苎麻转P_(SAG12)-IPT基因和B_t基因的分子检测及性状考察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻是我国传统的纤维作物之一,历史上在我国的农业生产中占有重要地位。随着社会的发展,市场需求的变化,苎麻生产的发展面临诸多挑战,如人口的增加,耕地面积的逐年减少等。因此,提高苎麻单产成为保持苎麻产业可持续发展的有效途径。目前,传统育种方法的局限性已逐步显现。植物基因工程为苎麻育种带来了新的途径。将苎麻导入各种目的基因后,经过选育,有望获得苎麻新品种。
     P_(SAG12)-IPT基因能自我调节细胞分裂素的产生,延缓植物叶片的衰老。Bt基因为编码苏云金杆菌毒蛋白的基因,是当今农业上利用最广的一种杀虫基因。本实验室在建立了苎麻的遗传转化体系后,将P_(SAG12)-IPT基因和Bt基因分别导入苎麻品系“5041”和苎麻品种“芦竹青”中,并获得了大量的转基因株系。本研究对获得的转P_(SAG12)-IPT基因和Bt基因苎麻植株进行了分子检测,从分子水平上验证了目的基因已整合在苎麻基因组中,并能够稳定遗传;对转P_(SAG12)-IPT基因苎麻T_0代株系的光合特性等进行了测定,对转Bt基因苎麻T_0代株系的抗虫性进行了室内鉴定,并对两个转基因材料T_0代和T_1代株系的农艺性状和品质性状等进行了考察。主要研究结果如下:
     1.利用PCR、Southern杂交等技术对转基因苎麻T_0代和T_1代株系进行检测,均检测到阳性植株。在T_0代转基因苎麻“5041”中,NptⅡ基因(选择标记基因)的PCR阳性率为80.1%,P_(SAG12)-IPT基因(目的基因)的PCR阳性率为69.8%,共转化率为66.1%;在T_0代转基因苎麻“芦竹青”中,NptⅡ基因(选择标记基因)的PCR阳性率为73.8%,Bt基因(目的基因)的PCR阳性率为33.4%,共转化率为33.4%。外源基因在不同材料中的遗传行为不同,对T_1代转基因苎麻进行Km选择培养和PCR检测发现,在转基因苎麻“5041”中,NptⅡ基因和P_(SAG12)-IPT基因的遗传符合3:1的比例,而在转基因苎麻“芦竹青”中,NptⅡ基因的遗传比符合1:1,Bt基因的遗传符合3:1的比例。Southern分子杂交结果进一步验证了上述结论。表明本实验室获得了转基因苎麻T_0代和T_1代植株,为进一步进行生理指标的测定和性状考察研究奠定了基础。
     2.在大田环境下,转P_(SAG12)-IPT基因T_0代苎麻的光补偿点、表观量子效率和暗呼吸速率和对照间存在显著差异;在净光合速率(Pn)的日变化中,转基因苎麻部分株系表现为单峰曲线,其他株系表现为双峰曲线,而对照始终表现为单峰曲线;对转基因苎麻株系的叶绿素含量进行了测定,在头麻和二麻纤维成熟期,叶绿素b含量均低于对照,而叶绿素a/b值均高于对照。相关分析表明,在Pn和主要生理因子的关系中,转基因苎麻头、二麻呈显著性相关,三麻的相关性不显著。另外,T_0代转基因株系P513和P504的内源细胞分裂素含量显著高于对照,而且植株形态表现异常,T_0代其他转基因株系及T_1代各转基因株系内源细胞分裂素的含量和对照相比没有显著差异。P_(SAG12)-IPT基因的导入导致苎麻的生理特性发生了改变。
     3.通过室内抗虫性生物检测,转Bt基因苎麻株系叶片对苎麻赤蛱蝶幼虫的生长具有抑制作用。转基因株系均表现出了一定的抗性,其中株系SBL2叶片喂养的苎麻赤蛱蝶幼虫死亡率达到38.7%,株系SBL3叶片喂养的苎麻赤蛱蝶蛹死亡率达到24.8%,株系SBL2叶片喂养的苎麻赤蛱蝶成虫畸形率达到40.0%。同时用转Bt基因植株和非转基因植株的叶片喂食苎麻赤蛱蝶幼虫,这些幼虫更趋向于取食非转基因叶片,转基因植株的叶片受到苎麻赤蛱蝶幼虫危害的程度要明显低于对照。在转Bt基因T_1代材料中,将阳性植株种植在常年苎麻赤蛱蝶发生严重的田块,在自然发虫状态下观察,非转基因植株的叶片被害虫取食,个别单株的叶片甚至被食光,而转基因植株没有受到苎麻赤蛱蝶幼虫的危害。
     4.转P_(SAG12)-IPT基因苎麻T_0代株系和对照相比,植物学性状发生了一定程度的变异,如株系P504茎中上部发生很多分枝;株系P513在每季麻生育后期,整株叶片从下往上叶缘向上发生翻卷;部分株系发生了自交不育现象。转基因株系的农艺性状和品质性状也产生了显著变异:株系P502的主要性状指标优于受体品系5041;大部分株系部分性状指标优于对照,部分性状指标劣于对照;少数株系的某些性状甚至发生了特殊变异。转Bt基因苎麻和对照相比,T_0代株系性状并无大的变化,转Bt基因苎麻基本保持了原品种的特性。对两个转基因材料T_0代和T_1代的农艺性状和品质性状进行比较发现,外源基因没有改变转基因苎麻的遗传行为。
     5.本研究获得了具有利用价值的转基因材料。如转P_(SAG12)-IPT基因株系P502,不仅单株原麻重高于对照,而且株高、分株力等农艺性状和纤维支数等品质性状显著优于对照,这将是一个好的育种材料;转P_(SAG12)-IPT基因株系P506和P512的单株原麻重极显著高于对照,转P_(SAG12)-IPT基因株系P513的纤维支数极显著高于对照,转Bt基因株系SBL2的抗虫性显著优于对照等,这些将是很好的育种中间材料。
Ramie(Boehmeria nivea L.Gaud),one of the traditional fiber crops,had plaid an important role in our agriculture production.With development of society and market demand,ramie production faces a challenge,such as increment of population,decrement of farmland year by year.Thus,it would be a effective way to enhance per unit yield for the continued advance of ramie production.For improving ramie yield and quality by traditional breeding difficultly at present,plant genetic engineering provide a new method for ramie breeding,it is hopeful to obtain novel cultivars by introducing goal gene into ramie plants.
