大断面球墨铸铁组织与性能稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大断面球墨铸铁件由于凝固冷却缓慢,使得铸件中心常出现碎块状石墨等石墨畸变现象,大大降低了铸件心部的力学性能。在过去的40多年里,国内外科研工作者对于大断面球墨铸铁件中的石墨畸变问题进行了大量的研究,也取得了很大的进展。但是,目前对于碎块状石墨的形成机理仍不是非常清楚,对于该问题的研究也在不断继续。
     本文首先在工业生产现场浇注了Φ590×800mm的大断面球墨铸铁件,分析了其不同断面处的凝固过程、组织形貌和力学性能,探讨了铸件中的碎块状石墨的形成原因。然后,本文研制了1500℃组合式多功能电阻炉,并利用该装置控制模拟铸件的凝固,实现了对大断面铸件凝固过程的物理模拟。在此基础上,本文进一步研究了微量元素Sb、Bi以及随流孕育剂量对模拟铸件组织性能的影响,研究了随流加入纳米SiC颗粒对球墨铸铁组织性能的影响。主要结论如下:
     (1)Φ590×800mm大断面球墨铸件凝固冷却缓慢,在铸件中心凝固时间最长,达到372分钟。在铸件边缘凝固时间最短,为232分钟;铸件不同壁厚处的显微组织和力学性能变化情况特别。在铸件距中心170mm处,石墨形态恶化严重,碎块状石墨最多,力学性能最差,铸件抗拉强度、硬度、延伸率分别为362MPa、195HBW、1.67%。在铸件距中心255mm处,石墨形态最好,力学性能最佳,铸件抗拉强度和硬度分别为494MPa和225HBW。在铸件距中心85mm的圆周范围内,存在一定量的球状石墨和碎块状石墨,铸件综合力学性能较好。
     (2)Φ590×800mm大断面铸件中,沿径向方向镁和稀土元素出现了一定的宏观偏析。在铸件距中心170mm处,镁和稀土元素富集,其含量分别比铸件距中心255mm处高26%和20%。
     (3)1500℃组合式多功能电阻炉结构简单、使用方便。利用该电阻炉能较好地控制模拟铸件的冷却,实现了模拟铸件对大断面铸件心部凝固过程的模拟。模拟铸件与大断面铸件实际凝固冷却曲线的误差小于1.7%。
     (4)微量元素Sb、Bi能够改善模拟铸件中畸变石墨的形态。当加入量分别为0.01wt.%时,Sb元素的改善效果强于Bi元素。当Sb合金的加入量为0.03wt.%时,模拟铸件的碎块状石墨形态消失,球墨形态最好。此时,铸件的抗拉强度、屈服强度和延伸率分别为最高值707MPa、610MPa和2.96%,比不加微量元素模拟铸件的各力学性能分别高74.4%、81.9%和22.9%。
     (5)通过随流孕育的方式在球化孕育处理后的铁液中继续加入0.1wt.%和0.2wt.%的孕育剂促进了铸件中石墨数量的增加,但也促进了石墨的畸变和基体中铁素体的增多,降低了铸件的抗拉强度和硬度。
     (6)通过随流孕育方式在普通铸件中加入0.2wt.%纳米SiC颗粒能够较好的增加铸件中的球墨个数、改善石墨形态,提高铸件力学性能。在模拟铸件中随流加入0.2wt.%的纳米SiC颗粒促进了石墨析出,降低了铸件的抗拉强度和硬度。
Due to the slow solidification process of heavy section ductile iron, the graphite degeneration, especially the chunky graphite often appeared in the center part of the casting, which lowers the mechanical properties of the casting greatly. In the past 40 years, scientists and producers around the world has given this problem much attention, and made a great progress in realizing and resolving the problem. But until now, the reason and mechanism for the formation of chunky graphite are still unavailable. The related researches on this issue are still in process.
