滑动弧放电等离子体降解芳香烃类有机污染物的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业生产的发展和生活质量的提高,人类在生产和生活过程中不可避免地排放出各种污染物,对环境造成了各种不同程度的威胁。其中,由于芳烃类有机污染物对环境的污染尤为严重。各国科学家正在研究不同的技术对这类污染物的排放进行控制。相对常规方法,非平衡等离子体技术具有其独特的优点:能提供大量的高能电子,各种活性自由基,紫外线等。因此这种技术受到广泛关注,被视为环境治理的潜在技术之一。本文将一种新型的非平衡等离子体技术——滑动弧等离子体技术用于三类芳烃类污染物的降解。在充分认识滑动弧等离子体的基本物理特性基础上,研究利用其降解多环芳烃、1,2-二氯苯和飞灰中二恶英的过程,认识这些污染物的降解机理。本文的主要研究内容如下:
     (一)对研究相关背景和相关知识的文献综述。分别介绍了论文中的处理对象多环芳烃,氯苯和二恶英的基本物理化学性质,对环境的危害以及现有的处理方法。另外,对等离子体的定义和分类,非平衡等离子体的发生方式,以及非平衡等离子体技术在环境治理方面的应用进行了介绍。最后,对本文中所使用的滑动弧等离子技术的研究报道进行了充分综述,包括其物理化学特性,其在环境治理和能源转换,材料处理等方面的应用等。
     (二)滑动弧等离子体的物理特性研究。分析滑动弧放电在不同工作条件下的电参数特性。并通过利用快速傅立叶变换方法分析电压信号获取等离子体的脉动的频率特性。利用光栅光谱仪检测了不同实验条件下的滑动弧放等离子体中的发射光谱,检测了在不同的气氛下,滑动弧产生的主要自由基,以及在反应器中自由基的轴向分布。另外,对新近发展龙旋风滑动弧反应器的工作特性进行了研究。分析了在不同实验工况下的电参数特性;研究了在不同流量配置下等离子体物理特性的变化,并基于以上分析总结了龙旋风滑动弧等离子体反应器的三种工作模式,找到了稳定的工作模式。
     (三)利用滑动弧等离子体降解多环芳烃的研究。首先以萘为降解对象,研究了等离子体发生电路外部电阻、载气种类和萘的初始浓度对降解过程的影响。结果表明萘的降解率最高可达92.3%。降解率随着氧气浓度的增加而增加,随着外部电阻减小而增加。能量效率最高可达3.6g/kWh。降解能量效率随着外部电阻增大而明显增大。另外,检测了在不同气氛放电中的降解产物,通过分析降解产物分析萘在不同气氛放电中降解的主要机理。为了提高处理多环芳烃过程的能量效率,本文还研究了利用滑动弧同时脱除多种多环芳烃(二氢苊、芴、蒽和芘)过程。
     (四)臭氧辅助滑动弧等离子体降解1,2-二氯苯的研究。分析滑动弧等离子体工作条件中的关键参数对1,2-二氯苯降解过程的影响。结果表明,1,2-二氯苯的降解率相对偏低,当外部电阻为50kΩ,载气为氧气时,降解率最高可达74.1%。通过检测在不同气氛下的主要降解产物,研究1,2-二氯苯的降解机理。为了提高1,2-二氯苯的降解率,本文利用臭氧辅助滑动弧对1,2-二氯苯进行降解。研究了臭氧在等离子体区域和后等离子体区域的作用以及气氛对这种新方法的影响。结果表明,只有在氮气和氧气等离子体放电下,在后等离子体区域同入臭氧才能够提高1,2-二氯苯的降解率。
     (五)利用龙旋风滑动弧反应器降解垃圾焚烧飞灰中二恶英的研究。当载气为氧气时,飞灰中二恶英的降解率达到最高,二恶英的质量降解率为67.7%,毒性当量降解率为72.3%,降解后飞灰中的二恶英浓度为638pg-TEQ/g,尾气中二恶英的浓度为342pg-TEQ/Nm3。通过分析处理前后飞灰和尾气中二恶英同系物的分布以及飞灰表面形态变化,初步提出飞灰中二恶英的降解途径:一是等离子体直接作用于飞灰表面,实现二恶英的降解。二是飞灰中二恶英挥发之气相中,通过与等离子体中的高活性基团发生气相反应,实现降解的过程。
With the development of industry and improvement of life quality, release of kinds of pollutants to the environment is inevitable, which results in threats to the whole environment. Among of them, pollutions by Aromatic Hydrocarbon Organic Pollutants (AHOPs) are very serous. Scientists dedicate to invent and develop different technologies to control AHOPs emission. Compared with traditional methods, nonthermal plasma has some unique advantages that providing numerous free radicals and energetic electrons, low gas temperature and so on. Therefore, nonthermal plasma is received lots of concern and considered as a promising technology for environmental decontamination. In this thesis, a novel kind of nonthermal plasma, namely gliding arc gas discharge, is utilized for the destruction of three kinds of AHOPs. Based on the knowledge of gliding arc physical characteristics, the destruction processes and mechanisms of Polycyclic Aromatic Hydrocarbons (PAHs),1,2-dicholorobenzene, polychlorinated dibenzo-p-dioxines (PCDDs) and polychlorinated dibenzofuran (PCDFs) are investigated. The main research contents are as followed:
     1. Background introduction and literatures review. The treatment targets, PAHs, Chlorobenzenes and PCDD/Fs, are introduced from their chemical and physical properties and impactions to environment. And the decontamination methods are also reviewed. In addition, the definition, classification of plasma, generation methods of nonthermal plasma and its environmental applications are reviewed. Finally, the literatures and reports about gliding arc gas discharge are comprehensively reviewed from several aspects including its physical and chemical properties as well as its applications on environmental improvement, energy conversion and materials treatment.