     P_(SAG12)-IPT(IPT gene with the SAG12 promoter) gene could autoregulate cytokinin production and delay leaf senescence.Bt(Bacillus thuringiensis) insecticidal gene encoded Bt toxin protein was applied on the most large scale in agriculture now.The two genes were introduced into ramie strain "5041" and cultivar "Luzhuqing" plants respectively,and an array of transgenic lines were obtained after we established ramie transformation system successfully.This paper carried out molecular detection on transgenic plants with P_(SAG12)-IPT and Bt gene,the results confirmed that the two gene had been integrated into ramie genome and could transcript normally.Photosynthetic characteristics of T_0 transgenic lines with P_(SAG12)-IPT gene were measured,the insect-resistance of the T_0 transgenic lines with Bt gene was bioassaied in the lab. Agronomic characters and quality character of all T_0,T_1 transgenic lines were tested.The main results in this study are as follows:
     1.T_0,T_1 transgenic lines were detected by PCR and Southern blotting analysis,and each line had got positive plants.The PCR positive ratio of NptⅡgene was 80.1%、the PCR positive ratio of P_(SAG12)-IPT gene was 69.8%and co-transformation ratio was 66.1% among T_0 transgenic ramie strain"5041" plants,whereas the PCR positive ratio of NptⅡgene was 73.8%、the PCR positive ratio of Bt gene was 33.4%and co-transformation ratio was 33.4%among T_0 transgenic cultivar "Luzhuqing" plants.The behavior of exogenous genes in both strain and cultivar were different.Mendelian inheritance of PCR detection was showed single dominant locus and proved by Southern blotting analysis in T_1 of all transgenic plants.Finally,we got T_0,T_1 transgenic plants,which would provide material basis for further test of physiology and characters.
     2.Light compensation point(LCP),apparent quantum yield(AQY) and dark respiration rate(Rd) of T_0 transgenic plants with P_(SAG12)-IPT gene were tested in the field in 2007,and they showed significance difference by compared with non-transgenic control.Part of the transgenic lines showed a single-peak curve,and the others showed a double-peak curve,but control always showed a single-peak curve in the photosynthetic rate(Pn) diurnal changes,the content of Chlorophyll(Chl) b of the control was higher than that of the transgenic lines,but the Chl a/b of the transgenic lines were higher than that of control in the first season and the second season in the fiber development period. Correlations between Pn and the major physiologic