文对MMC的阶梯波调制和标量脉宽调制的两种调制技术进行了深入的研究。首先研究了适用于MMC的阶梯波调制技术,针对牛顿迭代法在求解阶梯波调制的MMC开关角时的局部收敛性问题,提出一种改进的混合粒子群优化算法,在求解的开始阶段采用粒子群优化算法全局范围内随机搜索开关角方程的迭代初值,之后运用牛顿法快速迭代到精确解。其次,针对MMC矢量调制标量化问题,提出一种具有电容电压平衡能力的标量脉宽调制方法,在一维矢量空间上以最近的两个电平线性地合成期望输出电压,合成矢量的作用时间只需要简单的占空比计算即可实现,可以省去繁琐的三角函数运算和坐标变换。论文对上述两种调制技术进行了仿真和实验验证。
     针对MMC系统的子模块故障问题,对无冗余备用的模块化多电平变换器容错控制方法进行了研究。提出基于零序电压注入方法的故障容错控制策略,讨论零序电压注入的可行性,在此基础上研究零序电压注入对MMC相间功率分配的影响。容错运行时的各个子模块电容的额定电压保持恒定,避免了电容电压波动对系统的暂态冲击和相间环流骤升,增强了MMC的故障穿越能力,并且无须增加额外的硬件成本。
     最后,论文研究了基于MMC拓扑结构的光伏并网功率调节系统的控制策略。首先分析了采用MMC拓扑结构的大规模光伏电站并网逆变器系统配置的技术特点和优势,为深入理解模块化多电平光伏并网功率调节系统的有功和无功的双向传输的可行性,给出基于空间矢量分析的系统运行模式的推导过程,研究了含无功和谐波补偿的光伏系统运行极限。为实现系统运行中的稳定控制,提出了一种基于标量脉宽调制的有功和无功功率协调控制策略,这种方法能够确保公共直流母线电压的稳定,并有效地提高大规模光伏电站并网逆变器系统的利用率。
In recent years, the power electronic converter technology has a rapiddevelopment, which cause the high power energy conversion system demand growsheavily. One perfect solution to breakthrough the limitation of power semiconductordevice capacity is improving the topology of the converter itself. With itsoutstanding technical features, the modular multilevel converter (MMC) overcomesthe defects of traditional multilevel converter successlly. So it is the most attractivemultilevel converter topologies in the high-voltage high-power electric powersystem. This paper have a deeply study about the modular multilevel powerconversion system which including voltage balance control methods, modulationtechniques, fault-tolerant control strategies and the application to photovoltaicpower generation system. The specific contents are as follows:
     The paper firstly analyzes the problems of sub-modules capacitor voltagebalance in MMCs. Starting from the operation mechanism of MMCs, a generalizeddynamic model of the MMC is set up. Based on analysis and comparison of the twotraditional submodules capacitor voltage balance methods, this paper presented amerge network based prediction sorting algorithm, making the improved efforts onthe optimization of the sorting algorithm efficiency and operating frequencyrespectively, by using a simple capacitor voltage estimation to determine the modeselection of pulse rotation and voltage sorting, the proposed method can reduce thedependence on the hardware level, as well as cutdown the controller burden and theswitching frequency of the converter.
     Then the staircase modulation and scalar PWM methods for MMC are studied.For the staircase modulation, to overcome the local convergence of the Newtoniteration method in solving the switching angles, a improved hybrid particle swarmoptimization (PSO) algorithm based staircase modulation strategy for MMC isproposed. This algorithm utilizes PSO to randomly search the optimal initial valuesof switching angles, which can accelerate the iterative speed at the next step of theNewton iterative processes. For the problem of scalarization of vector modulation,this paper also presents a scalar PWM algorithm with the capacity of capacitorvoltage balance. The algorithm based on the nearest level modulation (NLM)technique, which features a linearly synthesized output voltage by means of simplearithmetic calculations of duty cycles to determinate the switching sequences andthe duration times, saving the tedious trigonometric function calculations andcoordinate transformation. Simulation and experimental results verify thecorrectness and effectiveness of the proposed modulation methods.