     2. Studies on physical properties of gliding arc plasma. Firstly, electrical characteristics of gliding arc at different operation condtions are investigated. Then, arc fluctuation is studied by analyzing arc voltage signals by using Fast Fourier Transform (FFT) method. Furthermore, main radical species in nitrogen, oxygen and air discharges were determined by means of optical emission spectroscopy. In this chapter, characteristics of an advanced type of gliding arc plasma:gliding arc in tornado (GAT) are also investigated. In order to study its electrical properties and fluctuation, arc voltage and current signals are measured at different experimental conditions. And the effect of gas input configuration on GAT physical properties is studied. Three working modes and the stable working mode of GAT are concluded based on the foregoing experimental results.
     3. Studies on PAHs destruction by gliding arc plasma. Firstly, naphthalene is used as the target pollutant. The influence of external resistor of plasma generation circuit, gas type and naphthalene initial concentration on naphthalene destruction rate and process energy efficiency is investigated. The experiment results indicate that the destruction rate, which rises with increasing of concentration in carrier gas and decreasing of external resistance, can be achieved up to92.3%. The highest destruction process energy efficiency is3.6g/kWh which increases with rising external resistance. Secondly, the naphthalene destruction mechanism is proposed by analyzing all detected products. Finally, the simultaneous destruction process of four kinds of PAHs i.e. acenaphthene, fluorene, anthracene and pyrene is studied to increase the energy efficiency.
     4. Studies on1,2-dichlorobenzene destruction by combined using gliding arc plasma and ozone. Firstly, the effect of key factors of experimental condition on1,2-dichlorobenzene destruction process is investigated and the results indicate that the destruction rate of1,2-dichlorobenzen can be achieved up to74.1%when external resistance is50kΩ and working gas is oxygen. The destruction main mechanisms in different carrier gas are proposed by analyzing gas products. Most of organic chlorine in1,2-dichlorobenzene is converted to inorganic chlorine, which is proved by study of chorine balance in destruction processes. In order to improve the gliding arc reactor performance for1,2-dichlorobenzene destruction, a novel method that combing gliding arc and ozone is utilized in this study. The effects of ozone injection place (in plasma area or in post-plasma area) and carrier gas type on the destruction process are studied. And the results indicate that the1,2-dichlorobenzene destruction process is enhanced significantly when the carrier gas is nitrogen or oxygen and ozone is injected in post-plasma area.