factors were analyzed and the results showed that different correlation coefficient existed in the first season、the second season and the third season.In addition,the endogenous cytokinins content of T_0 P513 and P504 line were significantly higher than that of control,but the major morphological traits were abnormal,there were no significant variation between the other lines(T_0 and T_1) and control.The integration of P_(SAG12)-IPT gene resulted in the changes of physiological traits.
     3.Bt transgenic lines inhibited obviously the herbst larva growth in the lab.All transgenic lines exhibited insecticidal activity,the mortality of larva fed with SBL2 line reached 38.7%,the mortality of pupae fed with SBL3 line reached 24.8%,the misshapen rate of the adult fed with SBL2 line reached 40.0%.The herbst could distinguish non-Bt ramie leaves from Bt ramie leaves when two kinds of leaves were fed synchronously. Moreover,the herbst prefers to feed on Bt ramie leaves.T_1 Bt transgenic lines and control were planted in the field where herbst took place seriously average year,the results showed that non-Bt ramie leaves were fed on by larva,even very few had been eaten up, but Bt ramie grew normally.
     4.The morphological traits of P_(SAG12)-IPT lines showed variation at some extent by compared with control,for example,there were many branches in middle section of P504 stem;the edge of the whole P513 leaves rolled up from bottom to top in late development period,part of lines exhibited inbred sterility.Agronomic characters and quality character of P_(SAG12)-IPT lines showed significantly variation:major character targets among P502 line were better than that of the cultivar 5041,Part of character targets were better than that of CK but any character targets were less than that of CK among major lines,There were even specific variance among the very few lines.T_0 Bt transgenic lines maintained the main traits compared to non-Bt ramie,two exogenous gene did not affect ramie heredity.
     5.The favorable transgenic lines were obtained in this study.P502 line was significantly superior to the control,such as plant height,rate of effective tiller,raw fiber weight,fiber fineness,it would be a excellent breeding material,raw fiber weight of P506 line and P512 line,fiber fineness of P513 line and insect resistance of SBL2 line were better than that of control respectively,these lines would become breeding middle materials.
引文
1.布都会,奚亚军,刘曙东,任鹏.转叶片衰老延缓基因P_(SAG12)-IPT基因小麦株系光合性能的研究.西北植物学报,2007,27(10):2104-2107
    2.曹孟良.农杆菌介导的水稻高效遗传转化体系的建立.湖南农业大学学报,1999,5:349-356
    3.陈德富,陈喜文.苎麻外源基因导入研究简报,李宗道主编,苎麻生物技术研究进展,湖南科学技术出版社,321-323
    4.陈建荣,张学文,郭清泉.苎麻CCoAOMT基因全长cDNA克隆与序列分析.中国农业科学,2006a,39(5):1058-1063
