离子注入SOI及SOI基准三维光子晶体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SOI (silicon-on-insulator)是在体硅材料与硅集成电路巨大成功的基础上出现的一种新型材料,是一种具有独特优势、能突破体硅材料与硅集成电路限制的新技术。SOI材料具有高速、低压、低功耗、耐高温等优点,是解决超大规模集成电路功耗危机的关键技术。集SOI技术、微电子技术和功率电子技术于一体的SOI功率集成电路,在显示驱动、电源管理、汽车电子、武器装备和航空航天等领域有着极为广泛的应用前景。SOI技术被称为“二十一世纪的硅集成电路技术”。
     光子晶体是近二十年来发展起来的一个新兴领域,它为有效的控制光的传播以及光通信展示了广阔的应用前景。利用光子晶体可以实现新型的集成光学系统,它具有超小型化、高集成度等优点,为集成光学的未来发展和应用带来了新的希望。准三维平板光子晶体是未来实现超小型化平面光子回路的平台。对近红外和可见光波段的准三维平板光子晶体的研究,已越来越受到人们的重视。随着现代微加工技术的发展和提高,人们对准三维平板光子晶体的研究已经从最初的注重理论研究转移到光子晶体器件的设计和制备上来。
     离子注入是制作半导体器件和集成电路的重要工艺之一。离子注入技术作为一种重要的材料改性手段,由于具有可控性好、对材料的选择性好及注入温度可调等优点,在掺杂、绝缘隔离层的形成、超晶格界面等方面的特殊用途,已经被广泛应用于半导体、绝缘体和金属等各个领域以及许多器件制造工艺中。尤其是在半导体工艺中的应用,使集成电路的生产进入了超大规模集成电路的新时代。
     本论文的主要工作是利用卢瑟福背散射/沟道(RBS/C)技术研究稀土族元素Er、Nd和Yb等稀土离子注入SOl的射程分布和离子注入引起的晶体损伤及其退火行为以及Er离子注入SOl的光致发光特性,还对SOl基准三维平板光子晶体的带隙和波导传输特性进行了研究。
     我们利用卢瑟福背散射(RBS)技术研究了不同能量、不同剂量的Er、Nd和Yb等稀土离子注入SOl的射程分布。用表面能量近似法计算出平均投影射程RP和射程离散ΔRp的实验值和基于Monte-Karlo的SRIM (the Stopping and Range of Ions in Matter)2010软件得到的理论值进行了比较,结果表明实验得到的平均投影射程与SRIM2010计算的理论值较好的符合,但平均投影射程离散的实验测量结果和SRIM2010计算的理论值相差较大。我们分析认为,SRIM计算程序能较好地模拟稀土离子注入SOI晶体的投影射程分布,但模拟射程离散时偏差大一些。由于离子注入过程中的辐射增强扩散以及离子在贯穿靶材料时的电荷态起伏可能增大射程分布的宽度,而SRIM程序没有考虑这两种效应,这一偏差可能是由离子注入过程中辐射增强扩散和电荷态起伏造成的。
     根据Seijiro Furukawa等人提出的实验原理,我们利用RBS技术研究了Er、Nd等稀土离子以不同倾角注入SOI的投影射程离散,由此计算出了Er、Nd等稀土离子注入SOI的横向离散。计算出的实验值和SRIM2010得到的理论值进行了比较,实验测出的横向射程离散值与SRIM2010模拟计算的理论值符合较好。
     我们利用卢瑟福背散射/沟道(RBS/C)技术,研究了不同能量、不同剂量的Er离子注入SOI在表面Si晶体中产生的损伤分布情况。研究发现,离子注入剂量的不同主要影响晶格损伤的程度,注入剂量越大,晶格损伤越严重,而对晶格损伤的范围影响较小;而离子注入能量的不同对晶格损伤的程度和晶格损伤的范围都产生直接影响。
     我们利用RBS/C技术研究了Er离子注入SOI的退火行为。研究发现,经过900℃的N2气氛中退火后,Er离子注入的SOI样品中的晶格损伤都得到了较好的恢复,同时产生了大量Er原子向SOI表面的偏析。还发现由于Er的高化学、物理活性和Er对O的亲和性,造成了SOI中SiO2层的O元素向Er所处位置迁移,而迁移的O原子又阻止了部分Er原子向SOI表面的偏析。根据这一现象,我们把Er和O离子共注入到SOI中,利用RBS/C技术研究其退火行为,实验结果表明,高温退火产生的大量Er原子向SOI表面外溢出的现象得到了抑制。我们还把Er离子注入SOI的样品先后在O2和N2气氛中进行了退火,同样抑制了高温退火产生的大量Er原子向SOI表面外溢出的现象。
     我们对高温退火后的Er和O离子共注入的SOI样品进行了光致发光测量,测到了低温下的三价Er离子在波长为1.54gm的4f-4f特征发光,但温度淬灭效应明显,温度为100K时,光致发光已经非常微弱,室温下已经测不到发光了。对先后在O2和N2气氛中高温退火的SOI样品的光致发光测量发现,在近红外波段(810nm-925nm)出现了高光强的连续发光谱,且温度淬灭效应减弱,室温下仍然有较强的发光。
     我们利用光学曝光和电子束曝光光刻技术结合高密度等离子体(ICP)刻蚀技术制备了SOI基准三维平板光子晶体和W1、W3波导,搭建了光子晶体透射谱测量系统,并对SOI基准三维平板光子晶体和W1、W3波导的透射谱进行了实验测量,测量结果和3D-FDTD理论计算模拟的结果进行了比较。为将来制作实用性光子晶体器件提供了实验基础。
SOI (silicon-on-insulator) is one kind of new material which appeared following the great success of bulk Si and Si integrated circuits. Its unique advantages enable SOI to break the confinement of bulk Si and Si integrated circuits. SOI material is characterized by high velocity, low voltage, low power consumption and resistance to high temperatures. It is the key technique adopted in resolving the crisis posed by very large-scale integrated circuits power dissipation. Together with SOI technique, microelectronic technology and power electronic technology, the SOI power integrated circuits can be widely applied in the fields of display driver, power management, automotive electronics, military hardware and aerospace. Therefore, SOI technology is praised as a Si integrated circuits technique in the21st century.
