稀土掺杂包埋纳米晶硅硅基薄膜光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,现有的微电子技术已难以满足由其支撑的现代电了技术不断提出的更高要求。用光子代替电子作为信息的载体,从微电子技术向光集成或光电子集成技术发展,成为必然的趋势。虽然Ⅲ-Ⅴ族半导体材料非常适合制造光电子器件,但在Ⅲ-Ⅴ族化合物基片上制造大规模电子集成回路的技术还很不成熟,且造价太高,难以进入民用市场。相反,硅基微电子集成制造工艺相当成熟,己进入大规模工业化生产阶段。因此硅基光电集成成为研究的主要热点。然而硅基半导体材料不是好的发光体,限制了它们在光电子集成方面的应用。稀土离了具有丰富的电子能级和4f电子跃迁特性,可获得多种发光性能,能够为高科技领域特别是通信领域提供性能优越的发光材料。稀土掺杂包理纳米晶硅硅基发光材料在实现微电子技术向光电子集成技术发展中具有重要意义,因此一直是人们不懈追求的研究目标。
     利用离子束溅射和离子注入技术,并辅以热氧化技术,制备了Er掺杂富硅SiO2薄膜材料和Ce掺杂SiO2薄膜材料。分别利用透射电子显微镜、拉曼光谱和光致发光谱研究了Er掺杂富硅SiO2薄膜材料的微结构和光致发光性质、Ce掺杂SiO2薄膜材料的光致发光性质。并利用CASTEP软件计算了各种SiO2结构的材料的光电性质。主要取得了以下研究结果:
     对Er掺杂富硅SiO2薄膜样品在1100℃经10secs-5mins进行高温快速退火。研究了退火样品的微结构和光致发光性质。结果表明:经退火热处理后在SiO2薄膜基体中有Si-nc晶粒生成。在室温条件下,所有退火态样品中均观测到较强的Si-nc和Er3+离子发光。随退火时间增加,Si-nc颗粒尺寸增大,量子限制效应减弱,导致Si-nc发光强度减弱,发光峰位红移。对于Er3+离子,其发光峰峰位几乎不随退火时间增加而改变。但随退火时间增加,其发光强度明显改变,并且发光强度随退火时间的变化趋势与Si-nc相反,验证了Si-nc与Er3+离子之间确实存在能量传递。对样品施加不同的外加压强进行调制后,Si-nc的发光峰位波长在P=5.76GPa时明显减小,而发光强度也在该压强附近急剧减弱。这是由基体材料及纳米晶硅结构在外加压强作用下发生变化引起的。
     利用不同的实验方法制备了两个系列Ce3+离子掺杂SiO2薄膜样品,并对样品在不同条件下进行退火热处理。室温条件下,在所有制备态和退火态样品中均观测到较强的Ce3+离子光致发光。详细讨论了Ce3+离子掺杂浓度、退火条件、制备方法等对样品发光性质的影响。研究发现Ce3+离子的发光性质强烈依赖于Ce3+离子掺杂浓度、退火温度、退火气氛以及制备方法。随Ce3+离子掺杂浓度增加,其发光强度几乎呈线性增加,发光峰峰位改变。当Ce3+离子掺杂浓度继续增加时,离了间距离减小,处于激发态的Ce3+离子将能量传递给近邻的其它Ce3+离子从而引起发光猝灭。在空气气氛中经较高温度退火后,基体中有更多的Ce3+离子存在并进入SiO2网格形成发光中心,导致材料发光强度增强。随退火温度继续增加,一方面Ce3+离子发生团簇引起发光猝灭或者直接从基体材料中析出;另一方面,更多的Ce3+离子被氧化为非光学活性的Ce4+离子。以上因素导致Ce3+离子发光强度显著减弱。另外通过分析不同气氛中退火样品的PL谱,发现N2气氛可有效保护Ce3+离了防止Ce3+离子被氧化为Ce4+离了,从而可以明显改善样品的发光性质。不同的制备方法对样品的发光性质也有影响,例如在B系列样品中随着Ce3+离子掺杂浓度增加到1.46at%,观察到Ce3+离子发光猝灭效应,而在A系列样品中却没有发现这种现象。
     利用CASTEP软件计算了包埋纳米晶硅SiO2和Ce掺杂SiO2结构的材料的电子结构和光学性质。研究表明,与SiO2材料相比,包理纳米晶SiO2材料整个导带下移,并在费米面附近形成局域分离能级。禁带宽度由原来的5.742eV减小为1.05eV。吸收光谱中,在2.27eV处出现新的吸收峰,对应于费米面以下-1.01eV附近能级上的电子向由键角畸变引入的费米面以上1.05eV附近能级的跃迁。研究表明,用一个Ce原子代替Si原子形成Ce掺杂SiO2结构材料后,在SiO2禁带中引入Ce杂质能级,禁带宽度减小。与SiO2材料相比,吸收谱中2.96eV处出现新的吸收峰,对应于Ce的4f电子向5d能级跃迁,与实验测量结果一致。
With the development of science and technology, the existing microelectronic technology has been difficult to meet the higher requirements put forward by the modern electronic technology which was supported by microelectronic technology. Using photons to instead of electrons as the carrier of information, that microelectronic technology turn into photon integrated or optoelectronic integrated technology become an inevitable trend. The Ⅲ-Ⅴ semiconductor materials are suitable to use for optoelectronic devices, however the technology to manufacture large-scale electronic integrated circuit is still immature for the Ⅲ-Ⅴ compound materials and the cost too high to enter the civilian market. In contrast, the manufacturing process of silicon-based microelectronic integration is quite mature and it has reached the level of large-scale industrial production. So. the silicon-based optoelectronic integration becomes the main interest point of the study. The silicon semiconductor materials, however, is not good at luminescence which limits their application for the optoelectronic integration. Rare earth ions own a wealth of electronic energy levels and the4f electron transition characteristics. So. the rare earth ions can obtain a variety of luminescence properties to be able to be used as luminescence materials for high level technology especially the field of communication. The rare earth doped silicon-based luminescence materials embedded Si-nc have been the relentless pursuit of research goals for great significance shown in the development from microelectronic technology to photon integrated or optoelectronic integrated technology.