    5.陈建荣,张学文,郭清泉.分离克隆苎麻CCoAOMT基因核心序列.作物学报,2006b,32(5):787-790
    6.陈建荣.农杆菌介导苎麻叶片遗传转化体系的研究.中国农学通报,2005,21(6):63-66
    7.陈喜文,陈德富,周朴华,李宗道.苎麻原生质体培养及植株再生.植物学报,1996,38(2):118-122
    8.成雄伟.我国苎麻纺织工业历史现状及发展.中国麻业科学,2007,29,增刊77-85
    9.邓启云,袁隆平,蔡义东,刘建丰,赵炳然,陈立云.超级杂交稻模式株型的光合优势.作物学报,2006,32(9):1287-1293
    10.董延瑜,郑思乡,洪亚辉,任春梅,刘国民,邓明其,程尧楚.苎麻多倍体诱导的基础研究.湖南农学院学报,1992,18(3):529-538
    11.范贤林,石西平,赵建周.转双基因烟草对棉铃虫的杀虫活性评价.生物工程学报,1999,15(1):6-10
    12.付永彩,丁月云,刘新仿,孙传清,曹守云,王东江,何锶洁,王象坤,李良材,田文忠.抑制衰老的嵌合基因在水稻中的转化.科学通报,1998,43:1963-1967
    13.高玉龙,焦芳婵,徐照丽,李文正.多重PCR在烟草转基因检测中的应用.生物技术通报,2008,(2):140-142
    14.官铃亮,吴卫,郑有良,王涛.红花蕾期不同叶位叶的光合特性与产量的相关性.作物学报,2007,33(8):1352-1359
    15.郭安平.17份苎麻栽培品种的RAPD分析.农业生物技术学报,2003,3
    16.郭殿京,张丽明,孙勇如.禾谷类作物基因工程新进展.农业生物技术学报, 1997,5(4):360-365
    17.郭金英,朱协飞,郭旺珍,张天真.转Bt+Sck基因双价抗虫棉的抗虫性及遗传分析.棉花学报,2007,19(2):88-92
    18.郭清泉,刘飞虎.苎麻自交一代分离变异的研究.湖南农学院学报,1989,15:54-59
    19.郭清泉,肖之平,杨瑞芳,郭有余,刘飞虎,黎觐臣.苎麻新品种湘苎3号选育及光合作用等特性的研究.中国农业科学,1992,25(6):58-62
    20.郭清泉,陈建荣,杨瑞芳,胡日生.苎麻叶片愈伤组织诱导与植株再生的研究.中国麻作,1998,20(2):1-4
    21.郭三堆,崔洪志,夏兰芹.双价抗虫转基因棉花研究.中国农业科学,1999,32(3):1-7
    22.何忠伟,陈艳芬,伍小松.中国转基因抗虫棉发展的现状与对策.世界农业,2005(1):18-20
    23.黄记生,莫荣达.苎麻下胚轴组织培养的器官形成.实验生物学报,1981,14(2):111-114
    24.黄振喜,王永军,王空军,李登海,赵明,柳京国,董树亭,王洪军,王军海,杨今胜.每公顷15000千克产量杂交玉米灌浆期的光合特性.作物学报,2007,40(9):1898-1906
    25.胡继金.苎麻试管苗未离体叶片生芽的细胞学观察.作物学报,1991,17(3):192-197
    26.揭雨成,周青文,陈佩度.苎麻栽培品种亲缘关系的RAPD分析.作物学报,2002,28(2):254-259
    27.靳忠英,彭正松,李育明,王梅.半夏的光合特性.作物学报,2006,32(10):1542-1548
    28.李洪清,李美茹,刘鸿先.木薯抗叶片早衰的基因工程育种.中国科学院研究生院学报,2000,17(2):74-80
    29.李树川.苎麻茎尖组织低温保存技术研究.中国麻作,1992,(1):7-11
    30.李子银,胡会庆.农杆菌介导的植物遗传转化进展.生物工程进展,1998,18(1):22-27
    31.刘飞虎,梁雪妮.苎麻品种叶片光合作用特征研究.中国麻业,2004,26(6).267-271
    32.刘立军,彭定祥,蒙祖庆.苎麻RAPD反应体系的构建和优化.中国农学通报,2006a,22:35-39
    33.刘立军,孙珍夏,彭定祥.苎麻ISSR反应体系的构建和优化.中国农学通报,2006b,22:64-68
    34.刘丽君,吴俊江,高明杰,汪清胤,黄永芬,夏凯,李文华.转IPT基因大豆感染SMV1号的生理特性变化.大豆科学,1999,18(3):213-218
    35.李宗道.苎麻生物技术研究进展.长沙:湖南科学技术出版社,1996,4
    36.李宗道.现代苎麻高产栽培.上海:上海科学技术出版社,1997,10
    37.吕江南,贺德意,王朝云,汤清明,刘恩平,谭石林.全国麻类生产调查报告.中国麻业,2004,26,2:101-102
    38.陆云鹏,陈火英,庄天明.Bt毒蛋白基因在转基因抗虫植物中的应用.生物学通报,2000,35(5):15-17
    39.罗远选,廖晓露,尹帮奇.苎麻不同生育期的解剖结构、纤维发育和光合特性.作物研究,1994,8:12-15
    40.莫荣达,黄记生.植物激素对苎麻茎、叶外植体器官分化的影响.植物生理学通讯,1982,(3):39-41
    41.潘昌立,赵立宁.苎麻多倍体诱导技术研究.中国麻作,1990,(3):11-14
    42.祁永斌,叶胜海,陆艳婷,张小明.获得安全转基因水稻的几种可能途径.分子植物育种,2007,5(4):825-833
    43.彭定祥,杨曾盛.苎麻的光合特性及其与纤维产量和品质的关系.华中农业大学学报,1986,5(1):56-61
    44.彭定祥.苎麻自交纯化的选择方法.华中农业大学学报,1993,12(2):106-111
    45.沈成国.植物衰老生理与分子生物学.北京:中国农业出版社,2001
    46.孙彩霞,齐华,孙加强,张丽莉,缪璐.转基因棉花苗期光合特性的研究.作物学报,2007,33(3):469-475
    47.汪波,彭定祥,孙珍夏,张娜,邢秀龙.根癌农杆菌介导苎麻转绿色荧光蛋白(GFP)基因植株再生.作物学报,2007,33(10):1606-1610
    48.王春莲.转基因作物的抗虫性分析.安徽农业科学,2006,34(23):6235-6236
    49.王关林,方宏筠.植物基因工程.第二版.北京:科学出版社,2002