     This paper firstly produced a heavy section ductile iron castingΦ590×800mm in factory, then made a research on the solidification, microstructure and mechanical properties of the casting, as well as the reason for the formation of chunky graphite. Then A 1500℃Knockdown Multifunctional Resistance Furnace was developed and used to control the solidification process of a small casting in its hearth which was named simulation casting in the paper, in order to make the simulation casting solidify in the manner of the centeral part of the castingΦ590×800mm. The effects of minor elements Sb and Bi, addition of more inoculant through in-stream inoculation on the simulation casting was studied. The effects of nanoparticle SiC on simulation casting and common casting was studied. The results are as follows:
     (1) The solidification process of the castingΦ590×800mm is extremely slow. The solidification time in the center is 372 minute, which represents the longest time. The solidification time in position 255mm away from the center is 232 minute, which represents the shortest time.
     The change of microstructure and mechnical properties in different positions on the casting shows special trends. The worst graphite morphology and mechnical properties appeared in the position 170mm away from the center, where lots of chunky graphite appeared, the tensile strength, brinell hardness and elongation are 362MPa、195HBW、1.67% respectively. In position 255mm away from the center, the graphite morphology and the mechanical properties are the best, where the tensile strength, brinell hardness are 494MPa and 225HBW respectively. In the circle area with radius of 85mm around the center, there are many noduar graphites and much chunky graphite. The machenical properties in this area are comparatively good.
     (2) Along the radius direction of the casting, macrosegregation of Mg and RE were discovered. In the position 170mm away from the center, the contents of Mg and RE are extremely high, where the content of Mg and RE are 26% and 20% higher than in the position 255mm away from the center respectively.
     (3) It was easy and safe in using the 1500℃Knockdown Multifunctional Resistance Furnace. The cooling curve of simulation casting controled by the furnace is similar to the real cooling curve of the castingΦ590×800mm. The maximal comparative error between the two curves is 1.7%. The results show that it’s effective in simulating the solidification process of heavy section casting by this furnace.
     (4) The minor elements Sb and Bi was effective in improving the morphology of the graphite in the simulation castings, and the effect of 0.01wt.% Sb addtion was better than that of 0.01wt.% Bi addition. When 0.03wt.% Sb alloy is added into the iron, the morphology of graphite and mechnical properties of the simulation casting was the best; the tensile strength, yield stress and elongation are 707MPa, 610MPa and 2.96% respectively, which are 74.4%, 81.9% and 22.9% higher than that of simulation casting without minor elements.
     (5) The addition of 0.1wt.% and 0.2wt.% inoculant by in-stream inoculation has good effects in increasing the mounts of graphite, but bad effects on the morphology of graphite, which also promotes the ferrite in the matrix, lower the machenical properties at last.
     (6) The addition of 0.2wt.% nanoparticle SiC in common casting can increase the mounts of nodular graphite, improve the graphite morphology and enhance its mechnical properties. The addition of 0.2wt.% nanoparticle SiC in simulation casting promotes the growth of the graphite but lower its tensile strength and brinell hardness.
