视网膜细胞成像中波前复原技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学是近年来发展迅速的一门新兴技术,在天文观测和激光导星等领域得到广泛应用。伴随微加工技术的发展,微小型、低成本的自适应光学系统开始出现,应用范围开始从星载相机、望远镜系统、激光核聚变等领域扩展到眼科医疗等民用项目中,其中,基于人眼波前像差测量与校正的视网膜细胞显微成像系统是研究的热点。论文系统研究了基于自适应光学的人眼波前像差测量、复原中的关键技术,建立了一套高精度的人眼波前像差重构方法,成功应用于活体人眼视网膜细胞观测系统中,有效提高了自适应光学系统的像差测量校正性能,实现了对人眼波前像差的实时测量与校正,并获得了高分辨率的视网膜图片。论文的主要内容如下:
     1.系统叙述了人眼视网膜组织细胞的生理结构,分析了人眼成像的光学原理,在人眼光学模型的基础上给出眼波前像差的数学表达模型,并采用像质评价标准对人眼像差对成像质量的影响进行了计算和评价。
     2.系统研究了Hartmann-Shack波前传感器的探测原理和理论模型,对传感器的结构、工作原理和影响探测精度的装配误差进行了系统分析,在此基础上推导出利用激光点光源,自基准标定传感器结构参数的新方法,解决了该参数无法直接测量的难题。
     3.深入研究人眼像差波前复原中的关键技术。包括人眼像差测量中入瞳激光安全功率计算;激光散斑形成原理及利用旋转散射体抑制人眼像差测量中散斑的技术;复原模式对人眼波前像差重建的影响。
     4.在分析人眼像差光斑图特点基础上,研究出一套基于形态法滤波,光斑动态跟踪光斑定位,区域迭代质心计算的自适应光斑质心计算方法,经实际使用证明,该方法具有较强抗噪能力,能有效提高光斑识别率与质心探测精度,并在一定程度上扩大了传感器应用范围。
     5.建立国内首套基于微机械薄膜变形镜的小型化、低成本人眼视网膜细胞成像系统,系统包括一套以自适应光学系统为基础的光学平台和与之配套的控制软件系统。该系统具有像差测量,变形镜影响函数标定,闭环校正、视网膜细胞成像等功能,此外软件还对闭环校正中的参数设置进行了优化,可以匹配瞳孔实现免散瞳像差校正。
     6.对搭建的自适应光学系统进行了像差测量、校正能力的验证,在对模拟眼、活体兔眼、以及猪眼视网膜的像差测量校正实验基础上,最终对活体人眼分别进行了像差测量、校正和视网膜成像,成功获得了清晰的视网膜细胞分布图像。
As an emerging technology which is growing rapidly in recent years, adaptive optics has been extensively used in the fields of astronomical observations and laser-guide-star (LGS). With the development of micromachining technology, adaptive optics system of micro-miniature and low cost appears. The application of this technology extended from areas of satellite-borne camera, telescope system and laser nuclear fusion to the civilian projects, such as Ophthalmic Medical items. One of the hotspots among is the imaging system of retina cell based on the measurement and correction of wavefront aberration. In this paper, the measurement and correction of wavefront aberration, based on adaptive optics, has been researched systematically as the key technology. A high-precision wavefront aberration reconstruction method which has successfully applied in the human retina cells imaging system was found, and it effectively improved the measurement and aberration correction performance of the adaptive optics system. Real-time measurement and aberration correction in human eye was realized and got a clear picture of the retinal cells.
     The content of this paper mainly includes:
     1. It described the physiology structure of human retina, analyzed the principle of imaging of human eyes and the influence of imaging quality through the mathematical model of wavefront aberration.
     2. Based on the research of principle of detection and theoretical model of Hartmann-Shark wavefront sensor, it analyzed the structure, operation and assembly error which has influences on detection accuracy. A new self-reference method is given in this paper to calibrate the parameter of Hartmann-Shark wavefront sensor with point light source .
     3. The key techniques are analyzed in depth, include: the maximum permissible exposure calculation of laser used to measure wavefront aberration of human eyes, formation principle of laser speckle and the technique for reducing speckle by using rotating diffuser, the influence of mode selection on reconstructing wavefront aberration of human eyes.
     4. A new adaptive method is given to estimate the centroid of images after analyzing spot pattern characteristics of human eye aberration. This method is based on the morphological filter, dynamic tracing of spot window, and iterative approximation algorithm. The experimental results show that the method is with strong anti-noise ability, and obviously improves the spot recognition rate and centroid detection accuracy, which effectively extends the applicability of Hartmann-Shack wavefront sensor.