     5. Studies on the destruction of PCDD/Fs in fly ash by using gliding arc in tornado. Solid waste fly ash is treated by GAT and its high concentration PCDD/Fs are destructed. The experimental results indicate that the mass destruction rate and I-TEQ destruction rate of PCDD/Fs can be achieved up to67.7%and72.3%, respectively, when oxygen is used as working gas. The I-TEQ concentrations of PCDD/Fs in the treated fly ash and in the off-gas are638pg-TEQ/g and342pg-TEQ/Nm3, respectively. Based on analysis of PCDD/Fs congeners distributions in original fly ash, treated fly ash and off-gas, two major PCDD/Fs destruction routes are proposed primarily:(1) PCDD/Fs are destructed by the direct interaction between GAT and fly ash surface;(2) PCDD/Fs are evaporated to gas phase and then destructed in the GAT by gas phase reactions.
引文
[1]S. O. Baek, R. A. Field, M. E. Goldstone, P. W. Kirk, J. N. LesterR. Perry, A REVIEW OF ATMOSPHERIC POLYCYCLIC AROMATIC-HYDROCARBONS-SOURCES, FATE AND BEHAVIOR, Water Air and Soil Pollution,1991,60 (3-4), 279-300.
    [2]L. H. KeithW. A. Telliard, PRIORITY POLLUTANTS I-A PERSPECTIVE VIEW, Environmental Science & Technology,1979,13 (4),416-423.
    [3]Y. G. Ma, Y. D. Lei, H. Xiao, F. WaniaW. H. Wang, Critical Review and Recommended Values for the Physical-Chemical Property Data of 15 Polycyclic Aromatic Hydrocarbons at 25 degrees C, Journal of Chemical and Engineering Data, 2010,55 (2),819-825.
    [4]尤孝方,燃烧过程中的多环芳烃的生成和数值模拟,杭州,浙江大学,2006,173.
    [5]R. DabestaniI. N. Ivanov, A compilation of physical, spectroscopic and photophysical properties of polycyclic aromatic hydrocarbons, Photochemistry and Photobiology,1999,70 (1),10-34.
    [6]NIST, http://webbook.nist.gov/chemistry/
    [7]W. Y. ShiuK. C. Ma, Temperature dependence of physical-chemical properties of selected chemicals of environmental interest. Ⅱ. Chlorobenzenes, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and dibenzofurans, Journal of Physical and Chemical Reference Data,2000,29 (3),387-462.
    [8]P. A. Bertazzi, D. Consonni, S. Bachetti, M. Rubagotti, A. Baccarelli, C. ZocchettiA. C. Pesatori, Health effects of dioxin exposure:A 20-year mortality study, American Journal of Epidemiology,2001,153 (11),1031-1044.
    [9]L. S. Birnbaum, THE MECHANISM OF DIOXIN TOXICITY-RELATIONSHIP TO RISK ASSESSMENT, Environmental Health Perspectives, 1994.102,157-167.
    [10]M. P. Holsapple, N. K. Snyder, S. C. WoodD. L. Morris, A REVIEW OF 2,3,7,8-TETRACHLORODIBENZO-PARA-DIOXIN-INDUCED CHANGES IN IMMUNOCOMPETENCE-1991 UPDATE, Toxicology,1991,69 (3),219-255.
    [11]S. H. Safe, COMPARATIVE TOXICOLOGY AND MECHANISM OF ACTION OF POLYCHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURANS, Annual Review of Pharmacology and Toxicology,1986,26, 371-399.
    [12]K. Steenland, L. Piacitelli, J. Deddens, M. FingerhutL. Ⅰ. Chang, Cancer, heart disease, and diabetes in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, Journal of the National Cancer Institute,1999,91 (9),779-786.
    [13]M. Van den Berg, L. S. Birnbaum, M. Denison, M. De Vito, W. Farland, M. Feeley, H. Fiedler, H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher, J. Tuomisto, M. Tysklind, N. WalkerR. E. Peterson, The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds, Toxicological Sciences, 2006,93 (2),223-241.
    [14]A. Aberg, M. MacLeodK. Wiberg, Physical-Chemical Property Data for Dibenzo-p-dioxin (DD), Dibenzofuran (DF), and Chlorinated DD/Fs:A Critical Review and Recommended Values, Journal of Physical and Chemical Reference Data, 2008,37(4),1997-2008.
