螺虫乙酯对雄性大鼠毒性及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20年来,农产品的生产越来越依赖于农药、化肥等外源性物质。据统计,我国的农药生产量已超过美国而居世界第一位。由于农药在农林业、工业、学校和住宅区的广泛使用,人们在享受农药所带来利益的同时,承受着其所产生的负面影响。化学农药生产与使用所造成的污染是我国食品安全、生态安全中影响范围最大的有机物污染。论文选择新型杀虫剂螺虫乙酯,进行对雄性SD大鼠的28d和90d灌胃毒性试验,研究农药对大鼠的亚慢性毒性、效应器官及毒性指标;通过分子生物学手段研究效应机制,以期补充螺虫乙酯在毒理学研究上的不足。
     论文首先进行螺虫乙酯在大鼠体内的分布与代谢研究。大鼠经28d连续口服染毒后处死,采用现代残留检测前处理方法和超高压液相色谱-串接质谱联用仪检测不同组织器官中螺虫乙酯残留量及其主要代谢产物的分布。试验结果显示睾丸中螺虫乙酯的残留量最高为0.025mg/kg,其次肝脏为0.023mg/kg,脂肪和肌肉中最低0.005mg/kg,但睾丸、肝脏、肺、肾、心脏等螺虫乙酯残留量没有明显差异。其主要代谢物enol的残留量肝脏中最高,达0.620mg/kg,其次是肾0.370mg/kg,睾丸中仅为0.083mg/kg,其它组织器官由高至低依次为肾>血浆>肺>心脏>睾丸>脂肪>肌肉。
     28d灌胃试验结果表明,螺虫乙酯可显著降低大鼠体重和每周取食量,大鼠体重下降和处理浓度存在剂量-效应关系。螺虫乙酯处理浓度为250mg/kg·d时,可显著影响肝脏、肾、睾丸和附睾的脏器系数;相对肝脏和肾脏,睾丸和附睾更易受螺虫乙酯影响,50mg/kg·d的螺虫乙酯灌胃28d即可显著改变二者的脏器系数。染毒持续至90d后,螺虫乙酯对大鼠体重的影响消除,但高剂量组(250mg/kg·d)的肝脏、睾丸脏器系数显著小于对照组。
     上述结果显示肝和睾丸是螺虫乙酯主要的效应器官。用HE染色法研究28d和90d染毒后,肝脏和睾丸组织形态学以及精子数量、形态的变化。结果说明螺虫乙酯可明显改变大鼠肝脏组织形态,250mg/kg·d染毒28d和90d都发现肝严重变色,肝小窦变窄或消失,肝细胞出现水肿和凋亡;同剂量螺虫乙酯可影响睾丸精小管以及支持细胞的组织形态,睾丸间质细胞出现损坏,生精上皮的层次不明显或消失。10mg/kg·d既可显著减少附睾中的精子数量,精子数量和药剂浓度有剂量效应关系。
     用ELISA法和全自动生化分析仪检测了染毒后大鼠血清中瘦素、血糖、胰岛素、睾酮及其它衡量肾功能、肝功能、脂质代谢等的生化指标。结果显示,血清中瘦素、血糖和胰岛素的浓度与螺虫乙酯浓度有一定的剂量效应关系。当暴露浓度为250mg/kg·d|时,28d后血清中瘦素的浓度仅为对照的77%,而葡萄糖的浓度则升高了85.6%,胰岛素浓度升高了77.3%;90d后,血清中瘦素的浓度仅为41.1%,葡萄糖和胰岛素浓度分别升高了44.9%和16.6%。数据表明染毒时间越长对瘦素的影响越大,但血糖和胰岛素却有恢复的趋势。睾酮的测定结果显示,28d染毒没有明显改变血清中的睾酮浓度。染毒90d后血清睾酮浓度发生显著变化,并出现剂量-浓度的效应关系。50mg/kg·d和250mg/kg·d染毒后,睾酮浓度显著低于对照组,分别是对照的66.1%和51.7%。各处理组之间血清中血尿素氮(BUN)、肌酐(Creatinine)含量没有显著性差异,说明大鼠肾功能没有受到明显影响。虽然碱性磷酸酯酶(ALP)、谷丙转氨酶(ALT)的浓度没有明显变化,但250mg/kg·d处理组天冬氨酸氨基转移酶(AST)、白蛋白(ALb)、总胆红素(TBIL)含量与对照组有明显差异,说明肝功能受到一定程度损害。试验结果还显示,血清中总胆固醇(CHOL)、甘油三脂(TG)、高密度脂蛋白固醇(HDL-C)的含量没有显著变化,但250mg/kg·d处理组的低密度脂蛋白固醇(LDL-C)浓度却显著提高,是对照组的159.7%,暗示大鼠患动脉粥样硬化等心血管疾病风险增加。
     荧光定量PCR法测定了28d染毒,螺虫乙酯对肝脏、睾丸中乙酰辅酶A羧化酶(ACC)、AMP活化蛋白激酶a(AMPKa)、脂肪酸合成酶(FAS)、瘦素(leptin)、肉毒碱棕榈酰基转移酶1(CPT-1),以β-actin为内参基因,UNT组的表达量为基础,采用2ΔΔCT法计算分析基因表达差异。试验结果显示:ACC1在肝脏中的表达更易受螺虫乙酯的影响,50mg/kg·d睾丸和肝脏中的ACC1表达量均显著下调,仅为BK组的66%和19%;250mg/kg·d处理组,则分别为57%和22%。ACC2和CPT-I在肝脏的表达量与农药浓度有明显剂量效应关系,50mg/kg·d和250mg/kg·d处理组ACC2在肝脏中的表达量分别是BK组的65.4%和21.4%,显著下调;在睾丸中的表达量分别是BK组的90.3%和66.7%,仅高剂量组出现显著下调。CPT-I在各处理组睾丸的表达量没有显著变化,而在肝脏中的表达受药剂影响显著上调,10mg/kg·d、50mg/kg·d和|250mg/kg·d处理组的基因表达量分别是BK组的1.04倍、11.7倍和37.7倍。250mg/kg·d处理组的ACC1基因表达下调和FAS在肝脏的表达量仅为BK组的2%,表明染毒后大鼠体内脂肪酸氧化加快,而脂肪酸合成受阻得不到补充,导致大鼠体重显著下降。AMPKa是细胞的“能量感应器”,其信号转导涉及三大物质代谢、细胞生长与凋亡等生命基础活动。250mg/kg·d螺虫乙酯染毒后AMPKa1在肝脏中的表达显著下调,仅为UNT组的55.5%,AMPKa2则为31.5%;该基因在肝脏中的显著下调,导致肝脏组织形态发生变化,肝功能受损。在睾丸中表达下调,影响了睾丸间质细胞结构和精小管生精上皮细胞的完整性,导致附睾精子数显著下降,精子畸形率上升;染毒90d后,使血清睾酮含量显著下降。50mg/kg·d和250mg/kg·d染毒处理组大鼠的TNF-α在肝脏中表达量显著下调,可能与LDL-C浓度升高有关。
     相关试验数据和分析结果可得出如下结论:
     1)螺虫乙酯及主要代谢产物(螺虫乙酯烯醇)主要分布于大鼠肝脏、肾脏和睾丸器官;
     2)螺虫乙酯可抑制脂肪合成和大鼠生长发育,其主要效应器官是肝脏和睾丸;
     3)螺虫乙酯通过抑制ACC的基因表达、影响大鼠机体能量平衡和脂质代谢相关基因的表达、干扰激素平衡等过程产生毒理效应。
Since the last20years, agriculture has relied more and more on pesticides and fertilizers. Now, pesticide production in China has exceeded the United States ranked first in the world. Because of pesticides are widely used in farm, forest, industry, schools, people are suffering from pesticide adverse effects while enjoying the benefits of it. Pesticide is the largest organic pollutant that influences food and ecological safety. Experiment processed for studying subchronic toxicity of spirotetramat on male SD rats by28d/90d gavage, then BMI, organs coefficient, Comprehensive Metabolic Panel (CMP) were tested to evaluate the side effects of pesticide on rat. Furthermore, mechanism of toxicity was investigated with molecular biological method. The results of the experiment will be a supplement of the toxicology datum.