     To solve the sub-module failure problem of MMC system with no redundancybackup, a zero sequence voltage injection based fault-tolerant control strategy forMMC is proposed. The feasibility of the zero sequence voltage injection isdiscussed, and on this basis the impact on the interphase power allocation of theMMC system is revealed. In fault-tolerant mode the rated capacitor voltage of eachmodule can keep constant, improving the system transient stability under the impactof the capacitor voltage fluctuation and avoiding the swell of the interphasecirculating currents. The strategy strengthens the fault ride-through ability of theMMC, and do not need to add additional hardware cost.
     Finally, the control strategy of the grid-connected photovoltaic (PV) powerconditioning system based on MMC topology is studied. The technicalcharacteristics and advantages of the large-scale PV power station which adopts thegrid converter system configuration of the MMC topology are analyzed. For thedeep understanding the feasibility of bidirectional active and reactive powertransmission of the modular multilevel PV power conditioning system, thederivation process of the system operation mode based on space vector analysis isgiven, and the system operating limits which contain reactive power and harmoniccompensation are studied. For the realization of system stability control, this paperproposes a scalar PWM based active and reactive power coordinated controlstrategy. This strategy can ensure the stability of the dc bus voltage, and effectivelyimprove the utilization rate of large-scale PV power station.
引文
[1]陈启鑫,康重庆,夏清,等.电力行业低碳化的关键要素分析及其对电源规划的影响[J].电力系统自动化,2009,33(15):18-23.
    [2]刘国中,文福拴,薛禹胜.计及温室气体排放限制政策不确定性的发电投资决策[J].电力系统自动化,2009,33(18):17-22.
    [3] Hidalgo R,Abbey C,Joos G. A Review of Active Distribution NetworksEnabling Technologies[C]. Power and Energy Society General Meeting,Minneapolis,U. S.,2010:1-9.
    [4] Lesnicar A, Marquardt R. A New Modular Voltage Source InverterTopology[C]. Power Electronics Application,2003:1-10.
    [5] Marquardt R,Lesnicar A. New Concept for High Voltage-Modular MultilevelConverter[C]. Power Electronics Spec. Conference,2004:174-179.
    [6] Hagiwara M,Akagi H. Control and Experiment of Pulsewidth-ModulatedModular Multilevel Converter[J]. IEEE Trans. on Power Electronics,2009,24(7):1737-1746.
    [7] Glinka M,Marquardt R. A New AC/DC Multilevel Converter Family[J]. IEEETrans. on Industrial Electronics,2005,52(3):662-669.
    [8] Gemmell B,Dorn J,Retzmann D,et al. Prospects of Multilevel VSCTechnologies for Power Transmission[C]. IEEE Transmission and DistributionConference,Chicago,U. S.,2008:1-16.
    [9]赵昕,赵成勇,李广凯,等.采用载波移相技术的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,2011,31(21):48-55.
    [10]王晓鹏,杨晓峰,范文宝,等.模块组合多电平变换器的脉冲调制方案对比[J].电工技术学报,2011,26(5):28-33.
    [11]李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制方法[J].电力系统自动化,2010,34(22):75-79.
    [12] Saeedifard M,Iravani R. Dynamic Performance of a Modular MultilevelBack-to-Back HVDCSystem[J]. IEEE Trans. on Power Delivery,2010,25(4):2903-2912.
    [13] Qin J,Saeedifard M. Predictive Control of a Modular Multilevel Converter fora Back-to-Back HVDC System[J]. IEEE Trans. on Power Delivery,2012,27(3):1538-1547.
    [14] Debnath S,Saeedifard M. A New Hybrid Modular Multilevel Converter forGrid Connection of Large Wind Turbines[J]. IEEE Trans. on SustainableEnergy,2013,4(4):1051-1064.
    [15] Harnefors L,Antonopoulos A,Norrga S,et al. Dynamic Analysis of ModularMultilevel Converters[J]. IEEE Trans. on Industrial Electronics,2013,60(7):2526-2537.