    [15]N. R. Khalili, P. A. ScheffT. M. Holsen, PAH SOURCE FINGERPRINTS FOR COKE OVENS, DIESEL AND GASOLINE-ENGINES. HIGHWAY TUNNELS, AND WOOD COMBUSTION EMISSIONS, Atmospheric Environment,1995,29 (4), 533-542.
    [16]M. B. ChangC. C. Lee, DESTRUCTION OF FORMALDEHYDE WITH DIELECTRIC BARRIER DISCHARGE PLASMAS, Environmental Science & Technology,1995,29(1),181-186.
    [17]M. J. Ni, G. Xiao, Y. Chi, H. H. Yan, Q. Miao, W. F. ZhuK. F. Cen, Study on pyrolysis and gasification of wood in MSW, Journal of Environmental Sciences-China, 2006,18 (2),407-415.
    [18]S. C. Zhang, W. Zhang, K. Y. Wang, Y. T. Shen, L. W. HuX. J. Wang, Concentration, distribution and source apportionment of atmospheric polycyclic aromatic hydrocarbons in the southeast suburb of Beijing, China, Environmental Monitoring and Assessment,2009,151 (1-4),197-207.
    [19]L. Lin, B. Wu, C. YangC. K. Wu, Characteristics of gliding arc discharge plasma, Plasma Science & Technology,2006,8 (6),653-655.
    [20]K. Ravindra, R. SokhiR. Van Grieken, Atmospheric polycyclic aromatic hydrocarbons:Source attribution, emission factors and regulation, Atmospheric Environment,2008,42 (13),2895-2921.
    [21]T. Panev, M. Tzoneva, O. Nikoforova, T. GeorgievaL. Nikolova, Asphalt production and asphalt road cover-Considerable source for air pollution with polycyclic aromatic hydrocarbons, Toxicology Letters,2008,180, S147-S148.
    [22]H. C. Wang, S. H. Chang, P. C. Hung, J. F. HwangM. B. Chang, Synergistic effect of transition metal oxides and ozone on PCDD/F destruction, Journal of Hazardous Materials,2009,164 (2-3),1452-1459.
    [23]E. J. Hoffman, G. L. Mills, J. S. LatimerJ. G. Quinn, URBAN RUNOFF AS A SOURCE OF POLYCYCLIC AROMATIC-HYDROCARBONS TO COASTAL WATERS, Environmental Science & Technology,1984,18 (8),580-587.
    [24]R. M. Harrison, D. J. T. SmithL. Luhana, Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK, Environmental Science & Technology,1996,30 (3),825-832.
    [25]D. J. FreemanF. C. R. Cattell, WOOD-BURNING AS A SOURCE OF ATMOSPHERIC POLYCYCLIC AROMATIC-HYDROCARBONS, Environmental Science & Technology,1990,24 (10),1581-1585.
    [26]W. H. Organization, IPCS Environmental Health Criteria 202,1998
    [27]K. Breivik, V. Vestreng, O. RozovskayaJ. M. Pacyna, Atmospheric emissions of some POPs in Europe:a discussion of existing inventories and data needs, Environmental Science & Policy,2006,9 (7-8),663-674.
    [28]D. R. OrosB. R. T. Simoneit, Identification and emission rates of molecular tracers in coal smoke particulate matter, Fuel,2000,79 (5),515-536.
    [29]N. T. K. Oanh, L. B. ReutergardhN. T. Dung, Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels, Environmental Science & Technology,1999,33 (16),2703-2709.
    [30]S. Gupta, S. Saksena, V. R. ShankarV. Joshi, Emission factors and thermal efficiencies of cooking biofuels from five countries, Biomass & Bioenergy,1998,14 (5-6),547-559.
    [31]W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. CassB. R. T. Simoneit. Sources of fine organic aerosol.9. Pine, oak and synthetic log combustion in residential fireplaces, Environmental Science & Technology,1998,32 (1),13-22.
    [32]C. Venkataraman, G. Negi, S. B. SardarR. Rastogi, Size distributions of polycyclic aromatic hydrocarbons in aerosol emissions from biofuel combustion, Journal of Aerosol Science,2002,33 (3),503-518.
    [33]W. F. Rogge, M. A. Mazurek, L. M. Hildemann, G R. CassB. R. T. Simoneit, QUANTIFICATION OF URBAN ORGANIC AEROSOLS AT A MOLECULAR-LEVEL-IDENTIFICATION, ABUNDANCE AND SEASONAL-VARIATION, Atmospheric Environment Part a-General Topics,1993, 27(8),1309-1330.