     Firstly, distribution and metabolism of spirotetramat and its metabolite in rat tissue were studied. After repeated dose28d oral administration, the rats were executed. Then, the residues of pesticide and its metabolite in various tissues were detected by ultra performance liquid chromatography equipped with triple quadruple mass spectrometer (UPLC-MS/MS). The results showed that the maximum residue of spirotetramat was in testicle of0.025mg/kg, followed by0.023mg/kg in liver, fat and muscle was smallest for0.005mg/kg respectively. However, there is no significant difference of pesticide concentration in testicle, liver, lung, kidney, heart. Its principal metabolite of the enol residues in liver is the highest for0.620mg/kg, followed by0.370mg/kg in kidney and only0.083mg/kg in testicle. The rank from high to low was liver> kidney> plasma> lung> heart> testicle> fat> muscle.
     Secondly, the results of the28-day trial indicated that the body weight of the rat and the weekly food intake significantly reduced, and there was a dose-response relationship between weight loss in rats and concentration of spirotetramat. Organ coefficients (OC) of liver, kidney, testicle and epididymis was obviously affected by spirotetramat of250mg/kg.d. Compared with the liver and kidney, testicle and epididymis are more sensitive to spirotetramat, and their OC were evidently changed by spirotetramat of250mg/kg.d repeated dose28-day. However, there were no effects of spirotetramat on weight loss in rats at90-day experiment, the OC of liver and testicle in rat markedly reduced by pesticide of250mg/kg.d. It showed that liver and testicle are the main targets of the attack by the pesticide.
     Then, HE staining method was used to test the changes of the liver and testicle morphology. Certainly, the sperm amount and deformity rate were examined to assess the reproductive toxicity of spirotetramat. The test results showed the liver tissue morphology perceptibly changed by pesticide, the discoloration, narrowed sinus, hepatocyte edema and apoptosis were found in rat repeated dose28-day or90-day at250mg/kg.d spirotetramat. Synchronously, seminiferous tubule, supporting cells and interstitial cell were injured by pesticide, and structure of seminiferous epithelium was destroyed. The sperm amount and deformity rate in rat epididymis decreased significantly after exposing to pesticide of10mg/kg.d for28days or90days. In addition, there was a dose-response relationship between the sperm count and chemistry levels.
     Serum leptin, insulin and testosterone contents in rat were tested with ELISA kits, and the comprehensive metabolic panel (CMP) and glucose detected with automatic biochemical analyzer. Results showed that there were dose-response relationships between the serum leptin, glucose, insulin levels and spirotetramat concentration. Exposing to250mg/kg.d spirotetramat, serum leptin concentrations were77%compared to that in control group rat in28-day tests, glucose of185.6%and insulin of177.3%was found in similar experiment. In repeated dose90-day tests, serum leptin levels were decreased by58.9%, but the insulin and glucose in serum were elevated by44.9%and16.6%, respectively. It indicated that the damage extent of leptin related to the exposure time, but blood glucose and insulin levels were on a recovery trend. The testosterone test results displayed there were no significant changes in serum testosterone concentration in28-day trial. In the other experiment (90-day trial), it was radically changed by pesticide of50mg/kg.d and250mg/kg.d, the testosterone levels were reduced by33.9%and48.3%respectively compared to the control group. There were no meaningful differences between the blood urea nitrogen (BUN) and creatinine (Creatinine) contents in the treatment rats; it means the rat kidney function is normal. Although, alkaline phosphatase (ALP), alanine transaminase (ALT) concentration did not .significantly change, but the aspartate transaminase (AST), albumin (Alb) and total bilirubin (TBIL) levels in rat in250mg/kg.d group was significantly different from that of control group. The results indicated the liver injury. However, the serum total cholesterol (CHOL), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) levels were not significantly inflected. The low density lipoprotein cholesterol (LDL-C) level was markedly elevated in250mg/kg.d group. The increased LDL-C level suggested an enhanced risk of suffering from cardiovascular diseases such as atherosclerosis in rats.
     The gene expressions of ACC, AMPKa, FAS, CPT-I, leptin, β-actin and TNF-α in hepatocyte and testicular cell were detected by real-time quantitative PCR (RT-PCR) for assessing the mechanism of toxicity of spirotetramat. The2-AACT method was used to analysis the data from RT-PCR for evaluating the change in gene expression relative to the untreated control, Where theβ-actin used as keeping house gene and the results of untreated control(UNT group) as calibrator for the method. The experimental results declared gene expression of ACC1was more perceptive in hepatocyte than that in testicular cell. In S50(50mg/kg.d) group, ACC1gene expressions in hepatocyte or testicular cell was significantly down regulated by spirotetramat ranged from66%and19%compared to BK group; and in S250(250mg/kg.d) group, there was about57%and22%respectively. There were obvious dose-response relationships between the amount of gene expression of ACC2or CPT-I in hepatocyte and pesticide levels. In hepatocyte of S10and S250group rats, the ACC2gene expression significantly reduced to65.4%and21.4%of BK group, respectively. It was90.3%and66.7%in testicular cell, simultaneously. There are no noteworthy differences of CPT-Ⅰ expression in testicular cell. On the contrary, CPT-Ⅰ gene was clearly up regulated in hepatocyte. In S10, S50and S250group, the changes in CPT-Ⅰ gene expression were1.04,11.7and37.7times respectively of the BK group. Moreover, the FAS gene in S250group was down regulated to2%of the BK group. Reduced ACC1, ACC2and elevated CPT-Ⅰ gene expression in hepatocyte indicated that the fatty acid oxidation was accelerated, and fatty acid synthesis was blocked. As a result, the body weight lost considerably for lack of fat. AMPKa considered as the cell's energy sensors, the signal transduction of AMPKa in cells related to metabolism of lipid, carbohydrate and protein, and related to cell growth and apoptosis. In hepatocyte, the AMPKal gene was evidently unhappy regulated to55.5%of UNT group after exposing to250mg/kg.d for28days. The AMPKa2gene was31.5%. Reduced expression of AMPKa in hepatocyte resulted in liver injury. Certainly, the testicle damaged when expression reduced in testicular cells. Reduced sperm amount in rat epididymis and increased sperm deformity rate was found in S250group rats. After administering of250mg/kg.d spirotetramat for90days, serum testosterone levels evidently declined. The sharply dropped TNF-a expression in hepatocyte may be associated with elevated LDL-C in serum.