引文
[1] Millis K.D., Ductile Iron Society. The Invention of Ductile Iron[J]. Modern Casting, 1998, (10): 41-44
    [2]吴德海.球墨铸铁[M].北京:中国水利水电出版社, 2006: 5-6
    [3] Mordern Casting Staff. 43rd Census of World Casting Production-2008[J]. Mordern Casting, 2009, 99(12):17-23
    [4]房贵如,王云昭.现代球墨铸铁的诞生、应用及技术发展趋势[J].现代铸铁, 2000, (1) :3-10
    [5]盛达.球墨铸铁工业生产60年的发展[J].现代铸铁, 2009, (2): 20-25
    [6]盛达.球墨铸铁与球化剂的现状与发展[A].中国稀土学会第四届学术年会论文集[C]. 2000年
    [7] Mordern Casting Staff. 41st Census of World Casting Production-2006[J].Mordern Casting, 2007, 97(12):22-25
    [8] Mordern Casting Staff. 40th Census of World Casting Production-2005[J].Mordern Casting, 2006, 96(12):28-31
    [9] Cai Qizhou, Wei Bokang. Recent development of ductile cast iron production technology in China[J]. CHINA FOUNDRY, 2008, 5(2): 82-91
    [10] Csonka J.M., Muratore E.C., Woods J.E. Survey on ductile iron practice[J]. Transactions of the American Foundry Society, 2002, 110:1099-1109
    [11] Brewster D.W., Foltz J.E.Jr., Henning W.A., et al. Survey on Ductile Iron Practice in US[J]. Mordern Casting. 1989, 79(6): 39-42
    [12] Goodrich G. M., Jones D.P. Factors Affrecting Ductile Iron Nodule Count: A Literature Review[J]. Transactions of the American Foundrymen's Society. 1993, 101: 24-27
    [13]盛达.含稀土的球化剂及其品质的评价[M].北京:清华大学出版社, 2005, 7-27.
    [14]孙文山,梁委中,刘军,等.大型厚壁球铁件生产现状及展望[J].现代铸铁, 1999, (3): 5-11.
    [15]段汉桥,韦世鹤,肖理明,等.厚大断面球铁中的几个主要问题[J].中国铸造装备与技术, 2001, (3): 7-12.
    [16]黎振华.厚大断面球墨铸铁件凝固过程热模拟与石墨畸变预测研究[D].北京:清华大学, 2005
    [17]王佐才.冷却条件对大断面铸件组织和凝固形貌的影响[D].辽宁:大连理工大学,1993
    [18] Liu P.C., Li C.L., Wu D.H., et al. SEM Study of Chunky Graphite in Heavy Section Ductile Iron [J]. 1983. 91: 119-126.
    [19] Hoover H.W.Jr. A Literature Survey on Degenerate Graphite in Heavy Section Ductile Iron[J] Transactions of the American Foundrymen's Society, 1986, 94: 601-608.
    [20]丁霖溥,丁刃锋,柴树繁,等.大型厚壁球墨铸铁件的质量控制[J].铸造, 1997, 1: 27-31
    [21]方克明.铸铁石墨形态和微观结构图谱[M].北京:科学出版社, 2000: 63
    [22] Hartung Cathrine, Knustad Oddvar, Wardenaer Kjell. Chunky graphite in ductile iron castings-theories and examples[J] Indian Foundry Journal, 2009, 55(2): 25-28
    [23] Karsay S.I., Compomanes E. Control of Graphite Structure in Heavy Ductile Iron Casting[J]. Transactions of AFS, 1970, 78: 85-92.
    [24] Ruhr R.K. Vermiculite Graphite Formation in Heavy Section Nodular Iron Castings[J]. AFS Transactions, 1968, 76: 497-503
    [25]周继扬, Engler S.厚壁球铁件中的碎块状石墨[J].铸造, 1997, (11): 10-17
    [26] Zhou J.Y., Chmitz W., Engler S. Formation of Austenite Shell around Nodular Graphite and Its Effect on Deterioration of Graphite[J]. AFS Transactions, 1990, 98: 783-786.
    [27] Zhang Z., Flower H.M., Niu Y.Y. Classification of degenerate graphite and its formation processes in heavy section ductile iron[J]. Materials Science and Technology, 1989, 5(7): 657-664
    [28] Itofuji H., Uchikawa H. Formation Mechanism of Chunky Graphite in Heavy-Section Ductile Cast Irons[J]. Transactions of the American Foundry men's Society, 1990,98: 429-448
    [29] Liu P.C. Observation on the graphite morphology of compacted graphite cast iron [J]. Transactions of AFS, 1981, 89: 65-78
    [30] Niu Ying-yi. A study of the Rare Earth on Chunky graphite[J]. The Foundry-man, 1988, (8): 390-389
    [31] Itofuji H., Masutani A. Nucleation and growth behaviour of chunky graphite[J].International Journal of Cast Metals Research, 2001 14(1): 1-14
    [32] Itofuji H., Kawamura K., Hashimoto N., et al. Production and Evaluation of Heavy Section Ductile Cast Iron[J]. AFS Transactions, 1990, 98: 585-595
    [33] Li Zhenhua, Li Yanxiang. Evaluation of melt quality and graphite degeneration prediction in heavy section ductile iron[J]. Metallurgical and Materials Transactions A, 2005, 36(9): 2455-2460
    [34]周继扬.厚壁球墨铸铁件的凝固形貌[J].铸造, 1996, 1: 1-7
    [35]孙少纯,周伯仪,刘满平.大断面球铁的前期处理研究[J].江苏理工大学学报, 1995, 16(2): 74-79.