    [16] Siemaszko D,Antonopoulos A,Ilves K,et al. Evaluation of Control andModulation Methods for Modular Multilevel Converters[C]. InternationalPower Electronics Conference (IPEC),Sapporo,Japan,2010:746-753
    [17] Antonopoulos A,Angquist L,Nee H P. On Dynamics and Voltage Control ofthe Modular Multilevel Converter[C]. European Conference on PowerElectronics and Applications (EPE),Barcelona,Spain,2009:1-10.
    [18] Rohner S,Weber J,Bernet S. Continuous Model of Modula MultilevelConverter with Experimental Verifcation[C]. IEEE on Energy ConversionCongress and Exposition (ECCE),Phoenix,U. S.,2011:4021-4028.
    [19] Norrga S,Angquist L,Ilves K,et al. Frequency domain Modeling of ModularMultilevel Converters[C]. IEEE on Industrial Electronics Society (IECON),Montreal,Canada,2012:4967-4972.
    [20] Ludois D,Venkataramanan G. Simplified Terminal Behavioral Model for aModular Multilevel Converter[J]. IEEE Trans. on Power Electronics,2014,29(4):1622-1631
    [21] Li Y,Wang F. Arm Inductance Selection Principle for Modular MultilevelConverters with Circulating Current Suppressing Control[C]. IEEE on AppliedPower Electronics Conference and Exposition (APEC),Long Beach,U. S.,2013:1321-1325.
    [22] Tu Q,Xu Z,Huang H,et al. Parameter Design Principle of the Arm Inductorin Modular Multilevel Converter based HVDC[C]. International ConferencePower System Technology (POWERCON),Hangzhou,China,2010:1-6.
    [23] Shi X,Wang Z,Tolbert L,et al. Modular Multilevel Converters with IntegratedArm Inductors for High Quality Current Waveforms[C]. IEEE ECCE AsiaDownunder,Melbourne,Australia,2013:636-642.
    [24] Kolb J,Kammerer F,Braun M. Dimensioning and Design of a ModularMultilevel Converter for Drive Applications[C]. International PowerElectronics and Motion Control Conference (EPE/PEMC),Novi Sad,Serbia,2012:LS1a-1.1-1-LS1a-1.1-8.
    [25] Engel S P,Doncker R W D. Control of the Modular Multi-level Converter forMinimized Cell Capacitance[C]. European Conference on Power Electronicsand Applications (EPE),Birmingham,England,2011:1-10.
    [26] Guan M,Xu Z,Li H. Analysis of DC Voltage Ripples in Modular MultilevelConverters[C]. International Conference Power System Technology(POWERCON),Hangzhou,China,2010:1-6.
    [27] Ceballos S,Pou J,Choi S,et al.Analysis of Voltage Balancing Limits inModular Multilevel Converters[C]. IEEE on Industrial Electronics Society(IECON),Melbourne,Australia,2011:4397-4402.
    [28] Barnklau H,Gensior A,Bernet S. Submodule capacitor dimensioning forModular Multilevel Converters[C]. IEEE on Energy Conversion Congress andExposition (ECCE), Raleigh,U. S.,2012:4172-4179.
    [29] Ilves K,Norrga S,Harnefors L,et al. On Energy Storage Requirements inModular Multilevel Converters[J]. IEEE Trans. on Power Electronics,2014,29(1):77–88.
    [30] Ahmed N,Norrga S,Nee H P,et al. HVDC Supergrids with ModularMultilevel Converters-the Power Transmission Backbone of the Future[C].International Conference Systems on Signals and Devices (SSD),Chemnitz,Germany,2012:1–7.
    [31] Modeer T,Nee H P,Norrga S. Loss Comparison of Different Sub-ModuleImplementations for Modular Multilevel Converters in HVDCApplications[C]. European Conference on Power Electronics and Applications(EPE),Birmingham,England,2011:1–7.