    50.王桂花,米福贵,刘娟,霍秀文,杨洪雁,董淑君.共转化CBF4和bar基因蒙农杂种冰草植株的分子检测.内蒙古大学学报(自然科学版),2008,3(1): 61-65
    51.王晓玲,彭定祥.基本培养基对苎麻不同外植体愈伤诱导及分化的影响.华中农业大学学报,2003,22:431-435
    52.王晓玲,彭定祥.不同基因型对苎麻愈伤组织诱导及分化的影响.长江大学学报,2005,2(8):64-66
    53.王竹,杨文钰,吴其林.玉米大豆套种遮荫条件下大豆光合特性和产量的效果.作物学报,2007,33(9):1502-1507
    54.吴乃虎.基因工程原理.科学出版社出版,北京,1998
    55.奚亚军,张启发,林拥军,侯文胜,路明.利用农杆菌浸种法将叶片衰老抑制基因P_(SAG12)-IPT导入普通小麦的研究.中国农业科学,2004,37(8):1235-1238
    56.肖松华,陈旭升,许乃银,刘剑光,狄生春,陈松,黄骏麒.转Bt基因棉的抗虫性遗传及其生化基础研究.江西棉花,2001,23(5):10-16
    57.肖松华,刘剑光,狄佳春,陈旭升,许乃银,陈松,黄骏麒.转基因抗虫棉Bt 毒蛋白表达量的传递方式研究.棉花学报,2002,14(5):295-299
    58.谢德意.棉花体细胞胚胎发生能力比较及IPT基因的遗传转化.[博士学位论文].武汉:华中农业大学,2006
    59.熊和平,蒋金银,喻春明,郭运玲.苎麻纯系培育和杂种优势预测的研究.中国农业科学,1995,28(10)54-64
    60.熊兴耀,甘霖,李宗道.苎麻原生质体再生植株及影响因子的初步研究.农业生物技术学报,1998,4(2):147-182
    61.徐子勤.重要禾谷类植物转基因研究.生物工程进展,2001,21(1):59-74
    62.徐冉,陈存来,邵历,张礼凤,王彩洁,李永孝.夏大豆光合速率和光照强度的关系.作物学报,2005,31(8):1080-1085
    63.许大全,徐宝基,沈允钢.C_3植物光合效率的日变化.植物生理,1990,16:125
    64.颜昌敬,黄剑华.苎麻花药培养研究初报.上海农业科技,1986,(4):13-17
    65.杨甲定,刘志民.大田玉米套种花生光合日变化的研究.作物学报,2002,28(4):475-479
    66.易自力,李祥,蒋健雄,王志成,刘清波.苎麻再生体系的建立及抗虫转基因苎麻的获得.中国麻业,2006,28(2):61-66
    67.喻春明.我国苎麻育种研究进展及发展趋势.中国麻业科学,2007,29,增刊86-88
    68.曾凡锁,詹亚光.转基因植物中外源基因的整合特性及其研究策略.植物学通报,2004,21(5):565-577
    69.张福泉.棉花DNA导入苎麻引起变异的研究.中国农业科学,2000,33(1):103-106
    70.张启军,吕川根,夏士健,宗寿余,漆庆明,虞德容,孙永华.转sbk和sck 抗虫基因水稻的获得.分子植物育种,2008,6(1):49-52
    71.张献龙,唐克轩.植物生物技术.北京:科学出版社,2004
    72.张宪政.作物生理研究法.北京:农业出版社,1992,145-148
    73.张秀丰,苏旭东,张伟,袁耀武,周巍,张会彦,齐哲.五重PCR检测转基因大豆.中国粮油学报,2008,23(3):194-198
    74.章家长.P_(SAG12)-IPT基因导入延缓中华结缕草衰老研究.[博士学位论文].北京:中国农业大学,2005
    75.郑丽.根癌农杆菌介导P_(SAG12)-IPT和3DN-iaaL基因转化切花菊及抗早衰研究.[博士学位论文].重庆:西南农业大学,2003
    76.赵建周,范云六.转双价基因抗虫烟草延缓棉铃虫抗性适应的作用评价.科学通报,1999,44(15):1635-1639
    77.赵庆华,颜昌敬,潘昌立,杨泌泉,王春桃,李宗道.苎麻叶片组织培养的研究.中国麻业,1984,(4):9-12
    78.钟爱平.苎麻诱导无融合生殖及其胚胎学初步研究.湖南农业大学,1993
    79.周建林,揭雨成,蒋彦波.用微卫星DNA标记分析苎麻品种的亲缘关系.作物学报,2004,30(3):289-292
    80.Akiyoshi D E,Klee H,Amasino R M,Nester E W and Gorden M P.T-DNA of Agrobacterium tumeufaciens encode an enzyme of cytokinin biosynthesis.Proc Natl Acad Sci USA,1984,81:5994-5998
    81.Barry G F,Rogers S G,Fraley R T and Brand L.Identification of a cloned cytokinin biosynthetic gene.Proc Natl Acad Sci USA,1984,81:4776-4780
    82.Barton K A,Whiteley H R and Yang N S.Bacillus thuringiensis &-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects.Plant Physiol,1987,85:1103-1109
    83.Baten J,Rothsiein S J and Thomgson J E.Expression of nuclear and chloroplast photosynthesis-specific genes during leave senescence.Exp Bot,1991,42:801-811
    84. Beinsberger S E I, Valcke R L M and Deblaere R Y. Effects of the introduction of Agrobacterium tumefaciens T-DNA ipt gene in nicotiana tabacum Lcv. Plant Cell Physiol, 1991,32:489-496
    
