光束近场振幅畸变和相位畸变全场补偿的自适应光学控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学是一种实时测量与像差校正的技术,它适用于大气补偿即校正光在通过大气传输时产生的像差。传统的自适应光学是应用单变形镜补偿光束的相位畸变为主,而最有效的补偿为对相位畸变和振幅畸变的全场补偿,双变形镜自适应光学系统是实现全场补偿的技术之一。本文以自适应光学理论为基础,利用现有变形镜器件,提出利用双变形镜系统同时对光束的振幅畸变和相位畸变进行补偿,在实验上验证了基于双变形镜的全场补偿自适应光学技术的可行性。论文对双变形镜全场补偿的自适应光学技术原理、技术特点和应用前景进行了理论和实验研究。
     本文围绕双变形镜全场补偿自适应光学理论,利用相位型液晶空间光调制器(LC-SLM)作为变形镜,按照对光束近场场强控制方法的研究、双变形镜自适应光学系统验证性实验、双变形镜闭环自适应光学系统的实现这样一条主线展开研究,目的在于验证双变形镜自适应光学技术在全场补偿中的可行性。
     本文首先介绍了自适应光学系统在激光发射系统中的补偿应用,通过仿真模拟了传统单变形镜自适应系统补偿光束相位畸变的校正效果,结果表明单纯的相位补偿并不能使光束畸变得到完全校正,尤其当光束传输距离较远、出射孔径较小、大气扰动强的情况下校正效果并不理想。根据双变形镜自适应光学理论,对光束的振幅和相位畸变同时进行校正,仿真结果证明,畸变光束经过全场补偿后,近场场强得到更好改善,远场焦斑分布更接近衍射极限。
     其次,在双变形镜自适应光学系统中要求利用探测到的波前畸变信息对变形镜进行控制,其中如何利用探测到的场强信息获得变形镜所需位相是关键技术之一,从而对光束的近场场强进行校正。本文在传统的G-S算法的基础上提出一种相位迭代算法,利用已知激光的出射振幅分布和近场接收平面上需要达到的振幅分布,在光束传输过程中反复相位迭代得到出射场所需的相位信息,然后通过控制变形镜得到该相位,使光束的近场场强分布与所要求的理想场强分布接近,从而达到对光束近场场强的控制。首次设计了一套基于G-S算法的自适应光学系统,对光束近场场强进行控制,并在实验上取得良好效果。
     再次,在全场补偿理论中,主激光到达第二块变形镜时,振幅分布与信标光一致,相位共轭,根据光路可逆与相位共轭原理,主激光达到目标时的场强分布将与信标光一致。为验证光路可逆与相位共轭原理,提出一种基于该原理,利用自适应光学技术控制光束近场场强的方法,并率先进行了实验研究。仿真和实验结果表明,利用该系统可以实现对光束近场场强的控制,使光束质量得到改善。通过该实验系统首次验证了双变形镜自适应光学系统对光束近场场强控制的可行性。
     此外,本文设计了一套原理性实验系统对双变形镜技术的校正能力进行验证。实验中没有信标光,而是利用已知信息的像差板,计算出两块变形镜所需的变形量,对主激光进行调制。实现了利用双变形镜对静态畸变波前进行全场校正的实验,对比研究了双变形镜和单变形镜对波前的空间校正能力,并验证了双变形镜全场校正的有效性,显示出了双变形镜全场补偿用于自适应光学系统波前校正的优势。
     最后,根据双变形镜技术对光束全场补偿的理论,本文首次搭建了一套双变形镜闭环实验系统,利用探测到的信标光畸变信息分别对两个变形镜进行控制。利用CCD探测到的振幅畸变迭代出第一个变形镜所需加的面形,利用哈特曼传感器探测到的相位畸变控制第二个变形镜,实现了对波前振幅和相位畸变全场补偿的实时闭环控制。仿真和实验结果表明,通过首套双变形镜自适应光学系统的全场补偿,畸变光波的近场场强和远场焦斑都得到了更好的校正。本文的研究结果为双变形镜自适应光学系统的实际应用提供一定的理论参考和工程应用经验。
Adaptive optics (AO) is a real-time measurement and aberration correction technology, which applies to compensating the aberration of beam when it propagating the atmospherc turbulence. Traditional adaptive optics is to use a single deformable mirror (DM) compensation for the beam phase distortion. The more effective compensation is correcting the amplitude and phase distortion synchronously. A proposed method to compensate for amplitude and phase distortion is the use of two DMs. In this paper, we study the AO theory and use the existing DM devices to design the two DMs AO system. This system can compensate the distortion of amplitude and phase for beam. In the experiment we achieve this full compensation technology. The principles, the characters and application prospect of the two DMs AO system are studied by theoretic analysis and experimental verification.