     In general, testing datum can be reached the following conclusions:
     1) Spirotetramat and its metabolite remained mainly in rat liver, kidney and testis.
     2) Fat biosynthesis and development of rat inhibited by spirotetramat, and liver and testis were primary effector organs.
     3) Spirotetramat produced toxicology effects through inhibiting ACC gene expression, affecting gene expression about keeping energy balance and normal lipid metabolism, disturbing the hormone balance.
引文
1.世界农化网.2011年中国农药产量统计分析.In;2012
    2.邢杰.农药暴露对花卉种植者健康影响的调查.In:昆明医学院;2006
    3.于蓉蓉,颜景鹏,张建伟,et al.拟除虫菊酯类农药对典型冷-温血动物毒性作用研究进展.环境与健康杂志2009:842-845
    4.张增利童杨周王.混配农药中氰戊菊酯在小鼠体内的代谢和分布.Syxu 2000:517-518+531
    5.陈海燕.有机磷与拟除虫菊酯农药的雌激素干扰作用研究.In,药理学.南京:南京医科大学:2002
    6.张宏顺周张吴孙.毒鼠强在家兔体内的代谢动力学研究.Zhyf 2005:20-23
    7.张增利童周王.农药氰戊菊酯混配前后的代谢动力学研究.Gywz 2002:270-273
    8.王刚垛,肖城,鱼涛,et al.长期低剂量接触甲基对硫磷的效应生物标志物研究.中国工业医学杂志2002;15:3-7
    9.顾兵王何.氰戊菊酯对肟硫磷毒物代谢动力学的影响.中国工业医学杂志2001:1-3
    10.顾兵王何.肟硫磷的毒物代谢动力学和毒效学.Ylbs 2000:364-368
    11.郝守进尹李崔戚韩李祝.环境中低浓度挥发性有机化合物的吸收及其代谢动力学评估方法.Wsyj 2000:37-39
    12. Padungtod C, Lasley B, Christiani D, et al. Reproductive hormone profile among pesticide factory workers. Journal of Occupational and Environmental Medicine 1998;40:1038-1047
    13.沈苏南侯姚肖.氰戊菊酯对未成熟雌性大鼠的体液免疫及性激素的影响.环境与健康杂志2002;19:179-181
    14.詹宁育王王赵沈何.辛硫磷与氰戊菊酯对大鼠睾丸的联合毒性作用.Zhld2001;19:261-264
    15. Gore AC. Environmental toxicant effects on neuroendocrine function. Endocrine 2001; 14:235-246
    16. LeBlanc GA, Bain LJ, Wilson VS. Pesticides:multiple mechanisms of demasculinization. Molecular and Cellular Endocrinology 1997; 126:1-5
    17. Hainzl D, Cole LM, Casida JE. Mechanisms for Selective Toxicity of Fipronil Insecticide and Its Sulfone Metabolite and Desulfinyl Photoproduct. Chemical Research in Toxicology 1998; 11:1529-1535
    18.卢中秋,杜圆圆.新型吡唑类杀虫剂—锐劲特急性中毒2例报告.中国急救医学2002:54
    19. Garcia SJ, Seidler FJ, Slotkin TA. Developmental neurotoxicity of chlorpyrifos:targeting glial cells. Environmental Toxicology and Pharmacology 2005; 19:455-461
    20.张彬彬.乙草胺对泥鳅生理功能影响的研究.In:山东师范大学;2008
    21.王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社;2002
    22.曾春晖,杨柯,邓家刚,et al.达肝清颗粒对大鼠的长期毒性研究.Yydb 2012:286-288
    23.红梅,刘有菊,陈秋红.藏药藏降脂胶囊毒理学研究.Ytct 2012:16-20
    24.肖娜,王丽梅,郭艳芬,et al. Dha对大鼠脏器、生化指标及脂质过氧化的影响.Sspj2011:37-40
    25.柴晓静,刘大勇,陆莉.Ⅱ-型拟除虫菊酯对雄性小鼠脑内褪黑素含量的影响.现代预防医学2011:4229-4230+4232
    26.徐光翠,高启禹,韩光亮,et al.氧化乐果对雄性小鼠睾丸琥珀酸脱氢酶和精液质量的影响.Gwxk 2011:148-150
    27.徐光翠,高启禹,赵英政,et al.氧化乐果对雄性小鼠精液质量及骨髓细胞微核的影响.Xxyx 2011:574-576
    28.谢国秀,邓勇波,吴冬梅,et al.甲基磺草酮原药的毒性实验观察.Zyjk 2010:481-48529.翁小斌,张伟,庞定国,et al.α-氯代醇对大鼠的亚慢性经口毒性试验研究.现代预防医学2011:3050-3052+3055
    30. McCarthy JF, Shugart LR. Biomarkers of environmental contamination. [Chelsea, MI]: Lewis Publishers; 1990
    31. Cesar P-y-M, Melissa A, Maria ES, et al. Chromosome and DNA damage analysis in individuals occupationally exposed to pesticides with relation to genetic polymorphism for CYP 1A1gene in Ecuador. Mutation Research 2004;562:77-89
    32.孙运光.有机磷农药的遗传毒性研究.Gwyx 2000;27:349-352
    33. Bolognesi C. Genotoxicity of pesticides:a review of human biomonitoring studies. Mutation Research 2003;543:251-272
    34. Gollapudi B, Mendrala A, Linscombe VA. Evaluation of the genetic toxicity of the organophosphate insecticide chlorpyrifos. Mutation Research 1995;342:25-26
    35. Johnson DE, Seidler FJ, Slotkin TA. Early Biochemical Detection of Delayed Neurotoxicity Resulting from Developmental Exposure to Chlorpyrifos. Brain Research Bulletin 1998;45:143-147
    36. Roy T, Andrews JE, Seidler FJ, et al. Chlorpyrifos elicits mitotic abnormalities and apoptosis in neuroepithelium of cultured rat embryos. Teratology 1998;58:62-68
    37. Caughlan A, Newhouse K, Namgung U, et al. Chlorpyrifos Induces Apoptosis in Rat Cortical Neurons that is Regulated by a Balance Between p38 and ERK/JNK MAP Kinases. Toxicological Sciences 2004;78:125-134
    38. Nakadai A, Li Q, Kawada T. Chlorpyrifos induces apoptosis in human monocyte cell line U937. Toxicology 2006;224:202-209
    39. Cui Y, Guo J, Xu B, et al. Potential of chlorpyrifos and cypermethrin forming DNA adducts. Mutation Research/Genetic Toxicology and Environmental Mutagenesis Oxidative Stress and Mechanisms of Environmental Toxicity 2006;604:36-41
    40. Moretti M, Marcarelli M, Villarini M, et al. In vitro testing for genotoxicity of the herbicide terbutryn:cytogenetic and primary DNA damage. Toxiecology in Vitro 2002;16:81-88
    41.范立民陈吴瞿马胡.4种除草剂对黄鳝遗传毒性的研究.Nhbh 2005:701-704
    42. EPA EPAU. Office of Pesticide Programs. Chemicals evaluated for carcinogenicity. In; 2002
    43. Int. Agency Res. Cancer (IARC). Occupational Exposures in Insecticide Application, and Some Pesticides. In,53:535:Lyon,France:IARC; 1991
    44. Int. Agency Res. Cancer(IARC). IARC Monographs on the Evaluation of Carcinogenic Risk to Humans. In, An updat-ing of IARC Monograph Volume 1 to 42Suppl 7. Lyon; 1986:France:IARC
    45. Petrelli G, Siepi G, Miligi L, et al. Solvents in pesticides. Scand J Work Environ Health 1993;19:63-65
    46. Blair A, Malker H, Cantor K, et al. Cancer among farmers. Rev Scand J Work Environ Health 1985;11:397
    47. Blair A, Zahm S. Agricultural exposures and cancer. Environ Health Perspect 1995;103:205-208
    48. McDuffie H, Pahwa P, McLaughlin J, et al. Non-Hodgkin's lymphoma and specific pesticides exposures in men:cross-Canada study of pesticides and health. Cancer Epidemiol Biomarkers Prevention 2001; 10:1155