    85. Bettany A J E, Dalton S J, Timms E, Dhanoa M S and Morris P. Effect of selectable gene to reporter gene ratio onter frequency of co-transformation and co-expression of uidA and hpttransgenes in protoplast-derived plants of latt fescue. Plant cell Tiss Org, 2002, 68:177-186
    
    86. Blackwell J. Cytokinin biosynthesis by extracts of Zea mays. Phytochemistry, 1994, 35: 339-342
    
    87. Chai B, Maqbool S B and Hajela R K. Cloning of achitinase-like cDNA(hs2),its transfer to creeping bentgrass(Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Science, 2002,163:183-193.
    
    88. Chang H, Jones M L, Banowetz G M and Clark D G. Overproduction of Cytokinins in Petunia Flowers Transformed with P_(SAG12)-IPT Delays Corolla Senescence and Decreases Sensitivity to Ethylene. Plant Physiol, 2003, 132:2174-2183
    
    89. Chattopadhyay A, Bhatnagar N B and Bhatnagar R. Bacterial insecticidal toxins. Crit Rev Microbiol, 2004, 30:33-54
    
    90. Chen C M and Melitz D K. Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures. FEBS Lett, 1979, 107:15-20
    
    91. Cho H J. Appl. Microbiol Biotechnol, 1995,44:133-138
    
    92. Cho M J, Choi H W and Lemaux P G. Production of transgenic tall fescue and red fescue plants by particle bombardment of matureseed-derived highly regenerative tissues. Plant Cell Reports, 2000, 19:1084-1089
    
    93. Cho M J, Choi H W and Lemaux P G. Transformed torchargrass(Dactylis glomerata L) plants produced from highly regenerative tissues derived from mature seeds. Plant Cell Reports, 2001, 20:318-324
    
    94. Christeller J T, Laing W A, Markwick N P and Burgess P J.Insect Biochem.Mol Biol, 1992,22:735-746
    
    95. Clouse S D. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant, 1996, 10:1-8
    96. Dowd P F and Lagrimini L M. In Advances in Insect Control: The Role of Transgenic Plants, 1.997, Ppl95-223
    
    97. Doyle J J and Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13-15
    
    98. Dusi D M A, Almeida M D E R P, Caldas L S and Gander E S. Transgenic plants of ramie (Boehmeria nivea Gaud.) obtained by Agrobacterium mediated transformation. Plant Cell Rep, 1993,12:625-628
    
    99. Dvora S, Beny K, Dalia R D, Yigal E and David G. Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene. Plant Pathol, 2008, 120: 289-297
    
    100. Estruch J J, Warren G W, Mullins M A, Nye G J, Craig J A and Koziel M G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences USA, 1996, 93:5389-5394
    
    101. Fischhoff D A, Bowdish K S, Perlak F J, Marrone P G, McCoormick S M, Niedermeyer J G, Dean D A, Kusano K K, Mayer E J, Rochester D E, Rogers S G and Fraley R T. Tnsect tolerant transgenic tomato plants. BioTechnol, 1987, 5:807-813
    
    102. Gan S and Amasino R M. Making sense of senescence molecular genetic regulation and manipulation of leaf senescence. Plant Physical, 1997, 113:313-319
    
    103. Gan S and Amasino R M. Cytokinins in plant senescence from spray and pray to clone and play. BioEssays, 1996, 18:557-565
    