     This paper is devoted to the principles of two DMs AO system, using of phase-type liquid crystal spatial light modulator (LC-SLM) as a DM. Accordance with correction near-field intensity of beam, validation of DMs AO system in experiment and realization of the closed-loop experiment to conduct the feasibility of full compensation in two DMs AO system.
     First, the AO system to compensate for laser system application is introduced. The simulation of tranditional single DM AO system compensating phase distortion is analyzed. Result shows that the only pahse compensation can not make the beam distortion fully corrected, especially when the beam propagation is so distance, out of radio aperture is so small and the atmospheric disturbance is so strong. According to the two DMs AO theory, the beam amplitude and phase distortion is corrected at the same time. Simulation results show that laser beams through the full compensation, the quality of laser beam in the near field intensity is improved and the far field image is close to diffraction limit.
     Second, in the two DMs AO system, the intensity and phase of the beacon beam reaching the transmitting system can be detected by the detectors, and then the measured results are used to control two DMs. The key technique is to determine the required phase of DM1, thus the near-field intensity of beam is corrected. The phase-iterative algorithm based on the traditional algorithm G-S algorithm is presented. This algorithm is using the emitted laser known amplitude distribution and the near-field receiving plane needed amplitude distribution to iterate the phase of beam. We can control the DM to give the beam this pahse, so that the beam near-field distribution is close to the requirements of the ideal field distribution, so as to achieve the control of near-field intensity of the beam. The AO system based on G-S algorithm to control the near-field intensity of the beam is designed for the first time, and experiments with good results.
     Again, in the full compensation theory, when the laser reaching the second DM, the amplitude distribution is according to beacon and phase conjugation. In optical reversion and phase conjugation principle, the primary laser to target the field distribution will beacon unanimously. According to the principle of optical reversion and phase conjugation, the method based on AO technology to control beam near-field intensity is proposed, and the first experimental study is carried out. Simulation and experimental results show that the system can realize the control of near-field intensity, so that the beam quality is improved. The experimental system verifies the feasibility of the two DMs AO system to improve the near-field intensity of beam for the first time.
     In addition, a schematic experiment of the two DMs AO system is designed to verify the ability of full compensation. In experiment has no beacon, but from the available aberration plate information we can calculate the required deformation of twoDMs.The ability of compensation between two DMs and single DM is compareted, showing the advantage of full compensation using two DMs for adaptive optics wavefront correction.
     Finally, based on the theory of full compensation using two DMs, we design a set of two DMs AO closed-loop system for the first time. The intensity and phase of the beacon beam can be detected by the detectors, and then the measured results are used to control two DMs. We can use CCD to detect the amplitude distortion and iterate the required phase for DM1, use Hartmann sensor to detect the phase distortion and control DM2. The system can correct the distortion of phase and amplitude at the same time in closed-loop control. Simulation and experimental results show that, through the first set of two DMs AO system the fully compensation is effective. The quality of laser beam in the near field is improved and the far field image is close to diffraction limit in the experiment. This dissertation will provide some reference and experience for the two DMs AO system in practical application.