    [34]A. H. Miguel, T. W. Kirchstetter, R. A. HarleyS. V. Hering, On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environmental Science & Technology,1998,32 (4), 450-455.
    [35]W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. CassB. R. T. Simoneit, SOURCES OF FINE ORGANIC AEROSOL.2. NONCATALYST AND CATALYST-EQUIPPED AUTOMOBILES AND HEAVY-DUTY DIESEL TRUCKS, Environmental Science & Technology,1993,27 (4),636-651.
    [36]M. Gambino, S. Iannaccone, M. V. PratiA. Unich, International Spring Fuels & Lubricants Meeting & Exposition, Paris,2000.
    [37]Y. C. Chen, W. J. Lee, S. N. Uang, S. H. LeeP. J. Tsai, Characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from a UH-1H helicopter engine and its impact on the ambient environment, Atmospheric Environment,2006,40 (39), 7589-7597.
    [38]D. A. Cooper, Exhaust emissions from ships at berth, Atmospheric Environment,2003,37 (27),3817-3830.
    [39]J. C. Chen, M. Y. WeyH. Y. Wu, Emission characteristics of chlorobenzenes, chlorophenols and dioxins during waste incineration with different additives, Combustion Science and Technology,2007,179 (6),1039-1058.
    [40]H. X. Ding, A. M. Zhu, X. F. Yang, C. H. LiY. Xu, Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas, Journal of Physics D-Applied Physics,2005,38 (23),4160-4167.
    [41]B. M. Jenkins, A. D. Jones, S. Q. TurnR. B. Williams, Emission factors for polycyclic aromatic hydrocarbons from biomass burning, Environmental Science & Technology,1996,30 (8),2462-2469.
    [42]杨旭曙,王正萍宋艳涛,城市交通干道区颗粒物中多环芳烃的源解析研究,环境科学与技术,2004,27(6),50-51.
    [43]程培青,闫怀忠,冯银厂,朱坦,白志鹏,侯鲁健阮振宇,济南市大气颗粒物主要排放源多环芳烃成分谱研究,中国环境监测,2004,20(5),7-10.
    [44]蔡建利,龙建银,杨斌颜迎春,对二氯苯的生产、技术及市场前景,中国氯碱,2009,7,1-4.
    [45]杨淑伟,黄俊余刚,中国主要排放源的非故意产生六氯苯和多氯联苯大气排放清单探讨,环境污染与防治,2010,32(7),82-85.
    [46]中华人民共和国国家统计局,中国统计年鉴,北京:中国统计出版社,2009.411-412
    [47]杨明森,中国环境年鉴2008,北京:中国环境年鉴社,2008.661-662
    [48]吕亚辉,黄俊,余刚杨曦,中国二嗯英排放清单的国际比较研究,环境污染与防治,2008,30(6),71-74.
    [49]房昕张军国,新疆二噁英类POPs排放现状调查及分析,干旱环境监测,2009,23(2),105-107.
    [50]巩宏平,刘劲松,潘荷芳,钟光剑杨寅森,排放源及周围环境空气中二嗯英类污染状况研究,分析测试学报,2008,27(s1),114-115.
    [51]M. Van den Berg, L. Birnbaum, A. T. C. Bosveld, B. Brunstrom, P. Cook, M. Feeley, J. P. Giesy, A. Hanberg, R. Hasegawa, S. W. Kennedy, T. Kubiak, J. C. Larsen, F. X. R. van Leeuwen, A. K. D. Liem, C. Nolt, R. E. Peterson, L. Poellinger, S. Safe. D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. WaernT. Zacharewski, Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife, Environmental Health Perspectives,1998,106 (12),775-792.
    [52]EPA, Priority Pollutants List, www.epa.gov/ne/npdes/permits/generic/prioritypollutants.pdf.
    [53]B. Aristizabal, M. Cobo, C. M. de Correa, K. Martinez, E. AbadJ. Rivera, Dioxin emissions from thermal waste management in Medellin, Colombia:Present regulation status and preliminary results, Waste Management,2007,27 (11), 1603-1610.