     In this thesis, Er-doped Si-rich silicon oxide samples and Ce-doped silicon oxide samples were successfully prepared, respectively, by ion beam sputtering and ion implantation. The microstructure and photoluminescence (PL) properties of Er-doped Si-rich silicon oxide samples were investigated through transmission electron microscopy (TEM), Raman spectroscopy and PL spectroscopy, respectively. The PL properties of Ce-doped silicon oxide samples were also investigated via the PL spectroscopy. And the photoelectric properties of doped SiO2thin films were studied by CASTEP software package.
     The Er-doped Si-rich silicon oxide samples were annealed at1100℃with annealing time from10sees to5mins. The investigations of the microstructure and PL properties show that Si nanocrystalline (Si-nc) was formed in annealed samples and PL of Si-nc and Er3+ions were observed at room temperature from all annealed samples. The size of Si-nc particle increases with increasing annealing time. So, the quantum confinement effect becomes weak leading to the decrease of PL intensity and red shift of PL peak wavelength. In contrast, there is no obvious change of the PL peak position of Er3+ions with increasing annealing time. However, the PL intensity changed as the annealing time increased, and the changing trend is contrary to that of Si-nc which verifies the energy transfer does exist between Si-nc and Er3ions. Different pressures were applied to the samples and the PL studies show the peak position changed sharply as the pressure reached5.76GPa, the PL intensity was also changed as the pressure value is around5.76GPa. All the changes may arise from the change of the structure of matrix materials.
     Two series Ce-doped silicon oxide samples were successfully prepared via different processes. PL of Ce3+ions were observed at room temperature from all unannealed and annealed samples. PL of Ce3+ions were detected from all Ce-doped silicon oxide samples un-annealed and annealed and the effect of Ce ions concentrations, annealing conditions and fabricating process on the PL properties were investigated comprehensively. The results indicated that the PL properties were dependent strongly on Ce ions concentrations, annealing temperatures, annealing ambient and fabricating process. The PL intensity increases almost linearly and the peak position changes with increasing Ce concentrations. As the Ce concentrations further increased, the distance between Ce3+ions decreased, some excited Ce3+ions transfer their energy to other nearby Ce3+ion, which causes PL quenching. When the samples were annealed at high temperatures in air ambient, the amount of Ce3+ions increases and more Ce3+ions have enough energy to enter the network of silica to form the PL centers, so the PL intensity enhanced. However, the PL intensity decreases obviously as the annealing temperatures continue to increase. The Clustering or precipitation of Ce3+ions occurs and Ce3+ions can be oxidized to form inactive Ce4+ions at higher temperatures, which results in a decrease of PL intensity. Compared the PL spectroscopy of samples annealed in different ambient, the results indicated nitrogen gas can protect the Ce3+ions from being oxidized. Therefore, the PL intensity can be enhanced for the samples annealed in nitrogen gas. The fabricating processes also have an influence on the PL properties. The oxidation of the samples with Ce ions implanted into Si films likely produces more Ce4+, leading to a PL quenching which is not observed in the samples with Ce ions implanted into SiO2films.
     The electronic structure and optical properties of Si-nc embedded in SiO2and Ce-doped SiO2were investigated by first-principles pseudopotential plane-wave method. The results show the whole conduction band moved down and the localized energy levels near the Fermi level were observed in the Si-nc embedded in SiO2. And the band gap changed from5.742eV to1.05eV. According to the absorption spectroscopy, the new absorption peak at about2.27eV is attributed to the transition of the electrons from-1.01eV energy level to1.05eV energy level generated by valence-band distortion. As for the Ce-doped SiO2structure, the results show the impurity levels of Ce were introduced leading to the decrease of band gap. The absorption peak at about2.96eV is attributed to the transition of electrons from4f energy level to5d energy level, which consisitent the measurement result.
引文
[1]徐叙瑢,苏勉,发光学与发光材料,北京,化学工业出版社,2004.2.
    [2]张中太,张俊英编著,《无机光致发光材料及应用》,北京,化学工业出版社.2005,69-72.
    [3]徐叙瑢,苏勉,发光学与发光材料,北京,化学工业出版社,2004,3-4.
    [4]张希艳,卢利平等,稀土发光材料,北京,国防工业出版社,2005,35-36.
    [5]徐叙瑢,苏勉,发光学与发光材料,北京,化学工业出版社,2004,,261.
    [6]Verstegen J.M.P.J., Radielovic D., Vrenken L. E., A new generation of "DE LUX"fluorescent lamps:an efficiency of 80 lumens/W or more cohor rende ring index of approximatelu 85, J. Electrochem Soc,1974; 121(12):1627-1631.
    [7]郑慕周,灯用荧光粉新进展,中国照明电器,4,2000:8-11.
    [8]Wei. X.T., Huang, S., Chen Y.. Guo, C, Yin, M., Xu, W., Energy transfe rmechanisms in Yb3+ doped YVO4 near-infrared down-conversion phosphor, J. Appl.Phys,107.2010:103107-1-5.