    49. Nanni O, Amadori D, Lugaresi C, et al. Chronic lymphocytic leukemias and non-Hodgkin's lymphoma by histological type in farming-animal breeding workers:a population case-control study based on a priori exposure matrices. Occup Environ Med 1996;53:652
    50. Boros L, Torday S, Lin S, et al. Transforming growth factor (32 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Res 2000;60:1183
    51. Boros L, Williams R. Isofenphos induced metabolic changes in K562 myeloid blast cells. Leuk Res 2001;25:883
    52. Lapidot-Lifson Y, Prody C, Ginzberg D, et al. Coamplification of human acetylcholinesterase and butyrylcholinesterase gene in blood cells:correlation with various leukemias and abnormal megakaryocytopoiesis. Proc Natl Acad Sci USA 1989;86:4715-4719
    53. Lev-Lehman E, Evron T, Broide R, et al. Synaptogenesis and myopathy under acetylcholinesterase overexpression. J Mol Neurosci 2000; 14:93
    54. Stephenson B, Czepulkowski W, Hirst W, et al. Deletion of the acetylcholinesterase locus at 7q22 associated with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Leuk Res 1996;20:235
    55. Reynolds P, Von Behren J, Gunier R, et al. Childhood cancer and agricultural pesticide use:an ecologic study in California. Environ Health Perspect 2002; 110:319
    56. Weselak M, Arbuckle, T., Foster, W. Pesticide exposures and developmental outcomes: the epidemiological evidence. Journal of toxicology and environmental health Part B, Critical reviews 2007; 10:41-80
    57. Li Q, Kobayashi M, Kawada T. Organophosphorus pesticides induce apoptosis in human NK cells. Toxicology 2007;239:89-95
    58. Menegaux F, Baruchel A, Bertrand Y, et al. Household exposure to pesticides and risk of childhood acute leukaemia. Occupational and Environmental Medicine 2006;63:131-134
    59. Blair A, Hayes R. Cancer risks associated with agriculture:epidemiologic evidence. Basic Life Sci 1982;21:93
    60. Blair A, Zahm S, Pearce N, et al. Clues to cancer etiology from studies of farmers. Scand J Work Environ Health 1992; 18:209
    61. Cuzik J, De Stavola B. Multiple myeloma-a case-control study. Br J Cancer 1988;57:16
    62. Hansen N, Karle H, Olsen J. Trends in the incidence of multiple myeloma in Denmark 1943-1982:a study of 5500 patients. Eur J Haematol 1989;42:72
    63. Pearce N, Smith A, Howard J, et al. Case-control study of multiple myeloma and farming. Br J Cancer 1986;54:493
    64. Pickle LW, Mason TJ, Howard N, et al. Atlas of US cancer mortality among Whites: 1950-1980; 1987
    65. Beard J, Sladden T, Morgan G, et al. Health impacts of pesticide exposure in a cohort of outdoor workers. Environ Health Perspect 2003;111:724 66. Donna A, Betta P, Gagliardi F. Preliminary experimental contribution to the study of possible carcinogenic activity of two herbicides containing atrazine, simazine and trifluralin as active principles. Pathologica 1981;73:707
    67. Donna A, Betta P, Robutti F. Carcinogenicity testing of atrazine:preliminary report on a 13 month study of albino mice treated intraperitoneal administration. Med Lav 1986;8:119
    68. Pinter A, Torok G, Borzsonyi M. Long-term carcinogenicity bioassay of the herbicide atrazine in F344 rats. Neoplasma 1990;37:533
    69. Wetzel L, Luempert L, Breckenridge C. Chronic effects of atrazine on estrous and mammary tumor formation in female Sprague-Dawley and Fischer-344 rats. J Toxicol Environ Health 1994;43:169
    70. Donna A, Betta P, Robutti F. Ovarian mesothelial tumors and herbicides; a case-control study. Carcinogenesis 1984;5:941
    71. Donna A, Cosignani P, Robutti F. Triazine herbicides and ovarian epithelial neoplasms. Scad J Work Environ Health 1989; 15:47
    72. Burns C, Beard K, Cartmill J. Mortality in chemical workers potentially exposed to 2,4-dichlorophenoxyacetic acid (2,4-D) 1945-94:an update. Occup Environ Med 2001;58:24
    73. Alavanja M, Hoppin JA, Kamel F. Health effects of chronic pesticide exposure:Cancer and neurotoxicity. ANNUAL REVIEW OF PUBLIC HEALTH 2004;25:155-197
    74. Pitot HC, Dragan YP. Cassarett and Doull's Toxicology:The Basic Science of Poisons; 1996:201
    75. Tang J, Cao Y, Rose R, et al. In vitro metabolism of carbyl by human cytochrome P450 and its inhibition by chlorpyrifos. Chem Biol Interact 2002; 141:229
    76. Ekstrom G, Akerblom M. Pesticide management in food and water safety:international contributions and national approaches. Rev Environ Contam Toxicol 1990;114:23
    77. Dai D, Tang J, Rose R, et al. Identification of variants of CYP3A4 and characterization of their ability to metabolize testosterone and chlorpyrifos. Pharmacology 2001;299:825-831
    78. Coleman S, Linderman R, Hodgson E, et al. Comparative metabolism of chloroacetamide herbicides and selected metabolities in human and rat liver microsomes. Environ Health Perspect 2000; 108:1151-1157
    79. Costa L, Richter R, Li W, et al. Paraoxonase (PON1) as a biomarker of susceptibility for organophosphate toxicity. Biomarkers 2003;8:1-12
    80. Flodstrom S, Hemming H, Warngard L, et al. Promotion of altered hepatic foci development in rat liver, cytochrome P450 enzyme induction and inhibition of cell-cell communication by DDT and some structurally related organohalogen pesticides. Carcinogenesis 1990; 11:1413-1417
    81. Marchesani M, Hakkarainen A, Tuomainen T-P, et al. New paraoxonase 1 polymorphism 1102 V and the risk of prostate cancer in Finnish men. J Natl Cancer Inst 2003;95:812-818
    82.董竞武,叶于薇,仲伟鉴,et al.生物标志物用于有机磷农药的迟发性神经毒性研究.Ldyx 2006:41-44+47