    [54]M. Horaguchi, K. OseA. Int Solid Waste, Dioxin removal efficiency with the bag filter system, Yokohama 220:7th Iswa International Congress & Exhibition,1996
    [55]A. Licata, M. BabuW. Carlson, The application of activated carbon enhanced lime for controlling acid gases, mercury, and dioxin from MWCS, Abstracts of Papers of the American Chemical Society,1996,211,116-FUEL.
    [56]T. NussbaumerP. Hasler, Optimization of the fabric filter operation for the removal of HCL and PCDD/F from urban waste wood combustion plants, Rimpar: Centrales Agrar Rohstoff Mkt & Entwicklung Netzwerk,1998
    [57]K. J. Fritsky, J. H. KummM. Wilken, Combined PCDD/F destruction and particulate control in a baghouse:Experience with a catalytic filter system at a medical waste incineration plant, Journal of the Air & Waste Management Association, 2001,51 (12),1642-1649.
    [58]M. Furubayashi, R. ShinoharaK. Nagai, Study of dioxin removal by activated carbon, Kagaku Kogaku Ronbunshu,2001,27 (2),236-242.
    [59]A. Karademir, M. Bakoglu, F. TaspinarS. Ayberk, Removal of PCDD/Fs from flue gas by a fixed-bed activated carbon filter in a hazardous waste incinerator, Environmental Science & Technology,2004,38 (4),1201-1207.
    [60]K. H. Chi, S. H. ChangM. B. Chang, Reduction of dioxin-like compound emissions from a Waelz plant with adsorbent injection and a dual baghouse filter system, Environmental Science & Technology,2008,42 (6),2111-2117.
    [61]S. H. Chang, K. H. Chi, C. W. Young, B. Z. HongM. B. Chang, Effect of Fly Ash on Catalytic Removal of Gaseous Dioxins over V2O5-WO3 Catalyst of a Sinter Plant, Environmental Science & Technology,2009,43 (19),7523-7530.
    [62]A. M. Mastral, M. S. CallenT. Garcia, Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized god coal combustion, Environmental Science & Technology,1999,33 (18),3177-3184.
    [63]纪利俊,应卫勇,朱家文,武斌陈葵,活性炭固定床上氯苯气体的吸附过程,华东理工大学学报(自然科学版),2006,32(9),1021-1024.
    [64]L. Monna, T. OmoriT. Kodama, MICROBIAL-DEGRADATION OF DIBENZOFURAN, FLUORENE, AND DIBENZO-P-DIOXIN BY STAPHYLOCOCCUS-AURICULANS DBF63, Applied and Environmental Microbiology,1993,59 (1),285-289.
    [65]S. Takada, M. Nakamura, T. Matsueda, R. KondoK. Sakai, Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624, Applied and Environmental Microbiology, 1996,62 (12),4323-4328.
    [66]H. Wilkes, R. M. Wittich, K. N. Timmis, P. Fortnagel W. Francke, Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp strain RW1, Applied and Environmental Microbiology,1996,62 (2),367-371.
    [67]R. M. Wittich, Degradation of dioxin-like compounds by microorganisms, Applied Microbiology and Biotechnology,1998,49 (5),489-499.
    [68]G. Schreiner, T. Wiedmann, H. SchimmelK. Ballschmiter, Influence of the substitution pattern on the microbial degradation of mono-to tetrachlorinated dibenzo-p-dioxins and dibenzofurans, Chemosphere,1997,34 (5-7),1315-1331.
    [69]K. Nam, W. RodriguezJ. J. Kukor, Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction, Chemosphere,2001.45 (1),11-20.
    [70]A. L. JuhaszR. Naidu, Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:a review of the microbial degradation of benzo[a]pyrene, International Biodeterioration & Biodegradation,2000,45 (1-2),57-88.
    [71]A. K. Mathur, J. SundaramurthyC. Balomajumder, Kinetics of the removal of mono-chlorobenzene vapour from waste gases using a trickle bed air biofilter, Journal of Hazardous Materials,2006,137(3),1560-1568.
    [72]R. Boos, R. Budin, H. Hartl, M. StockF. Wurst, PCDD-DESTRUCTION AND PCDF-DESTRUCTION BY A SCR-UNIT IN A MUNICIPAL WASTE INCINERATOR, Chemosphere,1992,25 (3),375-382.