    [9]王启明,信息高科技领域中的半导体光电了学,半导体学报,19(10),1998:721-728.
    [10]R.L.Van Tuyl, C.A.Liechti, Gallium Arsenide spawns speed, I EEE.Spectru m,14,1977:40-47.
    [11]肖志松,博士学文论文,北京师范大学,2001.
    [12]王中和,张光寅,光子学物理基础,国防工业出版社,1998,3.
    [13]T. Tamir, Integrated Optics, Berlin,Springer—Verlag,1979.
    [14]孙小梅,魏洪昌,浅谈半导体光电子器件及其应用,南方农机,2,2006:721-728.
    [15]罗学明,硕士学位论文,郑州大学,2007.
    [16]王启明,自然科学进展,7(2),(1995):31.
    [17]刘恩科,朱秉升,罗晋生等,半导体物理学,国防工业出版社,1997,28.
    [18]J.R. Hyanes, Experimental Observation of the Excitonic Molecule, Phys.Rev.Lett.,17,1966:860-862.
    [19]J.R. Chelikowsky, M.L.Cohen, Phys. Rev. B,10,1974:5095
    [20]W. Bludeau, A. Onton, W. Heinke, J. Appl, Phys.,45,1974:1846.
    [21]张荣君,硅发光研究与进展,中国激光,136,2009:269-275.
    [22]徐光青,郑治祥,汤文明等,溶胶-凝胶法制备Ce3+掺杂纳米材料光致发光研究,光学学报,25(8),2005:1081-1086.
    [23]夏建白,硅发光研究,半导体学报,19(5),1998:321-326.
    [24]李宏建,彭景翠等,硅基材料的发光特性及机理,材料导报,15(9),2001:36-37.
    [25]G. Ledoux, O. Guilois, D. Porterat, C. Reynaud, Photoluminescence prope r-ties of silicon nanocrystals as a function of their size, Phys. Rev. B,62 (23),2000:15942-15951.
    [26]L.T. Canham, Silicon quantum wire array fabrication by electrochemical a-nd chemical dissolution of wafers, J. Appl. Phys. Lett.,57(10),1990:104 6-1048.
    [27]T.S. Iwayama, S. Nakao, K. Saitoh, Visible photoluminescence in Si+-impl-anted thermal oxide films on crystalline Si, J. Appl. Phys. Lett.,65(14), 1994:1814-1816.
    [28]J.W. Verweij, M.Th. Cohen-Adad, D. Bouttet, et al.. Luminescence prope-rties of GdAlO>3:Ce powders, dependence on reduction, conditions Chem.Ph ys.Lett.239,1995:51-55.
    [29]M. Ferrari, C. Armellini, S. Ronchin, et al., Influence of the Er3+ Content on the Luminescence Properties and on the Structure of En2O3-SiO2 Xero-gels, J. Sol-Gel Sci.Tech..19.2000:569-572.
    [30]X.Y. Hou, G. Shi, W. Wang, et al. Large blue shift of light emitting poro-us silicon by boiling water treatment, Appl.Phys.Lett.,62,1993:1097-109 8.
    [31]V. Petrova-Koch, A. Kux, F. Muller, T. Muschik, F. Koch, V. Lehmann, Compositi on and Morphology of Luminescent Porous Si, Mat.Res.Soc.Sym.Proc.,256,1991: 41-47.
    [32]X, Zhao. O. Schoenfeld, Violet luminescence from anodized microcrystalli-ne silicon. Appl.Phys.Lett.,65,1994:1290-1292.
    [33]林军,姚光庆,多孔硅发光峰位波长为370nm的紫外光发射,半导体学报,16,1995:947-950.
    [34]D.I. Kovalev, I.D. Yaroshetzkii, T. Muschik, V. Petrova Koch, F. Koch, F-ast and slow visible luminescence bands of oxidized porous Si, Appl.Ph ys.Lett.,64,1994:214-216.
    [35]A. Uhlir, Electrolytic shaping of germanium and silicon, Bell Syst Tech J, 35 (4),1956:333-337.
    [36]D.R. Turner, Electropolishing silicon in hydrofluoric acid solutions, J.Elect rochem.Soe.,105,1955:402-408.
    [37]C Pickering, M I J Beale, D J Robbins. P J Pearson and R Greef, Optic-al studies of the structure of porous silicon films formed in p-type degen erate and non-degenerate silicon, J. Phys. C:Solid State Phys.17(35),1984: 6535.
    [38]陈乾旺,李新建,朱警生等,多孔硅研究的新进展,电子显微镜学报,16(4),1997:493-496.
    [39]K.D. Hirschman, L. Tsybeskov, S.P. Duttagpta, et al. Silicon-based visible light-emitting devices integrated intomicroelectronic circuits. Nature,384, 1996:338-341.
    [40]F. Koch, V. Petrova-Koch, T. Muschik, A. Nikolov, V. Gavrilenko, Some Perspectives on the Luminescence Mechanism Via Surface-Confined States of Porous Si, Mat.Res.Soc.Sym.Proc.,283.1993:197-202.
    [41]G.G. Qin, J.Q. Jia, Mechanism of the visible luminescence in porous silic-on. Solid State Commun.86,1993:559-563.
    [42]V.G..Baru, P.C.hernushieh, V.A.Lunazov, G..V.StePnaov, L.Yu.Zakharov, Appl.Phys.Lett.,(68)1996:4148
    [43]L.S. Liao, X.M. Bao, X.Q. Zheng, N.S. Li, N.B. Min, Blue photolumin-escence from Si+-implanted SiO2 films on crystalline Si, Appl.Phys.Lett..68,1996:850.