    83.杨泽云,杨森,江俊康.长期低剂量接触有机磷农药效应标志物研究进展.Ldyx 2010:443-446
    84. Li Q, Nagahara N, Takahashi H, et al. Organophosphorus pesticides markedly inhibit the activities of natural killer, cytotoxic T lymphocyte and lymphokine-activated killer:a proposed inhibiting mechanism via granzyme inhibition. Toxicology 2002; 172:181-190
    85. Yanez L, Borja-Aburto VH, Rojas E, et al. DDT induces DNA damage in blood cells. Studies in vitro and in women chronically exposed to this insecticide. Environmental Research 2004;94:18-24
    86. Gabbianelli R, Nasuti C, Falcioni G, et al. Lymphocyte DNA damage in rats exposed to pyrethroids:effect of supplementation with Vitamins E and C.2032004; 1-3
    87.孙英,张立金,闵顺耕,et al.三种氨基甲酸酯类农药化合物对DNA的潜在损伤作用.Nhbh 2004
    88. Henikoff S, Matzke MA. Exploring and explaining epigenetic effects. Trends in Genetics 1997; 13:293-295
    89. Hayman E, Yokoyama H, Gold S. Methylation of deoxyribonucleic acid in the rat by the mushroom poison gyromitrin. Journal of Agricultural and Food Chemistry 1983;31:1117-1120
    90. Rahman M, Mahboob M, Danadevi K, et al. Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutation Research 2002;516:139-147
    91.耿宝荣姚薛.杀虫剂敌敌畏和除草剂丁草胺对斑腿树蛙蝌蚪的遗传毒性(英文).动物学报2005:51:447-454
    92.张羽,王星星,周胜利,et al.三唑磷、氟虫腈及其复配剂对四种miRNAs在斑马鱼组织中表达的影响.Swwl 2011
    93.陆颖冲,张全,王萃.对溴磷及其对映体对人胎盘滋养层jeg-3细胞内分泌干扰的影响.Zjgd 2012
    94. Moens J, De Clercq P, Tirry L. Side effects of pesticides on the larvae of the hoverfly Episyrphus balteatus in the laboratory. Phytoparasitica 2011;39:1-9
    95. Lefebvre M, Bostanian NJ, Thistlewood HMA, et al. A laboratory assessment of the toxic attributes of six 'reduced risk insecticides' on Galendromus occidentalis (Acari:Phytoseiidae). Chemosphere 2011;84:25-30
    96. Frank SD, Lebude A. SEASON-LONG INSECTICIDE EFFICACY FOR HEMLOCK WOOLLY ADELGID, ADELGES TSUGAE (HEMIPTERA:ADELGIDAE), MANAGEMENT IN NURSERIES. Florida Entomologist 2011;94:290-295
    97. Assmann L, Davies PH, Klueken M, et al. Active compound combination, comprises isotianil and insecticidal active compound comprising spirotetramat, spirodiclofen and spiromesifen. In:Bayer Cropscience Ag; 2011
    98. Angeles Garcia M, Santaeufemia M, Julia Melgar M. Triazine residues in raw milk and infant formulas from Spanish northwest, by a diphasic dialysis extraction. Food and Chemical Toxicology 2011
    99. Alexandre N, Cedric RJ, Luc VJ, et al. Chronic dietary risk characterization for pesticide residues:A ranking and scoring method integrating agricultural uses and food contamination data. Food and Chemical Toxicology 2011;49:1484-1510
    100. Lamberth C. Amino acid chemistry in crop protection. Tetrahedron 2010;66:7239-7256
    101. Hu JF, Wang CF, Wang J, et al. Monitoring of resistance to spirodiclofen and five other acaricides in Panonychus citri collected from Chinese citrus orchards. Pest Management Science 2010;66:1025-1030
    102. Hu A-L, Yang W, Xu H-H. Novel fluorescent conjugate containing glucose and NBD and its carrier-mediated uptake by tobacco cells. Journal of Photochemistry and Photobiology B:Biology 2010; 101:215-223
    103. Hall DG, Nguyen R. Toxicity of pesticides to Tamarixia radiata, a parasitoid of the Asian citrus psyllid. BioControl 2010;55:601-611
    104. Chen XD, Stark JD. Individual- and population-level toxicity of the insecticide, spirotetramat and the agricultural adjuvant, Destiny to the Cladoceran, Ceriodaphnia dubia. Ecotoxicology 2010; 19:1124-1129
    105. Andersch W, Hungenberg H, Rieck H. Nematicidal active substance combination, useful e.g. to control animal pests, comprises N-(2-(3-chloro-5-(trifluoromethyl)-2-pyridinyl)ethyl)-2-trifluoromethylb enzamide, and insecticidal active substance comprising e.g. aldicarb. In:Bayer Cropscience Ag; 2010
    106. Zhao JH, Ji MH, Xu XH, et al. Synthetic derivatives of spiromesifen and their bioactivity research. Chinese Chemical Letters 2009;20:1307-1310
    107. Muehlebach M, Boeger M, Cederbaum F, et al. Aryldiones incorporating a [1,4,5]oxadiazepane ring. Part Ⅰ:Discovery of the novel cereal herbicide pinoxaden. Bioorganic & Medicinal Chemistry 2009; 17:4241-4256
    108. Castle S, Palumbo J, Prabhaker N. Newer insecticides for plant virus disease management. Virus Research Plant Virus Epidemiology:Controlling epidemics of emerging and established plant viruses-the way forward 2009; 141:131-139
    109. Briick E, Elbert A, Fischer R, et al. Movento(?), an innovative ambimobile insecticide for sucking insect pest control in agriculture:Biological profile and field performance. Crop Protection 2009;28:838-844
    110. Andersch W, Funke C, Hungenberg H, et al. Method for utilization of production potential of transgenic plant e.g. vegetable, corn and soy plant, involves utilizing plant with effective quantity of mixture of compound having general formula and another compound. In: Bayer Cropscience Ag; 2009
    111. Andersch W, Fischer R, Hungenberg H. Active agent combination, useful e.g. to combat animal pest e.g. nematode, comprises 3-phenyl-1,5-dihydro-pyrrol-2-one compound and further insecticidal and/or acaricidal agent, e.g. alanycarb, aldicarb, aldoxycarb and aminocarb. In:Bayer Cropscience Ag; 2009
    112.叶萱.具新颖作用机制杀虫杀螨剂——螺虫乙酯.世界农药2011:54-55
    113. Authority AP, Veterinary. Evaluation of the new active spirotetramat. In; 2009
    114. Iupac关于螺虫乙酯的介绍.spirotetramat(Ref:BYI 08330). In; 2011