     5. Based on micromachined membrane deformable mirror(MMDM), a miniaturized and low-cost human retina cell imaging system was first built in China, including a set of optical platform based on adaptive optical system and a software control system accompanying. The functions of software control system consist aberration measurement, calibration of influence function of deformable mirror, closed-loop feed back correction and retina cell imaging. In addition, the preferences were optimized in aberration correction in order to match the different size of pupil, which makes it possible to operate with dilation-free.
     6. We tested the ability of aberration measurement and correction about the adaptive optics system, and do the experiments of aberration measurement and correction with model eyes, rabbit eyes and pig retina. Human eyes have been tested finally after analysis and conclusion. Clear retina cell images were acquired successfully.
引文
[1] HARD YJ W. A daptive Optics for A stronomical Telescope.New York: Oxford, 1998.
    [2]姜文汉.现代仪器仪表技术与设计[M ].北京:科学出版社, 2003.
    [3] BABCOCK H W. The possibility of compensating astronomical seeing. Publication of the A stronomical Society of the Pacific, 1953.
    [4]姜文汉.自适应光学技术.自然杂志, 2005;28(1): 7~13.
    [5] Howland, H. C. The history and methods of ophthalmic wave-front sensing. Refractive Surg.2000, 16:552~553.
    [6] Howland, H. C. Ophthalmic wave-front Sensing. Slack Inc.Thorofare NJ, 2001.
    [7] J. C. He, S. Marcos, R. H. Webb, et al. Measurement of the wave-front aberration of the eye by afast psychophysical procedure. J. Opt. Soc. Am. A, 1998,15(9):2449~2456.
    [8] Smirnov MS., Measurement of the wave aberration of the human eye . Biophy, 1962, 7:776~795.
    [9] Webb RH, Penney CM, Thompson KP. Measurement of ocular wave-front distortion with aspatially resolved refractormeter . Appl Opt, 1992, 31:3678~3686.
    [10] Mrochen M, Kaemmerer M, Mierdel P, et al. Principles of Tscherning aberrometry . Refract Surg, 2000,16(5):570~571.
    [11] Shack RV, Platt BC. Production and use of a lenticular Hartmann screen . J. Opt. Soc. Am. A, 1971,61:656.
    [12] Liang J, Grimm B, Goelz S, et al. Objective measurement of the wave aberrations of the humaneye with the use of Hartmann-Shack wavefront sensor. J. Opt. Soc. Am. A, 1994, 11(7): 1949~1957.
    [13] Zeimer R,Shahidi M et al. A new mothod for rapid mapping of the retinal thickness at the posterior pole. Invest Opthalmol Vis Sci.37, 1996:1994~2001.
    [14] Weinreb RN, Dreher AW et al. Histopathologic validation of Fourier-Ellipsometry measurement of retinal nerve fiber layer thickness. Arch Ophthalmo, 1990,108:557~560.
    [15] Huang LN,Swanson FA et al. Optical Coherence Tomography.Science, 1990,254:1178.
    [16] J.A.Perrault,T.G.Bifano et al, adaptive optic correction using microelectromechanical deformable mirrors, Opt. Eng, 2002, 41(3):561~566.
    [17] Nathan Doble David R.William. the application of MEMs Technology for Adaptive optics in vision science, IEEE, 2004:629~636.
    [18] E. J. Fernandez, I Iglesias. Closed-loop adaptive optics in the human eye , Opt. Let, 2001, 26(10): 746~748.
    [19] Liang J, William D.R, Supernormal vision and high resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A, 1997,14:2884~2892.
    [20] Liang J, William D.R,Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A, 1997, 14(11):2873~2883.
    [21] Hardy J W, Lefebvre J E, Koliopoulos C L. Real Time Atmospheric Compensation . J. Opt. Soc. Am. A, 1977, 67(3) :360~369.
    [22] Smartt R N , J Strong. Point Diffraction Interferometer. J. Opt. Soc. Am. A, 1972,62:737.
    [23] Roddier F. Curvature sensing and compensation: a new concept inadaptive optics . Appl Opt, 1988 ,27 (7) :1223~1225.
    [24] R. Ragazzoni. Pupil plane wavefront sensing with an oscillating prism. Modern Opt, 1996, 43(2): 289~293.
    [25] J E Graves, D McKenna, M Northcott. The University of Hawaii adaptive optics system. SPIE, 1991, 1542:248.
    [26] Acton D S, Smithson R C. Solar astronomy with a 19-segment adaptive morror. SPIE, 1991, 1542:159.
    [27] For R, Labeyrie A. Feasibility of adaptive telescope with laser probe . Astronomy and astrophysics, 1985, 152:29~31.