    104. Gan S and Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270:1986-1988
    
    105. Gatehouse A M, Davison C A and Newell A.Transgenic potato plants with enhanced resistance to the potato moth, laconobia oleracea: growth room trials. Mol Breed, 1997, 3:49-63
    
    106. Gatz C and Lenk L. Promoters that respond to chemical inducers. Trends in Plant Sci, 1998, 3:352-358
    
    107. Gut H and Matile P. Apparent induction of key enzymes of the lyoxylic acid in senescenct barley leaves. Planta, 1988, 176:548-550
    108. Hannay C L. Crystalline inclusions in aerobic spore-forming bacteria. Nature, 1953, 172:1004
    
    109. Hannay C L and Fitz-James P. The protein crystals of bacillus thuringiesis berliner. Can J Microbiol, 1955, 1:694-709
    
    110. Hayati R, Egli D B and Crafts-Brandner S J. Carbon and nitrogen supply during seed filling and leaf senescence in soybean. Crop Sci, 1995, 35(1):063-069
    
    111. Hen C M and Melitz D K. Cytokinin biosynthesis in a cell free system from cytokinin autotrophic tobacco tissue culture. FEBS Lett, 1979, 107:15-20
    
    112. Hofmann C, Luthy P, Hutter R and Pliska V. Bingding of the delta-edotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur J Biochem, 1988b, 173:85-91
    
    113. Hofmann C, Vanderbruggen H, Hofte H, Van R J, Jansens S and Van M H. Sepcificity of Bacillus thuringensis 6-endotoxins is correlated with the presence of high-affinity binding sites in brush-border membrane of target insect midgets. Proc Natl Acad Sci USA, 1988a, 85:7844-7848
    
    114. Hudspeth R L, Hobbs S L, Anderson D M and Grula J W. Characterization and expression of chitinase and β-1,3- glucanase genes in cotton. Plant Mol Biol, 1996, 31:911-916
    
    115. Hye R W, Kyung M C, Joon H P and Sung A O. ORE9, an F-box protein that regulates leaf senescence in arabidopsis. Plant Cell, 2001,13:1779-1781
    
    116. Jiang C Z , Rodermel S R and Shibles R M. Photosythesis rubisco activity and amount and their regulation by transcription in senescencing soybean leaves. Plant Physiol, 1993, 101:105-112
    
    117. Jordi W, Schapendonk A and Davelar E. Increased cytokinin levels in transgenic P_(sag12)-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ, 2000, 23:279-289
    
    118. Kunkel T, Niu Q W and Chan Y S. Inducible isopentenyl transferase as a high efficiency marker forplant transformation. Nat Biotechnol, 1999, 17:916-919
    
    119. Lai Q X, Bao Z Y, Zhu Z J, Qian Q Q and Mao B Z. Effects of osmotic stress on antioxidant enzymes activities in leaf discs of P_(sag12)-IPT modified gerbera. Zhejiang Univ Sci B, 2007, 8(7):458-464
    120. Le N H, Tara V T, John S and Gary B. Regulation of flooding tolerance of P_(sag12)-IPT arabidopsis plants by cytokinin. Experimental Botany, 2005, 56(415):1397-1407
    
    121. Letham D S. A factor inducing cell division from Zea mays. Life Sci, 1963, 8:569-573
    
    122. Lin Y J, Cao M L, Xu C G and Chen H W. Cultivation rice with delaying leaf-senescenc by P_(sag12)-IPT gene transformation. Acta Botanica Sinica, 2002, 44(11):1333-1338
    
    123. Lohman K N, Gan S, John M C and Amasino R M. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant, 1994, 92:322-328
    
    124. Ludmila R, Hongjian L and Ron M. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 2002, 130: 1143-1149
    
    125. Martin PA W and Travers T S. Worldwide abundance and distribution of BT isolates. Appl Environ Microbiol, 1989, 55:2437-2442
    
    126. Martineau B, Houck C M and Sheehy R E. Fruit-specific expression of the A.tumefacient isopentenyl transferase gene in tomato: effects on fruit ripening and defense-related gene expression in leaves. Plant J, 1994, 5:11-19
    
    127. Mckenzie M J, Mett V and Reynolds P H S. Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter Plant Physiol, 1998, 116:969-977
    
    128. Medford J I, Horgan R and EI-Sawi Z. Alteration of endogenous cytoltinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant physiol, 1989, 91:808-811
    
    129. Naomi O, Michelle T, David J and Judy Y. Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knottedl under the control of a senescence-activated promtoer. Plant Cell, 1999, 11:1073-1078
    