    [44]M, Stutzmann, M.S.Brandt, M.Rossenbauer, H.D.Fuchs, S.Finkbeiner, J.Weber, P.Deak, J.Lumin..57.1993:321.
    [45]S.Guha, M.D.Pace, D.N.Dunn, I.L.Singer, Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing,Appl. Ph ys.Lett.,70,1997:1207-1209.
    [46]S.Veperk, V. Marecek, The preparation of thin layers of Ge and Si by c hemical hydrogen plasma transport, J.Solid State Electronics,11,1968:683-6 84.
    [47]F.Mattenberger, S.Veperk. Effect of Adsorption of Gases on the Eleetriea Conductivity of Nanocrystalline Silicon(nc-Si)-based Selective Gas Sensors. J.Chemtronics,1,1986:107-111.
    [48]Lwayama T, Fujita K., Nakao S., et al. Visible photoluminescence in Si Implanted siliea,J.Appl.Phys.,75(2).1994:7779-7783.
    [49]L.Pavesi, L.D.Negro. C.Mazzoleni, et al. Optical gain in silicon nanocrysta-Is, Nature,408.2000:440-444.
    [50]刘乙潜,梁文双,G.G. Ross二氧化硅基质包理硅纳米晶的微观结构和发光性能,23(4),2009:352-356.
    [51]Mikito, Mamiya, Masae Kikuchi et al. Crystallization of fine silicon parti-cles from silicon monoxide, J.Cyrstal Gorwth,237-239:2002:1909-1914.
    [52]刘湘娜等.用等离子体增强化学气相沉积方法制备纳米晶粒硅薄膜光致发光.物理学报,43(6),1994:955-959.
    [53]Takagi H, Ogawa H, Yamazaki Y et al, Quantum size effects on photolu-minescence in ultrafine Si particles, Appl.Phys.Lett.,56(24),1990:2379-2380.
    [54]王印月,杨映虎,郭永平等.埋入SiO2中纳米Si的Rmana散射和室温可见光致发射.科学通报,42(15),1997:1618-1621.
    [55]陈维德,硅基发光材料和器件研究,物理,28(12),1999:
    [56]Z. H. Lu, D. J. Lockwood, J.-M. Baribeau, Quantum confinement and li-ght emission in SiO2/Si superlattices, Nature,378,1995:258-260.
    [57]D.J. Lockwood, Z.H. Lu, J.M. Bairbeau, Quantum Confined Luminescencein Si /SiO2 Superlattices, Phys.Rev.Lett.,76,1996:539-541.
    [58]林峰,盛箎,龚大卫等,分子束外延系统中生长Si/SiO超晶格及其发光半导体学报,19,1998:561-564.
    [59]张希燕.稀土发光材料[M].北京:国防工业出版社,2005.1-5.
    [60]H. Amekura, A. Eckau, R. Carius, et al. Room-temperature photoluminesc-ence from Tb ions implanted in SiO2 on Si,J.Appl.Phys.84,1998:3867-38 71.
    [61]F. Liu, M. Zhua, L. Wang, Y. Houb, Photoluminescence from Eu ions i m-planted SiO thin films,J. Alloys and Compounds,311.2000:93-96.
    [62]A. Saitoh, S. Matsuishi, M. Oto, et al. Elucidation of coordination structu r-e around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance:Effect of phosphorus, boron, and phosphorus-boron codoping, J.Phys.Rev.B.72,2005:1-4.
    [63]张思远,稀土离子的光谱学—光谱性质和光谱理论,科学出版社,2008.
    [64]T. Roschuk, P. R. J. Wilson, J. Li, et al. Fabrication and Characterizatio-n of Rare-earth doped Silicon Nanostructures, CSTC/NGC 2009.
    [65]H.Ennen, J.Schneider, G.Pomerkne, A.Amxann,1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon, Appl.Phys.Lett.,43,19 83:943-946.
    [66]Ennen H,1.54μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy, Applied Physics Letters,46,1985:379-381.
    [67]Hattori K., Erbium-doped siliea-based waveguide amplifier integrated with a 980/1530mn WDM coupler, Eleetron.Lett.,30(11) 1994:856-857.
    [68]Huang M B, Ren X T, Phys.Rev.B.,68,2003:33203
    [69]Citrin P.H.,Hamann D.R.,Northrup P.A.,Phys.B.,308,2001:369.
    [70]F. Priolo, G. Franzo, S. Coffa, A. Polman, et al.. The erbium-impurity int-eraction and its effects on the 1.54 μm luminescence of Er3+ in crystallin-e silicon. J. Appl. Phys.78,1995:3874-3882.
    [71]1 N Yassievich and L C Kimerling, The mechanisms of electronic excitati-on of rare earth impurities in semiconductors, Semicond. Sci. Technol.8,1993:718.
    [72]Palm J., Gan F., Zheng B., Kimerling L.C., Electroluminescence of erbiu m-doped silicon, Phys.Rev.B..54,1996:17603-17615.
    [73]N. Hamelin, P.G. Kik, J.F. Suyver, et al,.Energy backtransfer and infrare dphotoresponse in erbium-doped silicon p-n diodes. J. Appl. Phys.88,2000: 5381-5387.
    [74]A.S. Moskalenko, I.N. Yassievich, M. Forcales, M.A.J. Klik, and T. Greg orkiewicz, "Terahertz-assisted excitation of the 1.5mm photoluminescence o f Er in crystalline Si", Phys. Rev. B 70,2004:155201:1-9.