     Photonic crystal is a new field developed in the last twenty years, which shows intriguing application prospect in the confining of light propagation and the optical communication. A new integrated optical system with the merits of sub miniaturization and high integration can be realized by using photonic crystal, which will bring a new hope in the future development and application of the integrated optics. The quasi3D (three-dimensional) photonic crystal slab is a platform of the future optical integrated circuits. Researches on the quasi3D photonic crystal slabs have been transferred from pure theory to design, fabrication and measurement of photonic crystal devices in the near-infrared region.
     As one of the important technologies of making semiconductor devices and integrated circuits, ion-implantation has been widely used in such materials as metals, semiconductors and dielectrics, as well as in manufacturing many other devices due to its special use in doping, formation of dielectric isolation layer and interface of super crystal lattice. It is one of the most important methods for material modification which offers accurate control of both penetration depth and doping element by means of a particular species, as well as the energy of the ions, without being limited by the fixed temperature of substrate materials. Its application in semiconductor technology has brought a new era to the production of very large-scale integrated circuits.
     In this paper, Rutherford backscattering/channeling (RBS/C) technique is used to study the depth distributions of impurities and the crystal damage and the annealing behavior of SOI in the presence of rare earth (RE) ions, erbium (Er), neodymium (Nd) and ytterbium (Yb). And the photoluminescence (PL) of Er implanted in SOI samples is measured. The energy band gap and the transmission of light waveguide of SOI based quasi3D photonic crystal slabs are investigated.
     The range distributions for Er, Nd and Yb ions implanted in SOI with different energies and doses are obtained by using2.1MeV H2+Rutherford backscattering spectrometry (RBS). The mean projected range Rp and the range straggling⊿Rp, performed by the surface energy approximation, are compared with that calculated from SRIM (The Stopping and Range of Ions in Matter)2010software which is based on a Monte-Karlo method. A good agreement of the Rp data is observed, and there is a striking difference between the experimental results of⊿Rp and that of SRIM2010. It is supposed that the mean projected range Rp of RE ions implanted in SOI can be simulated well by the SRIM software, and it is too large for the data of the range straggling AR simulated by SRIM. It is concluded that there is no necessity to modify the universal inter-atomic potential that is used to describe the nuclear stopping for rare earth ions interacting with Si. Other factors need to be considered, such as the radiation enhanced diffusion in implantation process and the gurgitation of state density of charge as ions impenetrate target, because the width of range distribution can be increased by the radiation enhanced diffusion and the gurgitation of state density of charge, which are not taken into account in SRIM program.