    115. Bruck E, Elbert A, Fischer R, et al. Movento (R), an innovative ambimobile insecticide for sucking insect pest control in agriculture:Biological profile and field performance. Crop Protection 2009;28:838-844
    116. Smiley RW, Marshall JM, Yan GP. Effect of Foliarly Applied Spirotetramat on Reproduction of Heterodera avenae on Wheat Roots. Plant Disease 2011;95:983-989
    117. Wang ZC, Xu BR, Cheng JL, et al. Synthesis and Crystal Structure of 2-Oxo-3-phenyl-1-oxaspiro[4.5]dec-3-en-4-yl 4-chlorobenzoate. Chinese Journal of Structural Chemistry 2011;30:1675-1679
    118.赖宝春.24%螺虫乙酯悬浮剂防治琯溪蜜柚害螨田间药效试验.现代农业科技2011:172+178
    119.李捷,杨兆光,张兴华,et al.几种新杀虫剂对棉盲蝽的室内药效试验.中国棉花2011:21-22
    120.谢文,吴青君,徐宝云,et al.螺虫乙酯对烟粉虱的防治效果评价.中国蔬菜2011:69-73
    121. Kay IR, Herron GA. Evaluation of existing and new insecticides including spirotetramat and pyridalyl to control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on peppers in Queensland. Australian Journal of Entomology 2010;49:175-181
    122. Mansour R, Suma P, Mazzeo G, et al. Evaluating side effects of newer insecticides on the vine mealybug parasitoid Anagyrus sp near pseudococci, with implications for integrated pest management in vineyards. Phytoparasitica 2011;39:369-376
    123.王小丽,陈铁春,李友顺,et al.螺虫乙酯240g/L悬浮剂高效液相色谱分析方法研究.农药科学与管理2009:8-10+17
    124. Hengel MJ. Expanded Method Development for the Determination of Pesticides in Dried Hops by Liquid Chromatography with Tandem Mass Spectrometry. Journal of the American Society of Brewing Chemists 2011;69:121-126
    125. Canada H. Proposed Registration Decision:Spirotetramat. In; 2008
    126.刘金凤.螺虫乙酯对大鼠的生理影响及其体内分布检测方法的建立.In:东北农业大学%6硕士;2011
    127.吴慧明,魏方林,朱国念,et al.螺虫乙酯在染毒雄性大鼠体内的分布与代谢.农药学学报2012
    128.主编国家环境保护总局化学品测试方法编委会.化学品测试方法.北京:中国环境科学出版社;2004
    129. Hironori W, Peter T. Endocrine Functions of adipose tissue. the annual review of pathology:Mechanisms of Disease 2007;2:31-56
    130. Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001;411:480-484
    131. Spanswick D, Smith MA, Groppi VE, et al. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 1997;390:521-525
    132. Levin N, Nelson C, Gurney A, et al. Decreased food intake does not completely account for adiposity reduction after ob protein infusion. Proceedings of the National Academy of Sciences 1996;93:1726-1730
    133. Sivitz WI, Fink BD, Donohoue PA. Fasting and Leptin Modulate Adipose and Muscle Uncoupling Protein:Divergent Effects Between Messenger Ribonucleic Acid and Protein Expression. Endocrinology 1999; 140:1511-1519
    134. Cohen P, Friedman JM. Leptin and the Control of Metabolism:Role for Stearoyl-CoA Desaturase-1 (SCD-1). The Journal of Nutrition 2004;134:2455S-2463S
    135. Cohen P, Miyazaki M, Socci ND, et al. Role for Stearoyl-CoA Desaturase-1 in Leptin-Mediated Weight Loss. Science 2002;297:240-243
    136. Unger RH. Minireview:Weapons of Lean Body Mass Destruction:The Role of Ectopic Lipids in the Metabolic Syndrome. Endocrinology 2003;144:5159-5165
    137. Moitra J, Mason MM, Olive M, et al. Life without white fat:a transgenic mouse. Genes Development 1998; 12:3168-3181
    138. Shimomura I, Hammer RE, Richardson JA, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-lc in adipose tissue:model for congenital generalized lipodystrophy. Genes & Development 1998; 12:3182-3194
    139.李宏睿,孙文夏.瘦素功能研究进展.中国动脉硬化杂志2004:108-112
    140.刘莉,刘亚莉,马爽,et al.瘦素对体外培养大鼠脂肪细胞AMPK表达影响.中国公共卫生2010:1166-1167
    141.李丽,赵跃然,王春霞.瘦素的免疫调节作用及信号转导研究进展.现代免疫学2007:77-80
    142.张婷艳,彭咏梅.必需脂肪酸对脂肪组织生长、leptin浓度及免疫系统影响的研究进展.营养健康新观察2004:10-18
    143. Lassiter TL, Brimijoin S. Rats gain excess weight after developmental exposure to the organophosphorothionate pesticide, chlorpyrifos. Neurotoxicology and Teratology 2008;30:125-130
    144. Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002;415:339-343
    145. Ueyama J, Kamijima M, Asai K, et al. Effect of the organophosphorus pesticide diazinon on glucose tolerance in type 2 diabetic rats. Toxicology Letters 2008; 182:42-47
    146. Rezg R, Mornagui B, Benahmed M, et al. Malathion exposure modulates hypothalamic gene expression and induces dyslipedemia in Wistar rats. Food and Chemical Toxicology 2010;48:1473-1477
    147. Pournourmohammadi S, Farzami B, Ostad SN, et al. Effects of malathion subchronic exposure on rat skeletal muscle glucose metabolism. Environmental Toxicology and Pharmacology 2005; 19:191-196
    148. Teichert-Kuliszewska K, Szymczyk T. Changes in rat carbohydrate metabolism after acute and chronic treatment with dichlorvos. Toxicology and Applied Pharmacology 1979;47:323-330
    149. Dees C, Askari M, Foster JS, et al. DDT mimicks estradiol stimulation of breast cancer cells to enter the cell cycle. MOLECULAR CARCINOGENESIS 1997; 18:107-114
    150. Abu-Basha EA, Yibchok-Anun S, Hopper DL, et al. Effects of the pesticide amitraz and its metabolite BTS 27271 on insulin and glucagon secretion from the perfused rat pancreas:involvement of [alpha]2D-Adrenergic receptors. Metabolism 1999;48:1461-1469
    151.宋肖肖.氯氰菊酯和甲基对硫磷混配对大鼠激素和免疫功能交互作用分析.In:昆明医学院;2004
    152.许海燕.基于百草枯和代森锰诱导的帕金森病大鼠模型的纹状体电生理学研究.In:华东师范大学;2011
    153.安丽.高效氯氰菊酯对雄性大鼠生殖功能影响的实验研究.In:中国医科大学;2002
    154.刘毛毛.妊娠大鼠接触甲基对硫磷和氯氰菊酯的胚胎毒性及仔代生殖毒性研究.In:昆明医学院;2005
    155.夏红.盐酸戊乙奎醚对氧化乐果中毒大鼠循环系统的影响.In:吉林大学;2005
    156.龚学德.有机磷农药敌敌畏对大鼠睾丸Leydig细胞影响的研究.In1:四川大学;2007
    157.李慧敏.辛硫磷对大鼠肝脏毒性的研究.In:扬州大学;2007
    158.梁先敏p,p'-DDE和β-BHC诱导大鼠睾丸支持细胞凋亡Caspase途径的研究.In:华中科技大学;2008
    159.王轶楠.p,p'-DDE、β-BHC单独及联合作用对大鼠睾丸支持细胞FasL表达和NF-K B活性的影响.In:华中科技大学;2008
    160.程晋.p, p'-DDE、β-BHC及其联合作用对体外培养大鼠睾丸组织JNK MAPK