    [28] Bouchez. The Keck Observatory Titan Monitoring Project. KECK Intro, 2005, 9(18): 1~2.
    [29] Laura K. Kraft. Methane clouds discovered at the south pole of titan. KECK news, 2002, 12(18): 1~3.
    [30] Torben Andersen, Arne Ardeberg, Mette Owner-Petersen. . EURO50 publications, 2003
    [31]天兵.美国的照相侦察卫星.中国航天, 2002,8:14~17.
    [32] Jungtae R, Ravi S J, Karen E T et al. Adaptive optics flood-illumination camera for high speed retinal imaging. J. Opt. Soc. Am. A, 2006, 14(10): 4552~4569.
    [33] Hermann B, Fernndez E J, Unterhuber A et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett, 2004, 29(18): 2142~2144.
    [34] Y. Zhang, J. Rha, R. S. Jonnal, et al. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina, Opt. Express, 2005,13: 4792~4811.
    [35] Y. Zhang, B. Cense, J. Rha et al. High-speed volumetric imaging of cone photoreceptors withadaptive optics spectral-domain optical coherence tomography, Opt. Express, 2006, 14: 4380~4394.
    [36]周仁忠,阎吉祥,俞信等.自适应光学.北京:国防工业出版社, 1996.
    [37]姜文汉,黄树辅,吴旭斌.爬山法自适应光学波前校正系统.中国激光, 1986, 15: 17~21.
    [38]凌宁.自适应光学波前校正器.光学技术, 1998, 3:12~16.
    [39] Jiang W H, Li M Q, Tang G M et al. 61-element adaptive optics system at a 1.2m telescope of Yunnan Obervatory. SPIE, 1998, 3353:696~703.
    [40] Tang G M, Rao C H, Shen F et al. Performance and test results of a 61-element adaptive optics system on the 1.2m telescope of Yunnan Obervatory. SPIE, 2002, 4926:13~19.
    [41] Rao C H, Jiang W H, Zhang Y D et al. Upgrade on 61-element adaptive optics system for 1.2m telescope of Yunnan Obervatory. SPIE int. Soc. Opt. Eng, 2004, 5490:943.
    [42] Rao C H, Jiang W H, Zhang Y D et al. Performance on the 61-element adaptive optics system for 1.2m telescope of Yunnan Obervatory. SPIE int. Soc. Opt. Eng, 2004,5639:11.
    [43] Jiang W H, Li M Q, Tang G M et al. Infrared adaptive optics system of the 2.16m telescope and its wavefront detecting error and performance analysis. SPIE, 1996, 2828:322~331.
    [44] Jiang W H, Li M Q, Tang G M et al. 21-element infrared adaptive optics system at a 2.16m telescope. SPIE, 1999, 3762:142~149.
    [45] Li J, Chen H Q, Yan G P et al. Improving space laser communication using adaptive optics system based on MEMS technology. International Conference on Space Information Technology. SPIE, 2005: 326~331.
    [46]凌宁,张雨东等.用于活体人眼视网膜观察的自适应光学成像系统.光学学报, 2004, 24(9):1153~1158.
    [47]屈军乐, Jonnal R S, Thorn K E,等.视网膜单细胞成像技术研究.激光生物学报, 2004, 13: 194~197.
    [48]屈军乐, Miller D T,牛憨笨,等.高空间分辨视网膜成像技术研究.深圳大学学报理工版, 2005, 22:121~126.
    [49]屈军乐, Jonnal R S, Thorn K E,等.基于自适应光学的视网膜单细胞光学相干层析成像技术.生物物理学报, 2004, 20:104~108.
    [50]周明宝,张运海,童桂.用于自适应光学系统的激光信标.中国,发明专利, ZL200720036795.7, 2008.
    [51]童桂,廖文和,丁雪峰.应用Hartmann-Shack原理测量人眼波前像差的系统研究,应用激光,2006,26(3):204~206.
    [52]童桂,廖文和.人眼波前像差及准分子激光手术矫正的研究,应用激光, 2006, 26(4):275~279.
    [53]梁春,廖文和,沈建新.自适应光学在眼科医疗中的应用,应用激光, 2007, 27(3):237~240.
    [54]童桂,廖文和.基于主成分分析的微机械薄膜变形镜波前复原技术,应用激光, 2007, 27(6):476~478.
    [55]童桂,廖文和,梁春.哈特曼-夏克波前传感器的最优模式复原,激光技术, 2008, 32(4):387~389.
    [56]童桂,廖文和,梁春.基于模拟退火的连续膜变形镜最优模式复原,激光技术, 2008, 32(5):517~520.