     According to the experimental principle presented by Seijiro Furukawa et al, the lateral deviations⊿Xf for Er and Nd ions implanted in SOI are calculated with the data of⊿Rp of Er and Nd ions implanted in SOI with different tilted angles obtained by using RBS technique. The results show that the⊿XL values measured by experiment conform with those from SRIM2010.
     The distributions of crystal damage induced by implantations of Er ions with different energies and doses in SOI are studied by using RBS/C with multiple scattering models. The results show that the degree of crystal damage is mainly impacted by the implanting doses. The higher the implant dose, the heavier the crystal damage. Both the ranges of damaged layers and the degree of crystal damage are impacted by the implanting energies. The higher the energy, the heavier the crystal damage, and the wider the ranges of damaged layer.
     The annealing behavior of the SOI samples implanted with Er ions is investigated by RBS/C technology. It is found that the crystal damage induced by implantations of Er ions in SOI samples is almost removed after annealed at900℃in N2atmosphere, accompanied by segregation of a mass of Er atoms to the surface. It is observed that the segregation of a part of Er atoms to the surface is prevented by the O atoms transmitted to the place where Er is located from SiO2layer in SOI because of the active property of physics and chemistry of Er, as well as the erbium's affinity for oxygen. The annealing behavior of the SOI samples co-implanted with Er and O ions is investigated by RBS/C technology. The experimental result shows that the out-diffusion of Er atoms to the surface of SOI after annealed in high temperature is inhibited in that case. And it is also found that the segregation of a mass of Er atoms to the surface is prevented by means of annealed in O and N gas atmospheres successively in high temperature.
     The PL of Er and O co-implanted in SOI samples is measured after annealing in high temperature. The characteristic PL spectra of Er3+at1.54μm wavelength by its antra-4f transition in low temperature. But temperature-quenching effect is evident, the PL is very low at100K and can't be observed at room temperature. The PL spectra of the SOI sample implanted with Er ions after annealing in O and N gas atmospheres successively in high temperature is obtained. It is discovered that there is a high efficiency PL emission at near infrared wavelength (810nm-925nm), and the temperature-quenching effect is not strong, there is still an intense emission at room temperature.
     The SOI based quasi3D photonic crystal slabs and Wl, W3waveguides are fabricated by optical lithography and electron beam lithography with ICP (Inductively Coupled Plasma) etching technique. A system measuring the light transmission spectrum of photonic crystal is built to measure the light transmission spectra of the SOI based quasi3D photonic crystal slabs and W1, W3waveguides. The experimental results are compared with the data calculated by3D-FDTD simulation software. It will lay an experimental foundation for the fabrication of applied photonic crystal devices in the future.
引文
1.唐天同,王兆宏,陈时:集成光电子学,西安交通大学出版社,2005
    2.西原浩等著,梁瑞林译: 集成光路,科学出版社,2004
    3. J. ECollinge:SOI Technology:Materials to VLSI, Kluwer Academic Pub,1991
    4.赵策州,高勇:半导体硅基材料及其光波导,电子工程出版社,1998