    信号转导通路的影响.In:华中科技大学;2009161.关霞.p, p'-DDE、β-BHC联合作用对大鼠睾丸支持细胞Ca-(2+), ERK和BCL-2
    表达的影响.In:华中科技大学;2009162.关霞.p, p'-DDE、β-BHC联合作用对大鼠睾丸支持细胞Ca-(2+),ERK和BCL-2表达的影响.In:华中科技大学;2009
    163.张乐.噻二唑类杀菌剂对大鼠甲状腺干扰作用研究.In:浙江大学;2009
    164.邹辉.敌百虫对大鼠肝细胞毒性的研究.In:扬州大学;2009
    165.王玉萍.p,p'-DDE、β-BHC及其联合对大鼠睾丸支持细胞Vimentin、N-cadherin和FSHR表达的影响.In:华中科技大学;2011
    166.赵绿英.敌百虫加速大鼠动脉粥样硬化模型的建立及染料木素干预.In:南华大学;2011
    167.黄鲁刚,林苹,龚春雨,et al.有机磷农药-敌敌畏诱导大鼠尿道下裂动物模型睾丸组织的病理学初步观察.中华男科学杂志2006:693-695+700
    168.石玉琴,宋杨,王玉萍,et al. p,p'-DDE对青春前期大鼠睾丸组织氧化应激及凋亡的影响.环境与健康杂志2009:847-849
    169.李贤宾.三种酰胺类除草剂对热带爪蟾(Xenopus tropicalis)早期发育致畸效应及DNA损伤研究.In:浙江大学;2010
    170.于永利,李慧蕾,王亚臣,et al.福美双对斑马鱼胚胎心脏发育的影响.内蒙古民族大学学报(自然科学版)2011:305-309
    171. Le, Zhang. Studies on the thyroid disturbance of thiadiazole fungicides in SD rats. In; 2009
    172.徐晋康.小鼠精子畸形试验.In:龚幼菊ed;2003
    173.周纯先,肖棣,王帮霞,et al.小鼠精子畸形试验方法的改进.蚌埠医学院学报1999
    174.魏青,范瑞泉,杨杏芬,et al.小鼠精子畸形试验方法的改良与效果评价.中国公共卫生2002
    175.珠帕尔`木拉提,杨慧,蔡青,et al.农药鱼藤酮对表达а-突触核蛋白细胞的作用.中国生物工程杂志2004
    176.安丽鲍靳刘张蔡.乙体氯氰菊酯对雄性大鼠睾丸的损伤作用.Wsdl 2003
    177.黄斌,邹萍,欧阳雯,et al.应用流式细胞术研究甲基对硫磷对大鼠睾丸生精细胞的毒性作用.Fbyf2008
    178.韩春春,王继文,魏守海.乙酰辅酶A羧化酶(ACC)的结构与功能.安徽农业科学2006:413-414+416
    179.庄向华.脂素Lipin-1在肝脏胰岛素抵抗中的作用探讨.In:山东大学;2010
    180. Barber MC, Price NT, Travers MT. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 2005; 1733:1-28
    181.任路平,陈树春,宋光耀,et al.高脂与高果糖喂养大鼠对骨骼肌脂代谢相关蛋白基因表达的影响.中国全科医学2012
    182.孙香兰.乙醇降低大鼠心肌细胞AMPK和GLUT4的表达.In:山东大学;2008
    183.朱晓静.AMP激活的蛋白激酶在卤虫发育过程和应激条件下的分子特征和功能研究.In:浙江大学;2008
    184.徐静.高糖环境对大鼠肾小球系膜细胞AMPK表达及活性的影响.In:山东大学;2009
    185.贾振华.AMPK在高糖诱导大鼠肾小球系膜细胞Ⅳ型胶原过度表达中的作用.In:山东大学:2010
    186.龚豪杰.运动对AMPK不同基因型小鼠骨骼肌MEF2-GLUT4的影响.In:北京体育大学;2011
    187.刘毅,高聆,完强,et al.不同剂量二甲双胍对饱和脂肪酸喂养大鼠骨骼肌AMPK活性和胰岛素敏感性的影响.In,全国首届代谢综合征的基础与临床专题学术会议.中国济南;2004
    188.刘毅,高聆,完强,et al.饱和脂肪酸抑制大鼠骨骼肌AMPKa2表达和活性.In,全国首届代谢综合征的基础与临床专题学术会议.中国济南;2004
    189.王斐,高聆.二甲双胍对高脂饲养大鼠肝脏AMPK和PPARs活性影响—改善脂肪肝的可能机制.In:山东大学;2008
    190. Hotamisligil GS, Shargil NS, Spieglman BM. Adipose expression of tumor necrosis factor—a direct role in obesity—linked insulin resistanec. Science 1993:87-91
    191. Carswell EA, Old LJ, Kassel RL, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proceedings of the National Academy of Sciences of the United States of America 1975;72:3666-3670
    192. Beutler B, Greenwald D, Hulmes JD, et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 1985;316:552-554
    193.李昌平.肿瘤坏死因子与肝脏.临床消化病杂志1994;6:123-125
    194. Zhang H, Shi Z, Liu Y, et al. Lipid homeostasis and oxidative stress in the liver of male rats exposed to perfluorododecanoic acid. Toxicology and Applied Pharmacology 2008;227:16-25
    195. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods 2001;25:402-408
    196. Turnley AM, Stapleton D, Mann RJ, et al. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. Journal of Neurochemistry 1999;72:1707-1716
    197.刘莉,马爽,王瑞雪,et al.瘦素对体外培养大鼠脂肪细胞AMPK、ACC mRNA表达的影响.In.中国重庆;2009
    198.韩春春,王继文.乙酰辅酶A羧化酶在脂肪代谢过程中的调控研究.In.中国河南郑州:2007
    199.梅玫,陈压西,闫凤,et al.炎症应激通过SREBP1导致肝脏脂质异常积聚的分子机制.In.中国重庆;2009
    200.彭晓莉,李茂全.肿瘤坏死因子-а对脂代谢的调节作用.成都医学院学报2007
    201. Zhang HH, Halbleib M, Ahmad F, et al. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP.2002;51:2929-2935
    202.王海萍,杨天新.硝基油酸对急慢性肾损伤保护作用及机制的研究.In:山东大学;2010
    203.程彬彬.人参皂苷Rgl的选择性糖皮质激素样作用的研究.In:第二军医大学;2010
    204.陈玉涛,赵战朝.柴胡疏肝散对慢性胰腺炎胰腺纤维化影响的实验研究.In:天津医科大学;2010
    205.冯颖.葡萄籽提取物原花青素改善胰岛素抵抗的作用及其机制研究.In:第二军医大学;2007
    206.张颖.典型拟除虫菊酯类农药潜在毒性的整合评价研究.In;2011
    207. Abu-Elheiga L, Matzuk MM, Kordari P, et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proceedings of the National Academy of Sciences of the United States of America 2005;102:12011-12016
    208. Mao J, Yang T, Gu Z, et al. aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues. Proceedings of the National Academy of Sciences of the United States of America 2009; 106:17576-17581
    209. Kim YJ, Lee M-S, Lee H-J, et al. Hormones and nutrients regulate acetyl-CoA carboxylase promoter I in rat primary hepatocytes. journal of Nutritional Science and Vitaminology 2005;51:124-128
    210. Musso G, Gambino R, Cassader M. Emerging Molecular Targets for the Treatment of Nonalcoholic Fatty Liver Disease. ANNUAL REVIEW OF MEDICINE 2010;61:375-392
    211.毛刘锋.内质网应激在2型糖尿病动脉粥样硬化小鼠脂肪肝形成中的机制探讨.In:山东师范大学;2009
    212.任冰稳.束缚应激对大鼠代谢和多脏器PPARs表达的影响及吡格列酮的干预作用.In:中国人民解放军军医进修学院;2010
    213.严哲琳.中药苦瓜、地骨皮、翻白草提取物干预2型糖尿病胰岛素抵抗的研究.In:北京中医药大学;2011
    214. Jacobsen H, Stergaard G, Lam HR, et al. Repeated dose 28-day oral toxicity study in Wistar rats with a mixture of five pesticides often found as residues in food: alphacypermethrin, bromopropylate, carbendazim, chlorpyrifos and mancozeb. Food and Chemical Toxicology 2004;42:1269-1277
    215. Mahboob M, Kaleem M, Siddiqui J. Effects of a novel organophosphorus pesticide (RPR-V) on extra hepatic detoxifying enzymes after repeated oral doses in rats. Toxicology 2004;202:159-164
    216. Poet TS, Kousba AA, Dennison SL, et al. Physiologically Based Pharmacokinetic/Pharmacodynamic Model for the Organophosphorus Pesticide Diazinon. NeuroToxicology 2004;25:1013-1030
    217. Breton P, Bouvet S, Delamanche 1, et al. Electrocorticogram disturbances detected in rats exposed from early stages of life to residual doses of lindane. Pesticide Biochemistry and Physiology 2005;81:97-104
    218. Kim J-R, Kim H-J, Kwon O-S. Acetylcholinesterase and neuropathy target esterase activity in female and male rats exposed to pesticide terbufos. Environmental Toxicology and Pharmacology 2005;20:149-156