    [73]R. Weber, T. SakuraiH. Hagenmaier, Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts, Applied Catalysis B-Environmental,1999,20 (4),249-256.
    [74]S. C. Marie-Rose, T. Belin, J. Mijoin, E. Fiani, M. Taralunga, X. Chaucherie, F. NicolP. Magnoux, Destruction of PAH and dioxin precursors using selective oxidation over zeolite catalysts. Influence of the presence of ammonia in the flue gas, Applied Catalysis B-Environmental,2009,93 (1-2),106-111.
    [75]Y. Takita, Y. Sadatomi, H. NishiguchiK. Nagaoka, Decomposition of chlorobenzene over phosphate and sulfate catalysts properties, Bulletin of the Chemical Society of Japan,2006,79(1),145-148.
    [76]P. Kim, D. FirestoneG. C. Yang, CONFIRMATION OF CHLORINATED DIBENZO-P-DIOXINS IN FOOD DIGEST BY PHOTO-DECHLORINATION, Abstracts of Papers of the American Chemical Society,1975,170 (AUG24),54-54.
    [77]A. Liberti, D. Brocco, I. Allegrini, A. CecinatoM. Possanzini, SOLAR AND UV PHOTO-DECOMPOSITION OF 2,3,7,8-TETRACHLORO DIBENZO-PARA-DIOXIN IN ENVIRONMENT, Science of the Total Environment, 1978,10 (2),97-104.
    [78]W. Choi, S. J. Hong, Y. S. ChangY. Cho, Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation, Environmental Science & Technology,2000,34 (22),4810-4815.
    [79]E. Pelizzetti, M. Borgarello, C. Minero, E. Pramauro, E. BorgarelloN. Serpone, PHOTOCATALYTIC DEGRADATION OF POLYCHLORINATED DIOXINS AND POLYCHLORINATED-BIPHENYLS IN AQUEOUS SUSPENSIONS OF SEMICONDUCTORS IRRADIATED WITH SIMULATED SOLAR LIGHT, Chemosphere,1988,17 (3),499-510.
    [80]张志军,包志成,王克欧郑明辉,二氧化钛催化下的氯代二苯并-对-二恶英光解反应,环境化学,1996,15(1),47-51.
    [81]J. R. Fan, G. L. Hu, J. YaoK. F. Cen, A two-dimensional mathematical model of liquid-feed direct methanol fuel cells, Energy & Fuels,2002,16 (6),1591-1598.
    [82]J. H. Yan, P. Zheng, S. Y. Lu, C. M. Du, X. D. Li, C. Tong, M. J. NiK. F. Cen, Destruction of PCDD/Fs by gliding arc discharges, Journal of Environmental Sciences-China,2007,19(11),1404-1408.
    [83]H. Nichipor, E. Dashouk, S. Yacko, A. G. Chmielewski, Z. ZimekY. Sun, Chlorinated hydrocarbons and PAH decomposition in dry and humid air by electron beam irradiation, Radiation Physics and Chemistry,2002,65 (4-5),423-427.
    [84]H. R. SnyderS. K. Anderson, Effect of air and oxygen content on the dielectric barrier discharge decomposition of chlorobenzene, Ieee Transactions on Plasma Science,1998,26(6),1695-1699.
    [85]X. Tu, J. H. Yan, Z. Y. Ma, Q. Wang, K. CenB. Cheron, Vitrification of MSWI fly ash using thermal plasma technology, Challenges of Power Engineering and Environment, Vols 1 and 2,2007,823-826 1435.
    [86]X. Tu, J. H. Yan, B. G. CheronK. F. Cen, Fluctuations of DC atmospheric double arc argon plasma jet. Vacuum,2008,82 (5),468-475.
    [87]L. Yu, X. Li, X. Tu, Y. Wang, S. LuJ. Yan, Decomposition of Naphthalene by dc Gliding Arc Gas Discharge, The Journal of Physical Chemistry A,2009.
    [88]J. H. Yan, Z. Peng, S. Y. Lu, X. D. Li, M. J. Ni, K. F. CenH. F. Dai, Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration, Journal of Hazardous Materials,2007,147 (1-2),652-657.