    [32] Rohner S,Bernet S,M. Hiller,et al. Modulation, Losses, and SemiconductorRequirements of Modular Multilevel Converters[J]. IEEE Trans. on IndustrialElectronics,2010,57(8):2623-2642.
    [33] Oates C,Davidson C. A Comparison of Two Methods of Estimating Losses inthe Modular Multi-Level Converter[C]. European Conference on PowerElectronics and Applications (EPE),Birmingham,England,2011:1–10.
    [34] Tu Q,Xu Z. Power Losses Evaluation for Modular Multilevel Converter withJunction Temperature Feedback[C]. IEEE on Power and Energy SocietyGeneral Meeting,San Diego,U. S.,2011:1–7.
    [35] Li J,Zhao X,Song Q,et al. Loss Calculation Method and Loss CharacteristicAnalysis of MMC Based VSC-HVDC System[C]. IEEE InternationalSymposium on Industrial Electronics (ISIE),Taipei,China,2013:1–6.
    [36] Son G T,Lee H J,Nam T S,et al. Design and Control of a Modular MultilevelHVDC Converter With Redundant Power Modules for NoninterruptibleEnergy Transfer[J]. IEEE Trans. on Power Delivery,2012,27(3):1611-1619.
    [37] Konstantinou G,Pou J,Ceballos S,et al. Active Redundant SubmoduleConfiguration in Modular Multilevel Converters[J]. IEEE Trans. on PowerDelivery,2013:2333–2341.
    [38] Grinberg R,Riedel G,Korn A,et al. On Reliability of Medium VoltageMultilevel Converters[C]. Energy Conversion Congress and Exposition(ECCE),Denver,U. S.,2013:4047-4052.
    [39] Konstantinou G S,Agelidis V G. Performance Evaluation of Half-BridgeCascaded Multilevel Converters Operated with Multicarrier Sinusoidal PWMTechniques[C]. IEEE Conference on Industrial Electronics and Applications,Xi’an,China,2009:3399–3404.
    [40] Hassanpoor A,Norrga S,Nee H,et al. Evaluation of Different Carrier-BasedPWM Methods for Modular Multilevel Converters for HVDC Application[C].Annual Conference on IEEE Industrial Electronics Society (IECON),Montreal,Canada,2012:388–393.
    [41] Kang D W,Lee W K,Hyun D S. Carrier-Rotation Strategy for VoltageBalancing in Flying Capacitor Multilevel Inverter[J]. IET Electric PowerApplications,15(2),2004:239–248.
    [42] Mei J,Shen K,Xiao B,et al. A New Selective Loop Bias Mapping PhaseDisposition PWM With Dynamic Voltage Balance Capability for ModularMultilevel Converter[J]. IEEE Trans. on Industrial Electronics,2014,61(2):798-807.
    [43] McGrath B P,Holmes D G. A Comparison of Multicarrier PWM Strategies forCascaded and Neutral Point Clamped Multilevel Inverters[C]. IEEE PowerElectronics Specialists Conference,Galway,Ireland,2000:674–679.
    [44] Angquist L,Antonopoulos A,Siemaszko D,et al. Open-Loop Control ofModular Multilevel Converters Using Estimation of Stored Energy[J]. IEEETrans. on Industry Applications,2011,47(6):2516-2524.
    [45] Hagiwara M,Maeda R,Akagi H. Control and Analysis of the ModularMultilevel Cascade Converter Based on Double-Star Chopper-Cells(MMCC-DSCC)[J]. IEEE Trans. on Power Electronics,2011,26(6):1649-1658.
    [46] Thitichaiworakorn N,Hagiwara M,Akagi H. Experimental Verification of aModular Multilevel Cascade Inverter Based on Double-Star Bridge Cells[J].IEEE Trans. on Industry Applications,2014,50(1),509-519.
    [47] Konstantinou G,Ciobotaru M,Agelidis V. Selective Harmonic EliminationPulse-width Modulation of Modular Multilevel Converters[J]. IEEE Trans. onPower Electronics,2013,6(1),1755-4535.