    130. Noh Y S and Amasino R M. Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant molecular Bio, 1999,41: 181-194
    
    131. Nooden L D and Leopold A C. Phytohormones and the endogenous gldation of senescence and bscission. New York: Elsevier, 1978:329-369
    
    132. Nooden L D. Senescence and aging in plants. New York: Academic Press. 1988,1-50
    133. Ornella C, Tessa B, Carla S, Fulvio P, Efisio P and Sergio A. Delay of leaf senescence in Medicago sativa trandformed with the IPT gene controlled by the senescence-specific promoter SAG12. Plant Cell Rep, 2007, 26:611-615
    
    134. Peferoen M. Engineering of insect-resistant plants with Bacillus thuringiensis crystal protein genes In Plant Genetic Manipulation for Crop Protection , CAB International, Wallingford, 1992, 135-153
    
    135. Powell K S. Entomol Exp. Appl, 1995, 75: 61-65
    
    136. Purcell J P. Biochem. Biophys Res Commun, 1993, 196: 1406-1413
    
    137. James C. Global status of transgenic crops in 1997. ISAAA Briefs, No5, 1997, Ithaca, NY: ISAAA
    
    138. James C. Global Status of Commercialized Biotech/GM Crops: ISAAA Briefs, No 32, 2004, Ithaca, NY: ISAAA
    
    139. Richmond A E. Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 1957, 125:650
    
    140. Schmulling T, Beinsberger S and De Greef J. Construction of a heat-inducible chimeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett, 1989, 249:401-406
    
    141. Schnepf H E and Whiteley H R. Cloning and expression of Bacillus thuringensis crystal protein gene in Escherichia coli. Proc Nat Acad Sci USA, 1981, 78:2893-2897
    
    142. Schroeder K R. Response of nicotiana alata to insertion of an autoregulated senescence-inhibition gene. Am Soc Hortic Sci, 2001, 126:523- 530
    
    143. Shelton AM, Zhao J Z and Roush R T. Economic, ecological, food, safety and social consequence of the deployment of Bt transgenic plants. Annu Rev Entomol, 2002, 47:845-881
    
    144. Smart C M, Scofield S R and Bevan M W. Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Pant Cell, 1991, 3:647-656
    
    145. Smigocki A C and Owens L D. Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Pros Natl Acad Sci USA, 1988, 85:5131-5135
    146. Smigocki A C. Cytokinin content and tissue distribution it plants transformed by a reconstructed isopentenyl transferase gene. Plant Mol Biol, 1991, 16:105-115
    
    147. Smith R H and Hood E. Agrobacterium tumfaciens transformation of monocottyled -ons. Crop Sci, 1995, 35:301-309
    
    148. Souther E M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. Mol Biol, 1975, 98:503-517
    
    149. Takei K, Sakakibara H, Taniguchi M and Sugiyama T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf:implication of cytokinin species that induces gene expression maize response regulator. Plant Cell Physiol, 2001,42:85-93
    
    150. Thomas J C. Plant Cell Rep, 1995, 14:758-762
    
    151. Vaeck M, Reynaerts A, Hofte H, Jansens S, Beukeleer M D, Dean C, Zabeau M, Montagu M V and Leemans J. Transgenic plants protected from insect attack. Nature, 1987, 328:33-37
    
    152. Van L K, Beinsberger S E I and Valcke R L M. Morphometric analysis of the growth of Phsp70-ipt transgenic tobacco plants. JExp Bot, 1993,44:1671-1678
    
    153. Van S J. Cytokinins and Auxins in carnation senescence as related to chemical treatments. Acts Horticulturae, 1989, 261:69-80
    
    154. Weaver L M, Gan S, Quirino B and Amasino R M. A comparison of the expression stress and hormone trwatment. Plant molecular Biology,\99S, 37:455-469
    
    155. Yan X, Jiang T, Thomas G and Bingru H. Effects of P_(sag12)-IPT expression on cytokinin production, growth and senescence of creeping bentgrass (Agrostis stolonifera L.) under heat stress. Plant Growth Regul, 2008,10:1007-1018
    
    156. Yoshida Y. Nuclear control of chloroplast activity in elodea leaf cells. Protoplasma, 1961,54:476-492
    
    157. Zambryski P C. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regulation capacity. EMBO J, 1983, 2:2143-2150
    
    158. Zhang T, Van T L and Huynh J. Preisznerl development of flooding-tolerant Arabidopsis thaliana by autoregulated cytokinin production. Mole Breeding, 2000, 6:135-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700