    [75]S. Coffa, G. Franz o, F, Priolo, High efficiency and fast modulation of Er-doped light emitting Si diodes, Appl. Phys. Lett.69(14) 1996:2077-2079.
    [76]Wan J, Ye L, Sun Q,Wang X, Role of codopant oxygen in erbium-doped silicon, Phys.Rev.B.,58(16),1998:10415-10420.
    [77]万钧,叶令,王讯,Si中掺Er的原子构型与电子特性,物理学报,47(4).1998:652-657
    [78]D.J.Eagleshma, J.Miehel, E.A.Fitgzerald, et al, Microstructure of erbium-im planted Si, Appl.Phys.Lett..58.1991:2797-2799.
    [79]S. Lanzerstorfer, L. Palmetshofer, W. Jantsch, and J. Stimmer. On the en v-ironment of optically active Er in Si-electroluminescence devices, Appl.P hys.Lett.,72.1998:809-811.
    [80]A.H. Morshed, M.E. Moussa and S.M. Bedair, Violet/blue emission from epitaxial cerium oxide films on silicon substrates, Appl.Phsy,Lett.,70(13),1 997:1647-1649.
    [81]W.C. Choi, H.N. Lee, Kim, H.M. Park, et al. Luminescence from the ther-mally treated cerium oxide on silicon, J.J.Appl.Phys.38.1999:6392-6393.
    [82]J. Li, O.H.Y. Zalloum, T. Roschuk, C.L. Heng, J. Wojcik, and P. Mascher, Adv.Opt.Technol.2008:Article ID:295601,10 pages
    [83]J. Li, O.H.Y. Zalloum, T. Roschuk. C.L. Heng, J. Wojcik,, and P. Masch-er. The formation of light emitting cerium silicates in cerium-doped silico n oxides.Appl. Phys. Lett.94,2009:011112.
    [84]T. Roschuk, P. R. J. Wilson. J. Li, O. H. Y. Zalloum. et al. Structure an-d luminescence of rare earth-doped silicon oxides studied through their X-ray absorption near edge structure and X-ray excited optical luminescence, physica status solidi (b),247,2010:248-253.
    [85]徐光青,郑治祥,汤文明等,溶胶—凝胶法制备Ce3+掺杂纳米8iO2材料光致发光研究,光学学报,25(8),2005:1081-1086.
    [86]G.Q. Xu, Z.X. Zheng, W. M. Tang, Y.C. Wu, Luminescence property of Ce3+-doped silica decorated with S2- and Cl- anions,J. Lumin.126,2007:47 5-480.
    [87]周恒,郑治祥,徐光青,吕珺,Al3+—Ce3+共掺杂纳米SiO2的发光性能,硅酸盐学报,37(6),2009:970-974.
    [88]徐光青,汤文明,郑治祥,吴玉程,Ce3+及B3+共掺杂纳米SiO2的光致发光性能,硅酸盐学报,38(3),2010:440-445.
    [89]G..D. Qian, M.Q. Wang, M. Wang, et al. Structure evolution and fluoresc e-nce properties of Tb3+-doped silica xerogels in the gel to glass conversio-n, J. Lumin,75,1997:63-69.
    [90]S. Budhudu, M. Morita, S. Murakami, D. Rail. Temperature-dependent lu m-inescence and energy transfer in europium and rare earth codoped nano st-ructure xerogel and sol-gel silica glasses, J. Lumin,83-84,1999:199-20 3.
    [91]D. Breard, F. Gourbilleau, A, Belarpuci. et al, Nd3+ photoluminescence stu-dy of Nd-doped Si-rich silica films obtained by reactive magnetron sputte ring, J. Lumin,121,2006:209-212.
    [92]袁志钟,硅晶体缺陷发光及应用,材料导报,19(1),2005:82-85.
    [93]G..S. Mitchard, S.A. Lyon, K.R. Elliott, et al. Observation of long lifetim elines in photoluminescence from Si:In, Solid State Commun.,29,1979:42 5-429.
    [94]鲍希茂,硅基发光材料研究进展,材料研究学报,11(6).1997:601-611.
    [95]徐光青、郑治祥、汤文明等,氧化硅材料光活性缺陷中心研究进展,合肥 工业大学学报,29(6),2006:6,41-645.
    [96]S. Yuryo, Oxygen-related red photoluminescence bands in silica glasses, J. Non-crystalline Solids,316(3),2003:389-392.
    [97]O. Deparis, D.L. Griscom, P. Megret, et al., Influence of the cladding thi-ckness on the evolution of the NBOHC band in optical fibers exposed to gamma radiations, J. Non-crystalline Solids,216,1997:124-128.
    [98]L. Skuja. The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2, J. Non-crystalline Solids.179,1994:51-69.
    [99]H. Hosono, K. Kajihara, T. Suzuki, et al., Vaccum ultraviolet optical abs-orption band of non-bridging oxygen hole centers in SiO2 glass. Solid St-ate Communi.,122,2002:117-120.
    [100]L. Skuja, M. Mizuguchi, H. Hosono, et al., The nature of the 4.8 eV o-ptical absorption band induced by vaccum ultraviolet irradition of glass S iO2, Phys. Rev. B,166,2000; 711-715.
    [101]Y. Sakurai, K. Nagasawa, Excitation energy dependence of the photolumi-nescence band at 2.7 eV and 4.3 eV in silica glass at low temperature. J. Non-crystalline Solids,290,2001:189-193.
    [102]K. Arai, H. Namikawa, K. Kumata, T. Honda, et al. Aluminium or phos-phorus Co-doped effects on the fluorescence and structure properties of neodymium-doped silica glass, J.Appl.Phys.,59,1986:3430-3436.