    [48] Tu Q,Xu Z. Impact of Sampling Frequency on Harmonic Distortion forModular Multilevel Converter[J]. IEEE Trans. on Power Delivery,2011,26(1):298-306.
    [49] Kouro S,Bernal R,Miranda H,et al. High-Performance Torque and FluxControl for Multilevel Inverter Fed Induction Motors[J]. IEEE Trans. onPower Electronics,2007,22(6):2116-2123.
    [50] Ilves K,Antonopoulos A,Norrga S,et al. A New Modulation Method for theModular Mulopitilevel Converter Allowing Fundamental SwitchingFrequency[J]. IEEE Trans. on Power Electronics,2012,27(8):3482-3494.
    [51] Rohner S,Bernet S,Hiller M,et al. Modelling, Simulation and Analysis of aModular Multilevel Converter for Medium Voltage Applications[C]. IEEEInternational Conference on Industrial Technology(ICIT),Vi a del Mar,Chile,2010:775-782.
    [52] Tu Q,Xu Z,Xu L. Reduced Switching-Frequency Modulation and CirculatingCurrent Suppression for Modular Multilevel Converters[J]. IEEE Trans. onPower Delivery,2011,26(3):2009-2017.
    [53] Deng F,Chen Z. A Control Method for Voltage Balancing in ModularMultilevel Converters[J]. IEEE Trans. on Power Electronics,2014,29(1):66-76.
    [54] Picas R,Pou J,Ceballos S,et al. Minimization of the Capacitor VoltageFluctuations of a Modular Multilevel Converter by Circulating CurrentControl[C]. Annual Conference on IEEE Industrial Electronics Society(IECON),Montreal,Canada,2012:4985-4991.
    [55] Picas R,Pou J,Ceballos S,et al. Optimal Injection of Harmonics inCirculating Currents of Modular Multilevel Converters for Capacitor VoltageRipple Mization[C]. IEEE ECCE Asia Downunder (ECCE Asia),Melbourne,Australia,2013:318-324.
    [56] Ilves K,Antonopoulos A,Harnefors L,et al. Capacitor Voltage RippleShaping in Modular Multilevel Converters Allowing for Operating RegionExtension[C]. Annual Conference on IEEE Industrial Electronics Society(IECON),Melbourne,Australia,2011:4403–4408.
    [57] Ilves K,Antonopoulos A,Norrga S,et al. Steady-State Analysis of InteractionBetween Harmonic Components of Arm and Line Quantities of ModularMultilevel Converters[J]. IEEE Trans. on Power Electronics,2012,27(1):57–68.
    [58] She X,Huang A,Ni X,et al. AC Circulating Currents Suppression in ModularMultilevel Converter[C]. Annual Conference on IEEE Industrial ElectronicsSociety (IECON),Montreal,Canada,2012:191–196.
    [59] Li Z,Wang P,Chu Z,et al. An Inner Current Suppressing Method for ModularMultilevel Converters[J]. IEEE Trans. on Power Electronics,2013,28(11):4873–4879.
    [60] Friedrich K. Modern HVDC PLUS Application of VSC in Modular MultilevelConverter topology[C]. IEEE International Symposium on IndustrialElectronics (ISIE),Bari,Italy,2010:3807–3810.
    [61] Amankwah E,Watson A,Feldman R,et al. Experimental Validation of aParallel Hybrid Modular Multilevel Voltage Source Converter for HVDCTransmission[C]. IEEE Applied Power Electronics Conference and Exposition(APEC),Long Beach,U.S.,2013:1607-1614.
    [62] Li X,Song Q,Liu W,et al. Protection of Nonpermanent Faults on DCOverhead Lines in MMC-Based HVDC Systems[J]. IEEE Trans. on PowerDelivery,2013,28(1):483-490.
    [63] Franck C M. HVDC Circuit Breakers: A Review Identifying Future ResearchNeeds[J]. IEEE Trans. on Power Delivery,2011,26(2):998-1007.