    219. Murray A, Rathbone AJ, Ray DE. Novel protein targets for organophosphorus pesticides in rat brain. Environmental Toxicology and Pharmacology 2005; 19:451-454
    220. Calviello G, Piccioni E, Boninsegna A, et al. DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells:Involvement of the oxidative mechanism. Toxicology and Applied Pharmacology 2006;211:87-96
    221. El-Khatib E-HN, El-Aziz MA, Badr Y, et al. In vivo genotoxicity of the synthetic pyrethroid pesticide "cypermethrin" in rat liver cells by Comet assay. Toxicology Letters 2006;164:S289-S289
    222. Narayana K, Prashanthi N, Nayanatara A, et al. A broad-spectrum organophosphate pesticide O,O-dimethyl O-4-nitrophenyl phosphorothioate (methyl parathion) adversely affects the structure and function of male accessory reproductive organs in the rat. Environmental Toxicology and Pharmacology 2006;22:315-324
    223. Oduma JA, Oduor Okelo D, Odongo H, et al. The pesticide heptachlor affects steroid hormone secretion in isolated follicular and luteal cells of rat. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology 2006; 144:76-84
    224. Baconi D, Balalau D, Manda G, et al. Immunotoxic effects of some organophosphate pesticides in rats. Toxicology Letters 2007;172:S206-S206
    225. L Cia Scherholz De Castro V, Helo Sa Chiorato S. Effects of separate and combined exposure to the pesticides methamidophos and chlorothalonil on the development of suckling rats. International Journal of Hygiene and Environmental Health 2007;210:169-176
    226. Wu J, Lin L, Luan T, et al. Effects of organophosphorus pesticides and their ozonation byproducts on gap junctional intercellular communication in rat liver cell line. Food and Chemical Toxicology 2007;45:2057-2063
    227. Atherton KM, Williams FM, Jameson S, et al. DNA damage by single doses of five organophosphate pesticides to rats. Toxicology 2008;253:8-9
    228. Bird SB, Sutherland TD, Gresham C, et al. OpdA, a bacterial organophosphorus hydrolase, prevents lethality in rats after poisoning with highly toxic organophosphorus pesticides. Toxicology 2008;247:88-92
    229. Padhi BK, Pelletier G, Williams A, et al. Gene expression profiling in rat cerebellum following in utero and lactational exposure to mixtures of methylmercury, polychlorinated biphenyls and organochlorine pesticides. Toxicology Letters 2008; 176:93-103
    230. Timofeeva OA, Sanders D, Seemann K, et al. Persistent behavioral alterations in rats neonatally exposed to low doses of the organophosphate pesticide, parathion. Brain Research Bulletin 2008;77:404-411
    231. Astiz M, Alaniz MAJT, Marra CA. Effect of pesticides on cell survival in liver and brain rat tissues. Ecotoxicology and Environmental Safety 2009;72:2025-2032
    232. Baconi DL, Manda G, Ciobanu A-M, et al. Investigation of the immunotoxic effects of some organophosphate pesticides in rats. Toxicology Letters 2009;189:S215-S215
    233. Chan W-H, Liao J-W, Chou C-P, et al. Induction of CYP1A1,2B,2E1 and 3A in rat liver by organochlorine pesticide dicofol. Toxicology Letters 2009;190:150-155
    234. Dalvie MA, Africa A, London L. Change in the quantity and acute toxicity of pesticides sold in South African crop sectors,1994-1999. Environment International 2009;35:683-687
    235. Hogberg HT, Kinsner-Ovaskainen A, Hartung T, et al. Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides. Toxicology and Applied Pharmacology 2009;235:268-286
    236. M Ller AK, Bosgra S, Boon PE, et al. Probabilistic cumulative risk assessment of anti-androgenic pesticides in food. Food and Chemical Toxicology 2009;47:2951-2962
    237. Perez-Carreon JI, Dargent C, Merhi M, et al. Tumor promoting and co-carcinogenic effects in medium-term rat hepatocarcinogenesis are not modified by co-administration of 12 pesticides in mixture at acceptable daily intake. Food and Chemical Toxicology 2009;47:540-546
    238. Carter WG, Tarhoni MH, Ray DE. Analytical approaches to investigate protein-pesticide adducts. Journal of Chromatography B 2010;878:1312-1319
    239. Christiansen S, Boberg J, Nellemann C, et al. A cocktail of endocrine disrupting pesticides affects sexual differentiation in rats. Reproductive Toxicology 2010;30:229-229
    240. Fetoui H, Zeghal N. Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney:Involvement of oxidative stress and protective role of ascorbic acid. Toxicology Letters 2010;196:S53-S53
    241. Hughes MF, Edwards BC. In vitro dermal absorption of pyrethroid pesticides in human and rat skin. Toxicology and Applied Pharmacology 2010;246:29-37
    242. Kimura-Kuroda J, Yoichiro K, Kawano H. Nicotine-like excitatory effects of the new pesticide, neonicotinoids on rat cerebellar neurons. Neuroscience Research Abstracts of the 33rd Annual Meeting of the Japan Neuroscience Society (Neuro 2010) 2010;68:e418-e419
    243. Salah SH, Abdou HS, Abdel Rahim EA. Modulatory effect of vitamins A, C and E mixtures against tefluthrin pesticide genotoxicity in rats. Pesticide Biochemistry and Physiology 2010;98:191-197
    244.李静.脂肪和胎盘组织肿瘤坏死因子α表达与妊娠期糖尿病胰岛素抵抗的相关性研究.In:青岛大学;2006
    245. Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997;389:610-614
    246. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science 1996;271:665-668
    247. Ruan H, Hacohen N, Golub TR, et al. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 2002;51:1319-1336
    248.丁铭格,李榕,王晓明.LDL-C边缘升高患者血清ONOO~-、脂联素及TNF-α的变化.临床心血管病杂志2012:51-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700