    [36] Pan E.N., Chen C.Y. Effects of Bi and Sb on Graphite Structure of Heavy-Section Ductile Cast Iron[J]. AFS transactions, 1996, 104: 845-858
    [37]丁霖溥,张玉堂.稀土含量对Re-Mg大断面球铁的抗衰退性能的影响[J].球铁, 1991, (3): 16-19.
    [38]张锁梅,闫泽龙,马瑞.厚大断面球墨铸铁件凝固装置的研制[J].现代铸铁, 2007, (6): 67-70.
    [39] Li Z.H.; Geng H.Y.; Li Y.X. Development of thermal simulation system for heavy section ductile iron solidification[J].China Foundry, 2004 (S1):25-29
    [40]钮因亿,张竹,杨洪森,等.稀土大断面球铁中碎块状石墨形成影响因素的探讨[J].现代铸铁,1983, (2): 15-22
    [41] Javaid A., Loper C.R. Production of heavy-section ductile cast iron[J]. Transactions of the American Foundrymen's Society, 1996, 103: 23-26
    [42] Gross M.J., Wistehuff G., Colthurst H., et al. Effects of Mg, Ce, Ca, S and La on Graphite Stability in DI during Extended Holding[J]. AFS Transactions 1996, 52: 497-509
    [43] Skaland T. A new Approach to Ductile Iron Inoculation[J]. AFS trsanctions, 2001, 109: 1073-1083
    [44] Suarez O.M., Barrios Zamudio E., Loper Jr C.R. On Late Sulfur Addition and Grapgite Morphology in High Carbon Ductile Irons[J]. Transactions of the American Foundry Society, 2003, 111: 665-674
    [45]汪百夫,黄谷春.对三种厚壁球铁用球户剂成分的改进意见[J].长沙交通学院学报. 1995, 11(4), 22-27.
    [46]杨青,许瑞高.钇基重稀土镁球化剂的应用研究[J].现代铸铁, 2004, (4): 15-19.
    [47]郭二军,王丽萍,姚秀荣.轻、重稀土对球墨铸铁抗衰退性能的影响[J].中国稀土学报, 2003, 21(1): 44-48.
    [48]胡学军,陆德平,谢仕芳.钇基重稀土复合球化剂试验研究[J].铸造, 2001, 50(7): 380-385
    [49] Lou H.T, Pan E.N. Effects of minor elements Pb, Bi, Sb and Ce on the microstructures and mechanical properties of heavy section ductile cast irons[J]. Chukung (Journal of Chinese Foundrymen's Association), 1998, 24(1): 23-4534
    [50] Liu P.C., Li T.X., Rue Z.J., et al. The Role of Antimony in Heavy Section Ductile Iron[J]. AFS Transactions, 1990, 98: 753-757.
    [51] Compomances E. Effects of Minute Addition of Antimony on Structrue and Properties of Ductile Iron[J]. AFS Transactions, 1971, 79: 57-62
    [52] Liu P.C., Li T.X., Li C.L., et al. Study of the Effects of Yttrium, Cerium and Rare Earths on the Graphite Morphology in Heavy Section Ductile Iron[J]. AFS Transactions, 1989, 97: 11-16.