    [64] Korn A,Winkelnkemper M,Steimer P,et al. Direct Modular Multi-LevelConverter for Gearless Low-Speed Drives[C]. European Conference on PowerElectronics and Applications (EPE),Birmingham,U.K.,2011:1–7.
    [65] Winkelnkemper M,Korn A,Steimer P. A Modular Direct Converter forTransformerless Rail Interties[C]. IEEE International Symposium onIndustrial Electronics (ISIE),Bari,Italy,2010:562–567.
    [66] Mei J,Xiao B,Shen K,et al. Modular Multilevel Inverter with NewModulation Method and Its Application to Photovoltaic Grid-ConnectedGenerator[J]. IEEE Trans. on Power Electronics,2013,28(11):5063-5073.
    [67] Trintis I,Munk-Nielsen S,Teodorescu R. A New Modular MultilevelConverter with Integrated Energy Storage[C]. Annual Conference on IEEEIndustrial Electronics Society (IECON),Melbourne,Australia,2011:1075–1080.
    [68] Liu Z,Lu J,Ou Z,et al. The Start Control Strategy Design of Unified PowerQuality Conditioner Based on Modular Multilevel Converter[C]. IEEEInternational Electric Machines Drives Conference (IEMDC),Chicago,U. S.,2013:933–937.
    [69]耿俊成.链式静止同步补偿器数学模型和控制策略研究[D].北京:清华大学,2003.
    [70] Konstantinou G S,Ciobotaru M,Agelidis V G. Effect of RedundantSub-Module Utilization on Modular Multilevel Converter[C]. IEEEInternation Conference on Industrial Technology(ICIT),2012:815-820.
    [71] Zhang Y,Adam G P,Lim T C,et al. Analysis of Modular MultilevelConverter Capacitor Voltage Balancing Bbased on Phase Voltage RedundantStates[J]. IET Power Electronics,2012,5(6):72-738.
    [72]班明飞.模块化多电平变流器控制策略的研究[D].哈尔滨:哈尔滨工业大学硕士论文,2013:36-39.
    [73]李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制的通用算法[J].电网技术,2011,35(5):59-64.
    [74]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010:74-86.
    [75] Hagh M T,Taghizadeh H,Razi K. Harmonic Minimization in MultilevelInverters Using Modified Species-Based Particle Swarm Optimization[J].IEEE Trans. on Power Electronics,2009,24(10):2259-2267.
    [76] Konstantinou G S,Ciobotaru M,Agelidis V G. Analysis of Multi-CarrierPWM Methods for Back-to-Back HVDC Systems Based on ModularMultilevel Converters[C]. Annual Conference on IEEE Industrial ElectronicsSociety(IECON),Melbourne,Australia,2011:4391-4396.
    [77] Dahidah M S A,Agelidis V G. Selective Harmonic Elimination PWM Controlfor Cascaded Multilevel Voltage Source Converters: A generalized formula[J].IEEE Trans. on Power Electronics,2008,23(4):1620-1630.
    [78] SUN J,Grotstollen H. Solving Nonlinear Equations for Selective HarmonicEliminated PWM Using Predicted Initial Values[C]. IEEE InternationalConference on Power Electronics and Motion,San Diego,U. S.,1992:259-264.
    [79] Enjeti P,Lindsay J F. Solving Nonlinear Equations of Harmonic EliminationPWM in Power Control[J]. Electronics Letters,1987,23(12):656-657.
    [80]费万民,吕征宇,姚文熙.三电平逆变器特定谐波消除脉宽调制方法的研究[J].电机工程学报,2003,23(9):11-15.
    [81] Li Q,He Zhiyuan,Tang G. Investigation of the Harmonic OptimizationApproaches in the New Modular Multilevel Converters[C]. Asia-PacificPower and Energy Engineering Conference (APPEEC),Beijing,China,2010:1-6.
    [82]何娜,黄丽娜,武健,等.基于粒子群优化算法的混合有源滤波器中无源滤波器的多目标优化设计[J].中国电机工程学报,2008,28(27):63-69.