    5. E. Yabonovitch, Phys. Rev. Lett,58 (1987) 2059
    6. S. John, Phys. Rev. Lett.,58 (1987) 2486
    7.温熙森:光子/声子晶体理论与技术,科学出版社,2006
    8.马锡英:光子晶体原理及应用,科学出版社,2010
    9. R.A. Soref, et al, Solid State Technology,31(11) (1988) 95
    10. S.Valette, et al, Solid State Technology,32(2) (1989) 69
    11.K. Shimomura, et al, IEEE Journal ofSolid State Circuit,32(11) (1997) 1712
    12.陈猛,王一波,中国集成电路,98(7)(2007)76
    13. L.Peters, Semicondulct. Int.,16(1993)16
    14. R. A. Soref, Proc. IEEE,81(12) (1993) 1687
    15. R. A. Soref, J. P. Lorenzo, IEEE J. Quant. Electr.,22(6) (1956) 873
    16. B. Jalali, P. D. Trinh, S. Yegnanarayanan, and F. CoPPinger, IEEE Proc. OPtoeleetron,143(5) (1996) 307
    17. B. Jalali, S. Yegnanarayanan, T.Yoon, and et al, J. Sel. Topic. QUan.,4(6) (1998) 938
    18. COLINGE J P. Silicon-on-insulator technology:materials to VLSI[M].3rd Ed. Bostion,MA,USA:Kluwet Academic Pub.2004
    19. CELLER G K, CRISTOLOVEANU S, Frontiers of Appl. Phys. lett.93 (9) (2003) 4955
    20. JOSHI R V, Niagara Falls, New York. USA 2006,3
    21. FLANDRE Denis, Materials Science and Eegineering. B29 (1995) 7
    22. DU Jian-gang, WEN H Ko, DARRIN J Young, Sensors and Actrators, A 112 (2004)116
    23. E. M.Purcell, Phys. Rev.69,681 (1946)
    24. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett.67,3380 (1991)
    25.温熙森,温激鸿,郁殿龙,王刚,刘耀宗,韩小云:声子晶体,国防工业出版社,2009
    26. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett.71,2022(1993)
    27. K. S. Yee, IEEE Transactions on Antennas and Propagation 14,302 (1966)
    28. A. Mekis, J. C.Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett.77,3787 (1996)
    29. S.Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, Science,282, 274(1998)
    30. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett.21,1547 (1996)
    31. Y. Kalra, and R. K. Sinha, Opt. Quant. Eletron.37,889 (2005)
    32. X. Meng, G. Gomard, O. E. Daif, E. Druard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. R. Cabarrocas, and C. Seassal, Sol. Energy Mat. Sol. C. 95, S32 (2011)
    33. K. M. Leung, Phys. Rev. Lett.65,2446 (1990)
    34. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett.65,3152 (1990)
    35. E. Yablonovitch, Phys. Rev. Lett.67,2295 (1991)
    36. P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammous, Appl. Phys. Lett.64,687 (1994)
    37. U. Griming, V. Lehmann, S. Ottow, and K. Busch, Appl. Phys. Lett.68,747 (1996)
    38. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394,251 (1998)
    39. Judith. E. G. J. Wijinhoven, and W. L. Vos, Science 281,802 (1998)
    40. S. Noda, K. Tomoda, N. Yamanoto, A. Chutinan, Science 289,604 (2000)
    41. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, Nature 404,53 (2000)
    42. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopous, E. P. Ippen and H. I. Smith, Nature 429,538 (2004)
    43. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, Nat. Mater.8,721 (2009)
    44. T. F. Krauss, R. M. De La Rue, and S. Brand, Naure 383,699 (1996)
    45. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58,10096 (1998)
    46. T. Matsumoto, K. S. Eom, and T. Baba, Opt. Lett.31,2786 (2006)
    47. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, and I. Kim, Science 284,1819(1999)
    48. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki, Science 293,1123 (2001)
    49. K. L. Jim, C. W. Leung, H. L. W. Chan, Thin Solid Films 518,101 (2010)