引文
[1] Babcock H. W. The possibility of compensating astronomical seeing [M], Publ Astron Soc Pac, 1953, 65~229.
    [2]周仁忠,阎吉祥编著,自适应光学理论[M],北京,北京理工大学出版社,1996
    [3] J. W. Hardy, Adaptive Optics for Astronomical Telescopes [M], Oxford University Press, New York, 1998
    [4]姜文汉,自适应光学技术,自然杂志[J],2005(28):7~11
    [5] R. K. Tyson, Principles of adaptive optics [M]. Academic Press Inc, San Diego, 1991
    [6]俞信,自适应光学进展及展望[J],光学技术,1993,(3):2~7
    [7] J.W.Hardy, Real-time wavefront correction system [J], U.S.Patent, 19753(3),4~17
    [8] D. P. Greenwood and C. A. Primmerman, Adaptive optics research at Lincoln Laboratory [J], the Lincoln Laboratory journal, 1992, 5(1): 3~11
    [9] D. E. Spreen and C. B. Hogge, Characterizing high-altitude horizontal path optical propagation [J], Proc. SPIE 1994, (2120):2~9
    [10] T. D. Steiner, P. H. Merritt edited, Airbome laser advanced technology [J], Proc. SPIE 1998,(3381):13~14
    [11]胡绍云,钟鸣等,自适应光学在固体战术激光武器中的应用[J],激光与光电子学进展,2006,43(2):25~27
    [12]姜文汉,高分辨率自适应望远镜[R],国家高技术计划信息领域信息获取与处理技术十周年汇报自适应光学望远镜技术,1996,1
    [13]范品忠,廉价多用途自适应光学器件[J],激光与光电子学进展,2000,(12):12~15
    [14] J. W. Hardy, Adaptive optics: a progress review [J], Proc. SPIE 1991, (1542):2
    [15] J. T. Salmon, et al., Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor [J], Proc. SPIE 1991, (1542): 459~465
    [16] A. V. Kudryashov, V. V. Samarkin, Control of high power CO2 laser beam by adaptive optical elements [J], Optics Communications, 1995,(118): 317~322
    [17] J. Liang, B. Grimm, et al., Objective measurement of wave aberration of human eye with the use of a Hartmann-Shack wavefront sensor [J], J. Opt. Soc. Am. A., 1994, 11(6): 1949~1957
    [18]张雨东,姜文汉等,自适应光学的眼科学应用[J],中国科学,2007,(37):68~74
    [19] J. Liang, D. R. Williams, et al., Supermormal vision and high-resolution retinal imaging through adaptive optics [J], J. Opt. Soc. Am. A., 1997, 14(11): 2884~2892
    [20] G. D. Love, Wavefront correction and production of Zernike modes with a liquid crystal spatial light modulator [J], Applied Optics, 1997, 36(7): 1517~1520
    [21] G. Vdovin, P. M. Sarro, et al., Recent progress in technology and applications of membrane micromachined deformable mirrors[J], Proc. SPIE 1999,(3760): 2
    [22] F. Gonte, A. Couteville, Optimization of single-mode fiber coupling efficiency with an adaptive membrane mirror [J], Opt. Eng., 2002, 41(5): 1073~1076
    [23] F. Vargas-Martin, P. M. Prieto, et al., Correction of the aberrations in the human eye with liquid-crystal spatial light modulator: limit to performance [J], J. Opt. Soc. Am. A., 1998, 15(9): 2552~2562
    [24] E. J. Fernndez, I. Iglesias, P. Artal, Closed-loop adaptive optics in the human eye [J], Optics Letters, 2001, 26(10): 746~748
    [25] N. Doble, G. Yoon, et al., Use of a microelectromechanical mirror for adaptive optics inthe human eye [J], Optics Letters, 2002, 27(17): 1537~1539