    [103]F. Auzel, Radiationless processes, B. Dibartolo,Ed.Plenum Press,New Yor-k,1980.
    [104]W.J. Miniscalco, Erbium-doped galsses for fiber amplifiers at 1500 nm, J.Lightwave Technol.9.1991:234-250.
    [105]G.N. van den Hoven, E. Snoeke, A. Polman, et al, Upconversion in Er-i-mplanted A12O3 waveguides, J. Appl. Phys.,79.1996-1258-1266.
    [106]E. Snokes, G.N. van den Hoven, A. Polman, et al. Cooperative upconver-sion in erbium implanted sodalime silicate glass optical waveguides, J.Opt. Soc. Am. B, 23,1995:1468-1473.
    [107]S. Coffa. G. Franzo, F. Priolo. et al. Temperature dependence and quenc-hing processes of the intra-4f luminescence of Er in crystalline Si. Phys. Rev. B,49.1994:16313-16315.
    [108]Thomas D.Chen, Marlene Platero, M. Agarwal, Byberg JR. Tin-vacancy complexe in e-irradiated n-type silieon.Phys.B.322.1999:273-274.
    [1]M. Benatsou, B. Capoen, M. Bouazaoui, W. Tchana, and J. P. Vilcot, Prep-aration and characterization of sol-gel derived Er3+:Al2O3-SiO2 planar waveguides, A ppl.Phys.Lett.,71,1997:428-430.
    [2]北京辐射中心,北京师范大学低能核物理所,离子注入原理与技术,北京:北京出版社,1986:241-253.
    [3]张光华译,半导体中离子注入,北京:国防工业出版社,1982:125-171.
    [4]张通和,吴瑜光,离子注入表面和优化技术,冶金工业出版社,1993:4.
    [5]北京师范大学低能核物理所,离子注入原理和技术,北京:北京出版社,1986:112.
    [6]张建民,王立,梁昌慧,磁控溅射靶源设计及建设工艺研究,山西师范大学学报,27,1999:36-38.
    [7]叶志镇,吕建国吕斌,张银珠,半导体薄膜技术与物理,浙江大学出版社.2008.
    [8]郑长波,许惠敏,杨恒,齐曙光,离子束溅射沉积薄膜技术概况,实验室科学,4,2007:153-156.
    [9]方容川,固体光谱学[M],中国科学技术出版社,2001:146-155.
    [10]王力衡,薄膜技术[M],北京:清华大学出版社,1991:43-45.
    [11]沈学础,半导体光谱和光学性质[M],北京:科学出版社,2001:178-182.
    [12]周宇超,拉曼光谱仪,中国医学装备,1(4),2004:58-59.
    [13]伍林,拉曼光谱技术的应用及研究进展,光散射学报,17(2),2005:180-186.
    [1]A. Kozanecki, D. Kuritsyn, H. Przybylinska, et al.. Site-selective excitation of Er3+ ions in oxygen-rich silicon, Phys. B:308-310,2001:354-356.
    [2]M. Ferrari, C. Armellini, S. Ronchin, et al., Influence of the Er3+ Content on the Luminescence Properties and on the Structure of Er2O3-SiO2 Xerogels, J. Sol-Gel Sci.Tech.,19,2000:569-572.
    [3]J.W. Verweij, M.Th. Cohen-Adad, D. Bouttet, et al., Luminescence properties of GdAlO3:Ce powders, dependence on reduction, conditionsChem.Phys.Lett.239, 1995:51-55.
    [4]V.P Dotsenko, N.P Efryushina, I.V. Berezovskaya, et al. Luminescence properties of Ce3+ ions in magnesium fluoroborate Mg3BO3F3, Mater. Chemi. Physi.,77, 2002:141-146.
    [5]张思远,毕宪章,稀土光谱理论,吉林科学技术出版社,1991.
    [6]张思远,稀土离了的光谱学—光谱性质和光谱理论,科学出版社,2008.
    [7]雷红兵,杨沁清,王启明,掺饵硅发光的晶场分裂,物理学报,47,1998:1201-1206.
    [8]A. Polman, F. C. J. M. van Veggel, Broadband sensitizers for erbium-doped planar optical amplifiers:review, J. Opt. Soc. Am,21,2004:871-892.
    [9]Y. Lebour, P. Pellegrino, C. Garcia, J.A. Moreno, and B. Garrido, Efficient energy transfer from Siclusters to Er3+ in complex silicate glasses, J Appl Phys 100,2006: 1-5.
    [10]H. Mertens, A. Polman, I.M.P. Aarts, W.M.M. Kessels, Absence of the enhanced intra-4f transition cross section at 1.5μm of Er3+ in Si-rich SiO2, Appl.Phys.Lett 86,2005:1-3.
    [11]A. Kozanecki, R.J. Wilson, B.J.Sealy, et al.. Evidence of interstitial location of Er atoms implanted into silicon, Appl.Phys.Lett.67,1995:1847-1849.
    [12]张通和,吴瑜光,肖志松等,Er离子注入Si和SiO2/Si溅射和外扩散对浓度分布的影响,核技术,28,2005:205-208.
    [13]S.Scalesea,S.Mirabellab,A.Terrasib.XPS and RBS investigations of Si-Er-O interactions on a Si(10 O)surface, Appl. Surface Sci.220,2003:231-237.
    [14]于福熹,玻璃的光学与光谱性质,上海科学技术出版社,1991.