    50. M. Bruel, Electronics Lett.31,1201 (1995)
    51. S. R. Sakamoto, A. Jackson, and N. Dagli, IEEE Photonic Technology Letters 11, 1244(1999)
    52. G. W. Burr, S. Diziain, and M. P. Bernal, Opt. Express 16,6302 (2008)
    53. P. Rabiei, and P. Gunter, Appl. Phys. Lett.85,4603 (2004)
    54. F. Sulser, G. Poberaj, M. Koechlin, and P. Gunter, Opt. Express 17,20291 (2009)
    55. G. Si, E. J. Teo, A. A. Bettiol, J. Teng, A. J. Danner, J. Vac. Sci. Technol. B 28,316 (2010)
    56. H. Hartung, E. B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tunnermaann, Opt. Mater.33,19 (2010)
    57. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawte, W. Zubrzycki, H. Hou, and A. Allman, Nature 407,98 3(2000)
    58. N. Kawai, K. Ionoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, Phys. Rev. Lett.86,2289(2001)
    59.马锡英:光子晶体原理及应用,科学出版社,2010
    60.叶卫民:光子晶体导论,科学出版社,2010
    61. Z. Zhang, and S. Satpathy, Phys. Rev. Lett.65,2650 (1990)
    62. K. S. Yee, IEEE Transactions on Antennas and Propagation 14,302 (1966)
    63. K. M. Leung, J. Opt. Soc. Am. B.10,303 (1993)
    64. J. B. Pendry, and A. MacKinnon, Phys. Rev. Lett.69,2772 (1992)
    65. M. Sigalas, C. M. Soukoulis, E. N. Econonous, C. T. Chan, and K. M. Ho, Phys. Rev. B 48,14121 (1993)
    66.戴达煌,周克菘,袁振海:现代材料表面技术科学,冶金技术出版社,2004
    67.罗普生:离子注入物理,上海科学技术出版社,1984
    68.张光华:离子注入技术,北京-机械工业出版社,1982
    69.刘金声:离子束技术及应用,国防工业出版社,1995
    70.北京市辐射中心,北京师范大学低能物理研究所离子注入研究室:离子注入原理与技术,北京出版社,1982
    71.王贻华,胡正琼:离子注入与分析基础,航空工业出版社,1992
    72.王广厚:离子同固体相互作用物理学,科学出版社,1991
    73.朱唯干:背散射分析技术,原子能出版社,1986
    74.杨福家,赵国庆:离子束分析,上海-复旦大学出版社,1985
    75. C. Feldman, J. M. Mayer, S. T. Picraux:Materials Analysis by Ion Channeling, Academic Press,1982
    76.刘乃泉:加速器理论,清华大学出版社,2004
    77. J. B. Pendry. A. Mackinnon, Phys. Rev. Lett.69,2772 (1992)
    78. A. Taflove:Computaional Electrodynamics:The Finite-Difference Time-Domain Method, Artech House, Boston/London,1995
    79.葛德彪:电磁波时域有限差分方法,西安:西安电子科技大学出版社,2002
    80. J. P. Berenger, IEEE Trans. Antennas Propagat. AP-44(1),110 (1996)
    81. J. P. Berenger, Comput.Phys.114(2),185 (1994)
    82. J. P. Berenger, Comput. Phys.127(21),363 (1996)
    83.[日]西原浩:集成光路,科学出版社,2004
    84.崔铮:微纳米加工技术及其应用,高等教育出版社,2005
    85.[美]K.A.杰克逊:半导体工艺,科学出版社,1999
    86.刘明,谢常青,王丛舜等:微细加工技术,化学工业出版社,2004
    87.顾文琪:电子束曝光微纳加工技术,北京工业大学出版社,2004
    88.唐天同,王兆宏:微纳加工科学原理,电子工业出版社,2010
    89.赵玉清:电子束离子束技术,西安交通大学出版社,2002
    90.[美]S.弗兰西拉:微加工导论,科学出版社,2006
    91. M. Roussey, M.-P. Bernal, N. Courjal and F. I. Baida, Appl. Phys. Lett.,87 (2005) 241101
    92. F. Sulser, G. Poberaj, M. Koechlin and P. Giinter, Opt. Express,17 (2009) 20291
    93. J. Melngailis, J. Vac. Sci. Technol. B,5 (1987) 469
    94.张少梅:山东大学博士学位论文,LiNbO3的光波导特性研究和平板光子晶体结构的制备,2007
    95. H.Ennen, J.Schneider, G.Pomrenke, et al. Appl. Phys. Lett.43 (10) (1983) 943
    96. H. Ennen, G. Pomrenke, A. Axmann, et al. Appl. Phys. Lett.46 (4) (1985) 381
    97. H. Przybylinska, W. Jantsch, Yu. Suprun-Belevitch, et al., Phys. Rev. B 54 (1996) 2532
    98 Hongbing Lei, Qinqing Yang, Jialian Zhu, Junhua Gao, Hongjie Wang and Qiming Wang, Chinese Phys. Lett.15 (1998) 72
    99. D.T.X. Thao, C.A.J. Ammerlaan, T. Gregorkiewicz, J. Appl. Phys.88 (2000) 1443
    100. A. Cavallini, B. Fraboni, S. Pizzini, S. Binetti, S. Sanguinetti, L. Lazzarini, G. Salviati, J. Appl. Phys.85 (1999) 1582