    [26]凌宁,张雨东等,用于活体人眼视网膜观察的自适应光学成像系统[J],光学学报,2004,(24):1153~1157
    [27]姜文汉,光电技术研究所的自适应光学技术[J],光电工程,1995,22(1):1~13
    [28] W. H. Jiang, et al., Adaptive optical image compensation experiments on stellar objects [J], Opt. Eng., 1995, 34(1): 7~12
    [29] W. H. Jiang, et al., A 37 element adaptive optics system with H-S wavefront sensor [J], ICO-16 Satellite Conf. On Active and Adaptive Optics, Proc ESO. 1993,(48): 127~133
    [30]姜文汉等,61单元自适应光学系统,量子电子学报[J],1998,15(2):193~199
    [31] W. H. Jiang, N. Ling, et al., 61-element adaptive optical system for 1.2m telescope of Yunnan Observatory[J], Proc. SPIE 1998, (3353): 696~
    [32] Ning Ling, Yudong Zhang, Xuejun Rao et al. Small table-top adaptive optical system for human retina imaging [J].Proc. SPIE, 2002, 4825: 99~
    [33] Wenhan Jiang et al. 21-element infrared adaptive optics system at the 2.16m telescope. Proc [J]. SPIE, 1999, (3762):142~148
    [34] C. H. Rao, W. H. Jiang, et al., Upgrade on 61-element adaptive optical system for 1.2m telescope of Yunan Observatory[J], Proc. SPIE 2004, (5490): 943~948
    [35] C. H. Rao, W. H. Jiang, et al., Performance on the 61-element upgrade adaptive optical system for 1.2m telescope of Yunan Observatory[J], Proc. SPIE 2004,( 5639): 11~18
    [36]饶长辉等.云南天文台1.2m望远镜61单元自适应光学系统[J].量子电子学报, 2006, 23(3):295~302
    [37] P. J. Lena, Astrophsical results with the Come-on Adaptive Optics System[J], Proc. SPIE, 1994, (220)1:1083 ~1090
    [38] H. Nosato, Automatic wave-front correction of a Femtosecond laser Using genetic algorithm [J]. IEEE, international conference on Systems, Man and Cybernetics, 2004, 3675~3679
    [39] Tatyana Yu, Cherezova, S. S. Chesnokov, et al, Active laser resonator performance: formation of a specified intensity output [J], Appl. Opt, 2001, 40(33):6026~6031
    [40] B.Wattellier, Repetition rate increase and diffraction-limited focal spots for a nonthermal-equilibrium 100-TW Nd:glass laser chain by use of adaptive optics [J],Optics Letters, 2004, 29(21): 2494~2496
    [41] Thomas A. Planchon, Adaptive wavefront correction on a 100-TW/10-Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation [J], Optics Comm, 1995, (252):222~228
    [42]许冰,张强,鲜浩,王春红,金涛,李新阳,姜文汉,对正支共焦非稳腔环形光束的光束净化实验及其分析[C],第五届全国激光科学技术青年学术交流会论文集,1999年6月, 179~193
    [43] P Yang, S J Hu, S Q Chen, W Yang, B Xu and W H Jiang, Journal of Physics: Conference series[C], 2006, 48:1017~1022
    [44] M. C. Roggemann, D. J. Lee, Two deformable mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere [J], Applied Optics, 1998, 37(21): 4577~4585
    [45]李有宽,陈栋泉等,双变形镜自适应光学全场补偿模拟[J],强激光与粒子束,2000,12(6):665~669
    [46] F. Kanev, et al., Amplitude phase beam control in a two mirror adaptive system [J], Proc. SPIE 2004, (5572): 310~318