    [15]G.H. Dieke, Specture and energy levels of rare earth ions in crastals, Wilev-Interscience, New York,1968.
    [16]C.K. Jorgensen, Energy levels of complacean dgaseous ions, GjilleruPs Folag, Kobenhaven.1957.
    [17]万钧,盛篪,陆肪,等,掺铒SiOx的光致发光特性,物理学报,47,1998:1741-1746.
    [18]张昌盛,博士学位论文,中国科学院研究生院,2005.
    [19]刘英才,博士学位论文,山东大学,2003.
    [20]C.E. Chryssou, A.J. Kenyon, T.S. Iwayama, et al.. Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films, Appl.Phys.Lett.,75,1999:2011-2013.
    [21]G.Franzo, V. Vinciguerra, F. Priolo, The excitation mechanism of rare-earth ions in silicon nanocrystals, Appl.Phys.A,69,1999:3-12.
    [22]P.G. Kik, M.L. Brongersma, A. Polman, Size-dependent eleetron-hole exchange interaction in Si nanoerystals. Appl.Phys.Lett.,76,2000:351-353.
    [23]A. Podhorodecki, J. Misiewicz, J. Wojcik, et al.,1.54μm room temperature emission from Er-doped Si nanocrystals deposited by ECR-PECVD, J. Lumin, 121,2006:230-232.
    [24]Th. Forster, In Comparative Effects of Radiation, edited by M. Burton, J.S. Kirby-Smith and J.L Magee,Wiley, NewYork,1960:300-315.
    [25]D.L. Dexter, Atheory of sensitized luminescence in solids, J. Chem.Phys.,21, 1953:836-850.
    [26]G.Ledoux. O.Guillois. D.Porterat, et al., Photoluminescence properties of s ilicon nanocrystals as a function of their size, Phys.Rev.B.62,2000:15942-15951.
    [27]G. Ledoux, J. Gong, F. Huisken, et al., Photoluminescence of size-separated silicon nanocrystals Confirmation of quantum confinement, Appl.Phys.Lett.,80, 2002:4834-4836.
    [28]F. Iacona, G. Franzo, C.Spinella, Correlation between luminescence and structural properties of Si nanocrystals, J Appl Phys,87,2000:1295-1303.
    [29]K. Leonid, R. Markku, N. Sergei, et al.. Systematic correlation between raman spectra, photoluminescence intensity, and absorption coefficient of silicoa layers containing Si nanocrystals, Appl.Phys.Lett.,85,2004:1511-48361513.
    [30]G. Viera, S. Huet, L. Boufendi, Crustal size and temperature measurement s in nanostructured silicon using Raman spectroscopy, J Appl Phys,90,2 001:4176-4183.
    [31]C. Ossadnik, S. Veprlek, I. Gregora, Applicability of Raman scattering for the characterization of nanocrystalline silicon. Thin Solid Films 337 (1999) 148-151.
    [32]刘世祥,刘渝珍,伍勇等,si+注入SiO2薄膜的三个PL峰及基受RTA的影响,半导体学报,20,1999:242-245.
    [33]陈长勇、陈维德、王永谦、宋淑芳、许振嘉2003物理学报52(2)736
    [34]秦国刚,李宇杰,氧化硅和多孔硅粒镶嵌氧化硅光致发光机制模型,南京大学学报,41,2005:14-22.
    [35]郝军华,吴志强,王铮,等,高压下的第一性原理计算,高压物理学报,24,2010:260-266.
    [36]蔡树芝,张立德,牟季美,纳米非晶氮化硅键态结构的X射线径向分布函数研究物理学报,41,1992:1620-1626.
    [1]J. Sokolnicki.M. Guzik, Synthesis and photoluminescence of nanocrystallinel utetium pyrosilicate doped with.Optic. Mater.,31,2009:826-830.
    [2]Pidol L, Kahn-Harari A, Viana B, et al. Scintillation properties of Lu2Si2O 7:Ce3+ a fast and efficient scintillator crystal, J. Phys.:Condens. Matter,15 (12),2003:2091-2102.
    [3]Won Chel Choi, Lee Ho Nyung, Kim Eun Kyu, et al., Violet/blue lightemi-tting cerium siilicates, J. Appl. Phys. Lett.,75,1999:2389-2391.
    [4]涂郑禹,李文彬,非化学计量掺杂Ce硅质纳米复合物的制备与表征,南开大学学报(自然科学版),42,2009:5-10.
    [5]A.H. Morshed, M.E. Moussa and S.M. Bedair, Violet/blue emission from epitaxial cerium oxide films on silicon substrates, Appl.Phsy,Lett.,70(13).19 97:1647-1649.
    [6]张希艳,卢利平等.《稀土发光材料》,国防工业出版社,(2005),4.
    [7]G.Q. Xu, Z.X. Zheng, W.M. Tang, Y.C. Wu, Luminescence property of Ce3+-doped silica decorated with S2- and CI- anions, J. Lumin.126,2007:47 5-480.
    [8]R.Reisefeld, H.Minti, A.Patra, et al., Spectroscopic properties of cerium in glasses and their comparison with crystals, Spectroehimiea Acta Part A, 54,1998:2143-2150.
    [9]张希艳,卢利平等.《稀土发光材料》,国防工业出版社,(2005),6.
    [10]R.Reisefeld, A.Patra, G.Panczer, et al., Spectroscopic properties of cerium in sol-gel glasses, Optical Materials,13,1999:81-88.
    [11]H.J. Bi, W. P. Cai, L.D. Zhang, Reversible emission enhancement for Ce3+-doped silica nanoparticles dispersed within pores of mesoporous silic a, Materials Researeh Bulletin,35(2000),1495-1501.