    [83] Song W,Huang A. Fault-Tolerant Design and Control Strategy for CascadedH-Bridge Multilevel Converter-Based STATCOM[J]. IEEE Trans. onIndustrial Electronics,2010,57(8):2700-2708.
    [84]管敏渊,徐政.模块化多电平换流器子模块故障特性和冗余保护[J].电力系统自动化,2011,35(16):94-98.
    [85] Li J,Huang A Q, Bhattacharya S,et al. Three-Level Active Neutral PointClamped (ANPC) converter with fault tolerant ability[C].24th Annual IEEEApplied Power Electronics Conference and Exposition,Washington,USA,2009:840-845.
    [86] Ma M,Hu L,Chen A,et al. Reconfiguration of Carrier-Based ModulationStrategy for Fault Tolerant Multilevel Inverters[J]. IEEE Trans. on PowerElectronics,2007,22(5):2050-2060.
    [87] Hammond P W. Enhancing the Reliability of Modular Medium-VoltageDrives[J]. IEEE Trans on Industrial Electronics,2002,49(5):948-954.
    [88] Summers T J,Betz R E,Mirzaeva G. Phase Leg Voltage Balancing of aCascaded H-Bridge Converter Based STATCOM Using Zero SequenceInjection[C]. European Conference on Power Electronics and Applications(EPE),2009,Barcelona,Spain,2009:1-10.
    [89]王姗姗,周孝信,汤广福,等.模块化多电平电压源换流器的数学模型[J].中国电机工程学报,2011,31(24):1-8.
    [90]许洪华.中国光伏发电技术发展研究[J].电网技术,2007,31(20):77-81.
    [91]刘东冉,陈树勇,马敏,等.光伏发电系统模型综述[J].电网技术,2011,35(8):47-52.
    [92]周林,张林强,廖波,等.单相光伏逆变器控制技术研究[J].电网技术,2012,36(9):25-30.
    [93] Blanes J M. Two-Stage MPPT Power Regulator for Satellite ElectricalPropulsion System[J].IEEE Trans. on Aerospace and Electronic Systems,2011,47(3):1617-1630.
    [94] Blaabjerg F,Chen Z. Power Electronics as Efficient Interface in DispersedPower Generation Systems[J]. IEEE Trans. on Power Electronics,2004,19(5):1184-1194.
    [95] Carrasco J M,Franquelo L G,Bialasiewicz J T. Power-Electronic Systems forthe Grid Integration of Renewable Energy Sources: a Survey[J]. IEEE Trans.on Industrial Electronics,2006,53(4):1002-1016.
    [96] Blaabjerg F,Teodorescu R,Liserre M,et al. Overview of Controland GridSynchronization for Distributed Power Generation Systems[J]. IEEE Trans. onIndustrial Electronics,2006,53(5):1398-1409.
    [97] Tolbert L M,Peng F Z. Multilevel Converters as a Utility Interface forRenewable Energy Systems[C]. IEEE Power Engineering Society SummerMeeting,Seattle,U. S.,2003:1271-1274.
    [98] Ardani K,Margolis R.2010Solar Technologies Market Report[EB/OL]. U. S.Department of Energy,2011:56-58[2011-11]. www.nrel.gov/docs/fy12osti/51847.pdf.
    [99]张兴,曹仁贤.太阳能光伏并网发电及其逆变控制[M].北京:机械工业出版社,2012:29-36.
    [100]SANYO Energy (U.S.A.) Corp. HIT Power195Data Sheet[EB/OL]. SANYOCompany,2009:1-2[2009-09-01]. http://us.sanyo.com/dynamic/-product/Downloads/-HIT%20Power%20195%20Data%20Sheet-10240373.pdf.
    [101]Meneses D,Blaabjerg F,Garcia O,et al. Review and Comparison of Step-UpTransformerless Topologies for Photovoltaic AC-module Application[J]. IEEETrans. on Power Electronics,2013,28(6):2649-2663.
    [102]Kjaer S,Pedersen J,Blaabjerg F. A. Review of Single-Phase Grid ConnectedInverters for Photovoltaic Modules[J]. IEEE Trans. on Industry Applications,2005,41(5):1292-1306.