    [47] F. Kanev, et al., Principal limitations of phase conjugation algorithm and amplitude-phase control in two-mirror adaptive system [J], Proc. SPIE 2004,( 5026):127~136
    [48] Barchers Jeffrey, Closed-loop stable control of two deformable mirrors for compensation of amplitude and phase fluctuations [J], Optical Society of America, 2002, (19):926~945
    [49] F. Roddier, Curvature sensing and compensation: a new concept in adaptive optics [J], Applied Optics, 1988, 27(7): 667~673
    [50] R. Arsenault, R. Donaldson, et al. MACAO-VLTI Adaptive Optics Systems Performance [R], 2000
    [51] Liviu Iv?anescu, Robin Arsenault, et al. MACAO-VLTI Piston Issue:Achieving the Interferometry Requirements [R], 1999
    [52] V. V. Voitsekhovich, Phase-retrieval problem and orthogonal expansions: curvature sensing [J], J. Opt. Soc. Am. A. 1995, 12(10):2194~ 2202
    [53] R. W. Gerchberg, W. O. Saxton, Phase determination for image diffraction plane pictures in the electron microscope [J], Optik, 1971, (34):275 ~283
    [54] M.波恩,E.沃耳夫,光学原理[M],科学出版社,1978,Chap8: 548 ~558
    [55] Gray W. Carhart, Mikhail A. Vorontsov, Adaptive aberration correction based on an opto-electronic Zernike wave front sensor and the decoupled stochastic parallel gradient descent control technique [J], SPIE, 2002,( 4493):166 ~171
    [56] Wenhan Jiang, Huagui Li. Hartmann-Shack wavefront sensing and wavefront control algorithm[J], Proc.of SPIE, 1990, (1271):82~87
    [57]凌宁,官春林,变形反射镜的发展[J],光电工程,1995,22(1):14~22
    [58] G. Vdovin, M. Loktev, et al., Low-cost deformable mirrors: technologies and goals[J], Proc. SPIE 2005, 5894: 58940B-1~
    [59]宁禹,双压电片变形反射镜的性能分析与应用研究[D],长沙:国防科学技术大学博士学位论文,2008
    [60]杨强,朱健平等,双压电变形反射镜的优化设计[J],光学学报,1999,16(9):1163~1169
    [61] A. V. Kudryashov, V. L. Shmalhousen, Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications [J], Opt. Engng. , 1996, 35(11): 3064~3070
    [62] Y. Ning, W. H. Jiang, et al., Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors[J], Optics Express, 2007, 15(19): 12030~12038
    [63] D. C. Dayton, J. D. Mansell, et al., Characterization and control of a novel micromachined membrane mirror for adaptive wavefront control [J], Proc. SPIE 2002, (4493):29~35
    [64] T. G. Bifano, J. Perreault, et al., Microelectromechanical Deformable Mirrors[J], IEEE, 1999, 5(1): 83~89
    [65] J. A. Perreault, P. A. Bierden, et al., Manufacturing of an Optical Quality Mirror System for Adaptive Optics [J], Proc. SPIE 2002, 4493:13~21
    [66] www.okotech.com
    [67] G. Vdovin, V. Kiyko, Intracavity control of a 200-W continuous-wave Nd:YAG laser by a micromachined deformable mirror [J], Optics Letters, 2001, 26(11): 798~780
    [68] L. Zhu, P. Sun, et al., Adaptive control of a micromachineded continuous membrane deformable mirror for aberration compensation, Applied Optics, 1999, 38(1): 168~