    101. G. Franzo, S. Coffa, A. Polman, A. Camera, Appl. Phys. Lett.64 (1994) 2235
    102. M. Markmann, E. Neufeld, A. Sticht, K. Brunner, G. Abstreiter, Appl. Phys. Lett. 78(2001)210.
    103. G.V. Hansson, W.X. Du, A. Elfving, F. Duteil, Appl. Phys. Lett.78 (2001) 2104.
    104. Changsheng Zhang, Haibo Xiao, Zijun Chen, Xinli Chen, Feng Zhang, Chinese Phys. Lett.21 (7) (2004) 1333
    105 B. Zheng, J. Michel, F.Y. Ren et al., Appl. Phys. Lett.64 (1994) 2842
    106. M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini and L.C. Andreani:Appl. Phys. Lett.81(2006) 251114
    107. A. Barrios and M. Lipson, Opt. Express,13 (2005) 10092
    108. M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann et al., Appl. Phys. Lett.,83 (2003) 2542
    109. A. Salomon, V. Calvo, M. Zelsmann et al., IEEE Journal of Seleced Topics in Quantum Electronics,12(6) (2006) 1592
    110. W. K. Chu, J. W. Mayer, M. A. Nicolet, Backscattering Spectrometry, Academic Press, New York,1978
    111. Information on http://www.srim.org
    112.刘向东:山东大学博士学位论文,济南:山东大学,2003
    113. Seijiro Furukawa and Hideki Matsumura, Appl. Phys. Lett.,22 (3) (1973) 97
    114. Wang K M, Shi B R, Wang Z L, Zhao Q T, Liu X D, Liu J T, Chinese Phys. Lett. 8(1991)244
    115. Morvan E, Mestres, Pascual J, Flores D, Vellvehi M, Rebollo J, Mat. Sci. Eng. B 61-62 (1999)373
    116. Qin Xi-Feng(秦希峰),Chen Ming(陈明),Wang Xue-Lin(王雪林),Liang Yi(梁毅)and Zhang Shao-Mei(张少梅),Chinese physics B,19(11) (2010) 113403
    117.秦希峰,王凤翔,梁毅,付刚,赵优美,物理学报,59(9)(2010)6390
    118. Xifeng Qin, Ming Chen, Xuelin Wang, Gang Fu, Yi Liang, Shaomei Zhang, Nucl. Instrum. Meth B,268(10) (2010) 1585
    119. Ennen H, Schneider J, Pomrenke G and Axmann A, Appl. Phys. Lett.43(10) (1983) 943
    120. Ding W C, Liu Y, Zhang Y, Guo J C, Zuo Y H, Cheng B W, Yu J Z and Wang Q M, Chinese Phys. B 18 (2009)3044
    121.王军转、石卓琼、娄昊楠、章新栾、左则文、濮林、马恩、张荣、郑有炓、陆昉、施毅,物理学报58(2009)4243]
    122. Przybylinska H, Jantsch W, Suprun-Belevitch, Stepikhova M, Palmetshofer L, Hendorfer G, Kozanecki A, Wilson R J and Sealy B J,Phys. Rev. B 54 (1996)2532
    123.雷红兵、杨沁清、王启明,物理学报47(1998)1201
    124. Liang J J, Chen W D, Wang Y Q, Chang Y and Wang Z G, Chinese Phys. 9(2000)783
    125. Hansson G V, Du W X, ElfVing A and Duteil F, Appl. Phys. Lett.78(2001)2104
    126.陈长勇、陈维德、王永谦、宋淑芳、许振嘉,物理学报,52(2003)736
    127.YoshihikoKanemitsu, Shinji Okamoto, Physical Review B,56 (24) (1997) 15561
    128.张少梅:山东大学博士学位论文,LiNbO3的光波导特性研究和平板光子晶体结构的制备,2011
    129. S. G. Johnson et al., Phys. Rev. B,60 (1999) 5751
    130. WTLauand SFan, Appl. Phys. Lett.,81(2004):3915
    131. M Qiu and B Jaskorzynska, Appl. Phys. Lett.,83(2003):1074
    132.1 Ntakis, P Pottier and M De La Rue, J. A ppl. Phys.,96(2004):12
    133. M Mulot, M Qiu,M Swillo, B Jaskorzynska and S Anand, Appl. Phys. Let.t,83 (2003):1095

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700