    [103]Zhang L,Sun K,Xing Y,et al. A Modular Grid-Connected PhotovoltaicGeneration System Based on DC Bus[J]. IEEE Trans. on Power Electronics,2011,26(2):523-531
    [104]Jain S,Agarwal V. A Single-Stage Grid Connected Inverter Topology for SolarPV Systems With Maximum Power Point Tracking[J]. IEEE Trans. on PowerElectronics,2007,22(5):1928-1940.
    [105]Wu T S,Chang C H,Lin L C,et al. Power Loss Comparison of Single-andTwo-Stage Grid-Connected Photovoltaic Systems[J]. IEEE Trans. on EnergyConversion,2011,26(2):707-715.
    [106]武海涛,刘永和.大功率电流型光伏并网换流器的拓扑与控制[J].电网技术,2013,37(8):2086-2093.
    [107]Kerekes T,Koutroulis E,Sera D,et al. An Optimization Method for DesigningLarge PV Plants[J]. IEEE Journal of Photovoltaics,2013,3(2):814-822.
    [108]Pai F S,Lin J M,Huang S J. Design of An Inverter Array for DistributedGenerations with Flexible Capacity Operations[J]. IEEE Trans. on IndustrialElectronics,2010,57(12):3927-3934.
    [109]Teodorescu R,Liserre M,Rodríguez P. Grid converters for photovoltaic andwind power systems[M]. West Sussex:Wiley-IEEE Press,2011:25-27.
    [110]刘邦银,段善旭,康勇.单相单级并网光伏发电系统中二次功率扰动的分析与抑制[J].太阳能学报,2008,29(4):407-411.
    [111]Kuo Y C,Liang T J,Chen J F. Novel Maximum-Power-Point-TrackingController for Photovoltaic Energy Conversion System[J]. IEEE Trans. onIndustrial Electronics,2001,48(3):594-601.
    [112]Cai W,Liu B,Duan S,et al. An Active Low-Frequency Ripple ControlMethod Based on the Virtual Capacitor Concept for BIPV Systems[J]. IEEETrans. on Power Electronics,2014,29(4):1733-1745.
    [113]曾正,杨欢,赵荣祥,等.多功能并网逆变器研究综述[J].电力自动化设备,2012,32(8):5-15.
    [114]曾正,赵荣祥,杨欢,等.多功能并网逆变器及其在微电网电能质量定制中的应用[J].电网技术,2012,36(5):58-67.
    [115]Jain S,Agarwal V. Comparison of the Performance of Maximum Power PointTracking Schemes Applied to Single-Stage Grid-Connected PhotovoltaicSystems[J]. IET Electric Power Applications,2007,1(5):753-762.
    [116]董密,杨建,彭可,等.光伏系统的零均值电导增量最大功率点跟踪控制[J].中国电机工程学报,2010,30(21):48-53.
    [117]周德佳,赵争鸣,袁立强,等.具有改进最大功率跟踪算法的光伏并网控制系统及其实现[J].中国电机工程学报,2008,28(31),94-100.
    [118]卫东,楼洪,肖昌允.太阳能光伏输出特性最大功率点计算与模型参数求解[J].中国电机工程学报,2013,33(10),121-127.
    [119]Davoodnezhad R, Holmes D G, McGrath B P. ConstantFrequencyThree-Phase Hysteresis Current Regulator with ExtendedModulation Depth[C]. IEEE International Conference on Power Electronicsand Motion Control,Harbin,China,2012:263-268.
    [120]Cai W,Liu B,Duan S,et al. A Wide-Range Active and Reactive Power FlowController for a Solid Oxide Fuel Cell Power Conditioning System[J]. IEEETrans. on Power Electronics,2008,23(6):2703-2709.
    [121]赵清林,郭小强,邬伟扬.抑制负序和谐波电流的永磁直驱风电系统并网
    控制[J].中国电机工程学报,2007,27(16),60-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700