    [69] M. L. Plett, P. R. Barbier, et al., Compact adaptive optical system based on blind optimization and a micromachined membrane deformable mirror [J], Applied Optics, 2001, 40(3): 327~330
    [70]陈珂,赵达尊,俞信等,微机械薄膜变形镜光学影响函数矩阵的测试与研究[J],高技术通讯,2000,10(9):22~26
    [71]闫金良,微机械连续薄膜变形反射镜[J],半导体光电,2005,26(3):187~189
    [72]方迪,陈海清等,微变形反射镜主要性能测试研究[J],光学仪器,2005,27(3):21~26
    [73]刘良清,袁孝,微变形镜内腔补偿激光模式畸变研究[J],强激光与粒子束,2007,19(5):718~722
    [74]李育林,傅晓理,空间光调制器及其应用[M],北京:国防工业出版社, 1996
    [75]蔡冬梅,液晶空间光相位调制器特性研究及在自适应光学中的应用[D],成都:中国科学院光电技术研究所博士学位论文, 2007
    [76] Alexander F. Naumov, Gleb Vdovin. Multichannel liquid-crystal-based wave-front corrector with modal influence functions [J], Opt.Lett., 1998, 23(19):1550 ~1552
    [77] Xinghua Wang, Bin Wang, et al. Liquid Crystal on Silicon (LCOS) Wavefront Corrector and Beam Steerer [J]. SPIE, 2003, 5162~5169
    [78] S PKotova, P Clark, et al. Technology and electro-optical properties of modal liquid crystal wavefront correctors[J], J. Opt. A: Pure Appl. Opt., 2003, (5):231~236
    [79] Tomohiro Shirai. Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging [J], Appl. Opt., 2002, 41(19):4013~4023
    [80]蒋咏梅,陈严等,自适应光学波前实时处理机结构设计,国防科技大学学报,1996,18(3):90~94
    [81]侯静,自适应光学波前探测新概念研究[D],长沙:国防科学技术大学博士学位论文,2002
    [82]李新阳,自适应光学系统模式复原算法和控制算法的优化研究[D],成都:中国科学院光电技术研究所博士学位论文,2000
    [83] R. J. Noll, Zernike polynomials and atmospheric turbulence[J], J. Opt. Soc. Am. A., 1977, 67(8): 207~211
    [84] Larry N. Thibos, Raymond A.Applegate, et al. Standards for reporting the optical aberrations of eyes [J], Journal of refractive surgery, 2002, 18:652~657
    [85]雷树人,周志成等,常用物理概念精析,科学教育出版社[M],1994: 304~314
    [86]杜祥琬,实际高能激光远场靶面上光束质量的评价因素[J],中国激光,1997,24(4):327~333
    [87]杨华峰,用于提高自适应光学系统空间校正能力的组合变形镜技术研究[D],长沙:国防科学技术大学博士学位论文,2008
    [88] A. E. Siegman, New development in laser resonators[J], Proc. SPIE 1990, 1224: 1
    [89]潜加列等,有关光束质量的若干基本问题及其新进展[J],中国激光,1994,21(12):981~986
    [90]姜文汉.自适应光学望远镜译文集[C]. 1994.
    [91] Hu P H, et al. Zernike polynomials and atmospheric turbulence [J]. J. Opt. Soc. Am, 1976, 66(3): 207~213
    [92] Ishimarn A. Wave Propagation and Scattarting in Random Media [M]. New York: Academic, 1978
    [93] N.Roddier. Atmospheric wavefront simulation using Zernike polynomials [J]. Optical Engineering, 1990, 29: 1174~1180
    [94]谢敬辉,廖宁放,曹良才.傅里叶光学与现代光学基础[M].北京:北京理工大学出版社,2007
    [95]国承山,李传涛,洪正平,刘婷婷.光衍射数值模拟中不同抽样方法的适用性分析[J],光学学报,2008,28(3): 442~446
    [96]梁永辉,王三宏,于起峰.随机并行梯度下降光束净化实验研究[J],光学学报, 2008,28 (4): 613~618
    [97]陈波,李敏,李新阳,姜文汉.基于线性相位反演技术的自适应光学闭环实验研究[J],光学学报, 2008,28 (9):1633 ~1637
    [98]杨平,许冰,姜文汉,陈善球.遗传算法在自适应光学系统中的应用[J],光学学报,2007,27(9):1628 ~1632
    [99]黄林海,宁禹,杨华峰,饶长辉,姜文汉.基于变形镜面形的多帧相位反演算法研究[J].光学学报,2009,29(6) :1443~1448