    [57]梁春,廖文和,沈建新等. Hartmann-Shack波前传感器的自适应质心探测方法,中国激光2009, 36(2):430~434.
    [58]李邦明,廖文和,童桂等.微机械薄膜变形镜自适应光学系统试验研究,光学学报, 2008, 28(S2):266~270.
    [59] S. G. El Hage, F. Berny. Contribution of the crystalline lens to the spherical aberration of the eye. J. Opt. Soc. Am. A, 1973, 63(3): 205~211.
    [60] Millodot M, Sivak J. Contribution of the cornea and lens to spherical aberration of the eye . Vision Res, 1979, 19(6):685~687.
    [61] Sivak J, Kreuzer R.O. Spherical aberration of the crystalline lens . Vision Res, 1983, 23(1):59~70.
    [62] Tomlinson A, Hemenger R. P, Garriott R. Method for estimating the spherical aberration of the human crystalline lens in vivo. Invest Ophthalmol Visual Science, 1993, 34(6):621~629.
    [63] Ames A, Proctor C.A. Dioptrics of the eye . J. Opt. Soc. Am. A, 1921, 5(1):22~84.
    [64] Von Bahr G. Investigations into the spherical and chromatic aberrations of the eye,and their influence on its refraction . Acta Ophthal, 1945, 23(1):1~47.
    [65] Koomen M, Tousey R, Scolnik R. The Spherical aberration of the eye . J. Opt. Soc. Am. A, 1949, 39(3):370~376.
    [66] Roorda A, Bobier W R. Geometrical technique to determine the influence of monochromatic aberrations on retinoscopy. J. Opt. Soc. Am. A, 1996, 13(1):3~11.
    [67] N. M. Jansonius, A. C. Kooijman. The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye . Ophthal. Physiol Opt, 1998, 18(6):504-513.
    [68] Liang J,Gerald W. Optical performance of human eyes derived from double-pass measurements . J.Opt. Soc. Am. A, 1995, 12(7):1411~1416.
    [69]陆文秀.准分子激光屈光性角膜手术学.北京:科学技术文献出版社, 2000.
    [70]王子余.几何光学和光学设计.杭州:浙江大学出版社, 1998.
    [71] Thibos LN,Applegate RA,Schwiegerling JT,et al.Standards for reporting the optical aberrationsof eyes. Refract Surg,2002,18(5):652~660.
    [72] Thibos LN.Wavefront data reporting and terminology. Refract Surg, 2001, 17(5):578~583.
    [73]张运海,廖文和,沈建新等.波前像差引导的激光眼屈光手术中角膜切削模型.东南大学学报(自然科学版), 2004, 34(5):585~588.
    [74] Donal R.Myrick. A Generalization of the radial polynomials of F.Zernike. SIAM Journal on Applied Mathematics, 1966, 14(3):476~489.
    [75] Thibos L N, Applegate R A,Schwiegerling J T, et al. Standards for trporting the optical aberrations of eye. Refract Surg, 2002,18(5):652~660.
    [76]章慧贤.光学传递函数的发展及其应用.光学仪器, 18(4),1996:28~31.
    [77]李林,安连生.计算机辅助光学设计的理论与应用.北京:国防工业出版社, 2002.
    [78]姜文汉,鲜浩,杨泽平等.哈特曼波前传感器的应用.量子电子学报, 1998, 15(2): 228~235.
    [79]赵秋玲,王肇圻,全薇等.用于复色哈特曼人眼波前像差测量的折/衍射混合调焦系统.光子学报, 2004, 33(3):342~345.
    [80]姜文汉,鲜浩,沈锋.夏客-哈特曼波前传感器的探测误差.量子电子学报, 1998, 15(2): 218~227.
    [81]许晓军,陆启生,刘泽金.剪切干涉仪与哈特曼波前传感器的波前复原比较.强激光和粒子束, 2000, 12 (3):269~272.
    [82]李新阳,姜文汉,王春鸿等.湍流大气中哈特曼传感器的模式波前复原误差.强激光和粒子束, 2000, 12 (2) :149~154.
    [83]叶红卫,鲜浩,张雨东.对Hartmann-Shack波前传感器平移误差的研究.光电工程, 2003, 30(2): 1~4.
    [84]姚启钧.光学教程.北京:高等教育出版社, 2002.
    [85]姚翠萍,张镇西.激光与组织的相互作用.激光生物学报, 1999, 8(2):102~108.
    [86] Niemz M H, Van G M. Laser-tissue interactions: fundamentals and applications, Springer, 2004. (中译本:张镇西等,激光与生物组织的相互作用原理及应用,西安:西安交通大学出版社,2005).