    [12]J. Li, O.H.Y. Zalloum, T. Roschuk, C.L. Heng, J. Wojcik, and P. Mascher, Theformation of light emitting cerium silicates in cerium-doped silicon oxi-des, Appl. Phys. Lett.94,011112 (2009).
    [13]L.F. Koao, H.C. Swart. R.I. Obed, F.B. Dejene, Synthesis and characteriza tion of Ce3+ doped silica (SiO2) nanoparticles J. Lumin..131.2011:1249-1254.
    [14]G.E. Malashkevich. E.N. Poddenezhny. I.M. Melnichenko. A.A. Boiko. Op tical centers of cerium in silica glasses obtained by the sol-gel process. J. Non-Crysta.Solids,188,1995:107-117.
    [15]Ch.L. Chai. Sh.Y. Yang, Zh.K. Liu, M.Y. Liao, N.F. Chen, Zh.G. Wang, The PL "violet shift" of cerium dioxide on silicon, Chin. Sci. Bull.46.2 001:2046-2052.
    [16]W.C. Choi. H.N. Lee. Y. kim, H.M. Park, and E.K. Kim. Luminescence f-rom the Thermally Treated Cerium Oxide on Silicon J.Japan. Appl. Phys. 38(1999)6392-6393.
    [17]G.Q. Xu, Z.X. Zheng, W.M. Tang, Y.C. Wu, Spectroscopic properties of Ce3+ doped silica annealed at different temperatures,J. Lumin,124,2007: 151-156.
    [18]徐光青,汤文明,郑治祥,吴玉程,Ce3+及B3+共掺杂纳米SiO2的光致发光性能硅酸盐学报,38,2010:440-445.
    [19]J. W. M. Verweij, M Th. Cohen-Adad, D. Bouttet. H. Lautesse, B. Moin e and C. Pedrini, Luminescence properties of GdAlO3:Ce powders. Depend ence on reduction conditions, Chem.Phy.Lett.239,1995:51-55.
    [20]徐光青,郑治祥,汤文明,吴玉程,热处理气氛对铈离子掺杂SiO2发光性能的影响,材料热处理学报,28,2007:35-38.
    [21]J. Li. O.H.Y. Zalloum, T. Roschuk. C.L. Heng, J. Wojcik. and P. Mascher, Light Emission from Rare-Earth Doped Silicon Nanostructures, Adv.Opt.Te chnol. Article ID:295601.10 pages (2008).
    [22]Zhenglong Wu, A study of the interface of CeO2/Si heterostructure grown by ion beam deposition. Vacuum.1998,51(3),397-401
    [23]Huijuan Bi, Effects of annealing and Al co-doping on the photoluminesce nee of Ce3+-doped silica prepared by a sol-gel process, J. Phys. D:Appl. Phys.,2000,33:2369-2372.
    [24]Heitnann J, Excitions in Si nanocrystals Confinement and migration effect-s, Phys. Rev. B,2004,69 (19):1950309
    [25]G.Q. Xu, Z.X. Zheng, W.M. Tang, Y.C. Wu, Trans.Mater.Heat,28(2007)35-38.
    [26]杜玛璠,Ce3+注入对超晶格中硅纳米晶光致发光强度的影响,光谱学与光谱分析,29;2009:1486-1488.
    [27]元美玲,稀土Nd, Ce掺杂硅基薄膜光致发光特性,发光学报,23(3):291-294.
    [1]R.G. Parr and W. Yang. Density Functional Theory of atoms and molecules [J]. New York:Oxford,1989.
    [2]D.P. Norton, Y.W. Heo, et al. ZnO:growth, doping & processing, [J].Mate Today, 34(7),2004:34-40.
    [3]吴兴惠,项金钟,现代材料计算与设计教程[M].北京:电子工业出版社,2002.[4]
    [4]G.R., Hutehison, M.A. Ranter, T.J. Marks, J.Am.Chem.Soc.127.16866,2005.
    [5]C.W. Tang. S.A. Vanslyke, APPL. Phys. Lett.51.913,1987.
    [6]Thomas L.H., The calculation of atomic fields. [J].Proc. Cambridge Phil Roy.Soc. 23,1927:542-548.
    [7]E.Fermi. Statistical methods of investigating electrons in atoms, Z.Phys.. 48,1928:73-79.
    [8]P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys.Rev.B.,136,1964 :864-871.
    [9]W. Kohn, L.J.Sham, Self--consistent equations including exehange and Correlation effects, Phys.Rev.140, A1133(1965).
    [10]陆佩文,无机材料科学基础,武汉:武汉工业大学出版社,1996:55.
    [11]R.D.Vispute, V.Talyansky, S.Choopun et al, Heteroepitaxy of ZnO on GaN and it simplications for fabrication of hybrid optoelectronic devices, Appl.Phys. Lett.,73,1998:348-350
    [12]R.B. Laughlin, J.D. Joannopoulas, D.J. Chali, Effect of second-nearst-neighbor forces on the vibrations of amorphous SiO2. Phys.Rev.B.,17,1978:2790-2792.
    [13]N. Daldosso, M. Luppi, Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded in SiO2, Phys.Rev.B.,68. 2003:085327-1-085327-8.
    [14]柴跃生,罗春云,张敏刚,SiO2基质中包理纳米晶Si光电性质的模拟计算,电子元件与材料,27,2008:67-69.
    [15]柴跃生,罗春云,张敏刚,伍静,SiO2中包埋纳米晶Si光电性质的计算,人工晶体学报,38,2009:1216-1220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700