    [100] Guo-zhen Yang, Bi-zhen Dong, Ben-yuan Gu. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison [J]. APPLIED OPTICS, 1994,( 33): 209~218
    [101] Li Wang, Bizhen Dong, and Guozhen Yang. Phase retrieval from two intensity measurements in an optical system involving nonunitary transformation [J]. APPLIED OPTICS, 1990,(29): 3422~3427
    [102] Min Li, Xin-Yang Li and Wen-Han Jiang. Small-phase retrieval with a single far-field image [J]. OPTICS EXPRESS, 2008,(16): 8190~8197
    [103] Nobuharu Nakajima. Reconstruction of phase objects from experimental far field intensities by exponential filtering [J]. APPLIED OPTICS, 1990,(29): 3369~3374
    [104] Tae Moon Jeong, Do-Kyeong Ko and Jongmin Lee1. Method of reconstructing wavefront aberrations from the intensity measurement [J]. OPTICS LETTERS, 2007,(32): 3507~3509
    [105]敖明武,杨平,杨泽平. ICF系统全光路像差测量与校正方法[J].强激光与粒子束, 2008, 20(1): 91~95
    [106] W. Xu and I. Cumming. A region-growing algorithm for InSAR phase unwrapping [J]. IEEE Trans. Geosci. Remote Sens. 1999, (37): 124~128
    [107] Igor. Lyuboshenko, Unwrapping circular interferograms [J]. APPLIED OPTICS, 2000, 39(26): 4817~4825
    [108] Dennis C. Ghiglia and Louis A. Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods [J]. J. Opt. Soc. Am. A. 1994, 11(1):107~117
    [109] Gianfranco Fornaro Giorgio Franceschetti Riccardo Lanari Eugenio Sansosti. Robust phase-unwrapping techniques: a comparison [J]. J. Opt. Soc. Am. A. 1996, 13(12): 2355~2366
    [110] Min Li, Xin-Yang Li and Wen-Han Jiang, Small-phase retrieval with a single far-field image [J], OPTICS EXPRESS, 2008, 16: 8190~8197
    [111] Rudin L,O sher S. Total variation based image restoration with free local constraints. In: Proe. 1st IEEE IC IP [C], Austin, 1994 1:31~35
    [112] Vladimir P.Lukin. Amplitude-phase adaptive correction of optical waes distortions [J]. Proc. SPIE, 2006, 6238: 623807-1
    [113] User Guide for OK Series Image Board[C], Beijing JoinHope Image Technology Ltd. , 2004
    [114]候静,姜文汉,凌宁,两种自适应光学系统中哈特曼波前传感器和变形镜的对准误差[J],光学学报,2003,23(6):750~755
    [115] Pedro M. Prieto, Enrique J. Fernández, Adaptive optics with a programmable phase modulator: applications in the human eye [J]. Optics Express, 2004,12(17):4059~4071
    [116] C. Ftaclas, R. Basedow, Hubble Space Telescope fine-guidance-sensor transfer function and its impact on telescope alignment and guidance[J],Applied Optics 1993,32(10)1696~1702
    [117] Vladimir P. Lukin, Amplitude-phase adaptive correction of optical waves distortions [J], SPIE, 2006 ,6328~623807(1-10).
    [118]郁道银,谈恒英著,工程光学[M],北京:机械工业出版社,2006
    [119]谢敬辉,廖宁放,曹良才,傅里叶光学与现代光学基础[M],北京:北京理工大学出版社,2007
    [120] M. C. Roggemann, B.Welsh, Imaging through turbulence [M], CRC Press. New York, 1996
    [121]余浩,黄林海,饶长辉,姜文汉,G-S算法在光束近场场强控制中的应用[J],中国激光,2010,37(5) :1259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700