    [87] Laser Safety Committee. Laser safety guide . Florida: Laser Institute of America, 1993
    [88] David H. Guide for the selection of laser eye protection . Florida: Laser Institute of America, 2000.
    [89] Varanelli A. Electrical hazards associated with lasers. Journal of Laser Applications, 1995, 1:62~64.
    [90] Laser Institute of America, American National Stanrdard for Safe use of Lasers, Z136.1, American National Stanrdard . Florida: Laser Institute of America, 2007.
    [91] Andersen K. Safe use of lasers in the operating room: what preoperative nurses should know . Aorn Journal, 2004, 79(1):171~188.
    [92]于美文等.光学全息及信息处理.北京:国防工业出版社, 1984.
    [93]任剑峰,饶长辉,李明全.一种Hartmann-Shack波前传感器图像的自适应阈值选取方法.光电工程, 2002, 29(1): 1~5.
    [94] Nicholas G, Atul J. Speckle reduction using multiple tones of illumination. Appl Opt, 1973, 12(6):1202~1212.
    [95] Lowenthal S, Joyeux D. Speckle removal by a slowly moving diffuser associated with a Motionless diffuser. J. Opt. Soc. Am. A, 1971, 61:847~851.
    [96] McKechnie T S. Reduction of speckle by a moving aperture-first order statistics. Optics Communications, 1975, 13(1):35~39.
    [97] Rawson E G, Nafarrate A B, Norton R E. Speckle-free rear-projection screen using two close screens in slow relative motion. J. Opt. Soc. Am. A, 1976, 66(11):1290~1294.
    [98] Crosignani B, Diano B, Di Porto P. Speckle-pattern visibility of light transmitted through a multimode optical fiber. J. Opt. Soc. Am. A, 1976, 66(11), 1312~1313.
    [99] Rawson E G, Goodman J W, Norton R E, Frequency dependence of modal noise in multimode optical fibers. J. Opt. Soc. Am. A, 1980, 70(8), 968~976.
    [100]刘培森.散斑统计光学基础.北京:科学出版社, 1987.
    [101]李新阳.自适应光学系统模式复原算法和控制算法的研究.成都:中科院光电技术研究所博士论文, 2000.
    [102]童桂.人眼波前相差微型自适应光学校正系统关键技术研究.南京:南京航空航天大学博士论文, 2007.
    [103] Wen H. J, Ning L, Xue J. R et al. Fitting capability of deformable mirror.Proc SPIE, 1991, 1542,130~139.
    [104]饶学军,凌宁,姜文汉.用数字干涉仪测量变形镜影响函数实验研究.光学学报, 1995,15(10),1446~1452.
    [105]姜文汉,鲜浩,沈峰. Shack-Hartmann波前传感器的探测误差.量子电子学报, 1998,15(2), 193~199.
    [106]沈锋,姜文汉.夏克-哈特曼波前传感器的波前相位探测误差.光学学报, 2000, 20(5), 666~671.
    [107] Gen R. C, Xin Y. An experimental study on photon noise limited wavefront sensor. Proc SPIE, 1990, 1230: 457~460.
    [108]王薇,陈怀新.光斑图抑噪预处理的方法研究.激光技术, 2007, 31(1), 55~60.
    [109]吕明爱,王春鸿,李梅.抑制微光波前传感器随机噪声的方法研究.光电工程, 2002, 29(6), 1~4.
    [110]贺兴华,周媛媛,王继阳等. MATLAB7.x图像处理.北京:人民邮电出版社, 2006.
    [111] Otsu N. Discriminant and least square threshold selection. Proc 4IJCPR, 1978, 592-596.
    [112] Ma?tre H. Le traitement des images, Lavoisier, 2003. (中译本:孙洪,现代数字图像处理,北京:电子工业出版社,2006).
    [113] OE Olarte, Y Mejía. A morphological based method to calculate the centroid spots of Hartmann patterns. Optics communications, 2006, 260(1), 87~90.
    [114] W. N. Charman, G. Heron. Fluctuations in accommodation: a review. Ophthalmic & Physiological Optics, 1988,8,153~163.
    [115]李奇,冯华君,徐之海等.数字图像清晰度评价函数研究.光子学报, 2002, 31(6), 736~738.
    [116]王鸿南,钟文,汪静等.图像清晰度评价方法研究.中国图像图形学报, 2005, 9(6), 828~831.
    [117] Julian C, Austin R, David R W. Deconvolution of adaptive optics retinal images. J. Opt. Soc. Am. A, 2004, 21(8), 1393~1402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700