    [53] Javaid A., Loper Jr C.R. Production of Heavy-Section Ductile Cast Iron[J]. AFS Transactions, 1995, 103: 135-150.
    [54]吴春京,王艳丽,沈定钊.微量元素铋、锑对大断面球铁件石墨形态的影响[J].钢铁, 1995, 30(10): 42-47.
    [55] Pan E.N.,Lin C.N., Chiou H.S. Effects of Lead and Solidification Conditions on Graphite Structure of Heavy Section DI[J]. AFS Transactions, 1995, 103: 265-273
    [56]周继扬.联邦德国大型球铁件生产技术.铸造, 1987, 11: 1-4
    [57]张友寿,李四年,陈菁等.钡、钙在大断面球铁中抗衰退作用研究[J].湖北工学院学报, 1996, 11(3): 17-22.
    [58]陈惠敏,张友寿,陈菁等.含钡钙变质剂在铸态高韧性薄壁和厚壁球铁件中的生产作用[J].现代铸铁, 1997, (4): 34-37.
    [59]李小娟,时胜利,付永晟.大断面球墨铸铁件的质量控制措施[J].铸造技术. 2007, 28(10): 1383-1385.
    [60] Skaland T.; Grong O., Grong T. A model for the graphite formation in ductile cast iron I inoculation mechanisms[J]. Metallurgical Transactions A (Physical Metallurgy andMaterials Science), 1993, 24A (10) 2321-2345
    [61] Ding Linpu. Effect of Cooling Condition on Solidification Characteristies of Heavy Section Ductile Iron Casting[J]. Mechanical Engineering of China, 1991 (1): 24-29
    [62]张俊,徐君东,李琪昌.采用强冷工艺生产厚大断面球铁花盘铸件[J].铸造技术, 2000, (2): 3-5.
    [63]王晶琦.采用外冷却生产厚大断面球铁铸件的试验研究[J].现代铸造, 1996, (2): 11-17
    [64] Withey D.H, Loper Jr C.R. Effect of the Use of Chills in Heavy Section Ductile Iron Castings[J]. AFS Transactions, 1969, 77: 262-280
    [65] Laurentiu Nastac. Modeling and Simulation of Microstructure Evolution in Solidifying Alloys[M]. Boston: Kluwer Academic Publishers, 2004: 247-259
    [66]陈启善,陈和法,张勤贤,等.显微激冷与大断面球墨铸铁的凝固行为[J].东南大学学报, 1995, 25(2): 43-49.
    [67]程其善,程和法,朱启鑫.大断面球铁悬浮浇注工艺研究[J].热加工工艺, 1994, (5): 40-41.
    [68]刘满平,孙少纯,周伯仪.悬浮浇注对大断面球铁石墨形态及凝固特性的影响[J].现代铸铁, 1998, (1): 26-29.
    [69] Asenjo I., Larranaga P., Sertucha J. Effect of mould inoculation on formation of chunky graphite in heavy section spheroidal graphite cast iron parts[J], International Journal of Cast Metals Research, 2007, 20(6): 319-324
    [70]陈美玲,李建卫,高宏.改性纳米SiC粉体强化球墨铸铁的组织和力学性能研究[J].材料导报, 2006, 20: 214-215.
    [71] Popescu M., Zavadil R., Sahoo M. SiC-The Most Effient Addtion to Increase the Nodular Count in Ductile Iron. International Journal of Metalcasting[J], 2009, 3(1): 53-63
    [72]陈维平,罗杰,李元元.铸造近净成形技术与节能减排[R].威海:中国机械工程学会铸造分会, 2009
    [73]郝石坚.现代铸铁学[M].第二版.北京:冶金工业出版社, 2009: 193
    [74] Dalati K.; Akhlaghi F.; Nili-Ahmadabadi M. Influence of inoculant and/or SiC addition on characteristics of grey cast iron[J]. International Journal of Cast Metals Research, 2004, 17(3): 147-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700