    [89]Y. Nomura, S. Nakai, B. D. LeeM. Hosomi, Elucidation of mechanochemical decomposition pathway of dioxins using 4-chlorobiphenyl (4CB), a model compound, Kagaku Kogaku Ronbunshu,2002,28 (5),565-568.
    [90]G. Cagnetta, G. Intini, L. Liberti, M. Notarnicola, L. SpinosaP. Stellacci, Mechanochemical and Biological Degradation of PCB in Contaminated Marine Sediments, Journal of Residuals Science & Technology,2009,6 (3),139-144.
    [91]Y. Nomura, S. NakaiM. Hosomi, Elucidation of degradation mechanism of dioxins during mechanochemical treatment, Environmental Science & Technology, 2005,39(10),3799-3804.
    [92]H. Hagenmaier, M. Kraft, H. BrunnerR. Haag, Catalytic Effects of Fly-Ash from Waste Incineration Facilities on the Formation and Decomposition of Polychlorinated Dibenzo-Para-Dioxins and Polychlorinated Dibenzofurans, Environmental Science & Technology,1987,21(11),1080-1084.
    [93]O. M. Vanberkel, K. OlieM. Vandenberg, Thermal-Degradation of Polychlorinated Dibenzo-P-Dioxins and Polychlorinated Dibenzofurans on Fly-Ash from a Municipal Incinerator, International Journal of Environmental Analytical Chemistry,1988,34 (1),51-67.
    [94]B. FindeisenH. Borchert, Thermal-Decomposition of Polychlorinated Dibenzodioxins and Other Seveso-Type Toxic-Substances with the Aid of Fly-Ash from Incineration Plants. Chemische Technik,1989,41 (9),397-398.
    [95]Z. Peng, Q. Ding, Y. Z. Sun, C. Jiang, X. H. GaolJ. H. Yan, Characterization of mechanochemical treated fly ash from a medical waste incinerator, Journal of Environmental Sciences-China,2010,22 (10),1643-1648.
    [96]W. L. Troxler, J. W. Hunt, J. TaylorC. McNiven, Thermal Desorption Treatment of Dioxin-Contaminated Soil at the Former Allied Feeds Site, Sydney, Australia. Environmental Engineering Science,2010,27 (7),613-622.
    [97]X. Tu, Q. Wang, L. Yu, B. Cheron, J. H. YanK. F. Cen, Diagnostic of novel atmospheric plasma source and its application to vitrification of waste incinerator fly ash, Energy & Fuels,2008,22 (5),3057-3064.
    [98]Q. Wang, J. H. Yan, X. Tu, Y. Chi, X. D. Li, S. Y. LuK. F. Cen, Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma, Fuel,2009,88 (5),955-958.
    [99]A. Fridman, Plasma Chemstry, Cambridge:Cambridge University Press, 2008
    [100]菅井秀郎,等离子体电子工程学,北京:科学出版社,2002
    [101]赵化桥,等离子体化学与工艺,合肥:中国科学技术大学出版社,1993
    [102]诸海林,电子束辐照处理甲苯废气研究,[硕士学位论文],绵阳,中国工程物理研究院,2006.
    [103]边绍伟,王敏,杨睿媛王文锋,苯胺类污染物的电子束辐照降解研究,辐射研究与辐射工艺学报,2005,23(2),119-121.
    [104]褚海林,毛本将,杨睿戆,陈海燕徐建,电子束辐照处理模拟甲苯废气实验研究,核技术,2007,30(3),522-525.
    [105]任志凌,杨睿戆毛本将,电子束辐照烟气脱硫脱硝技术及模型模拟,电力环境保护,2007,23(3),18-19.
    [106]王艳丽,包伯荣,吴明红,焦正顾建忠,电子束辐照降解二氯苯废水的研究,核技术,2006,29(1).
    [107]K. J. Lin, W. J. Cooper, M. G. Nickelsen, C. N. KuruczT. D. Waite, Decomposition of aqueous solutions of phenol using high energy electron beam irradiation-A large scale study, Applied Radiation and Isotopes,1995,46 (12), 1307-1316.
    [108]J. C. PersonD. O. Ham, REMOVAL OF SO2 AND NOX FROM STACK GASES BY ELECTRON-BEAM IRRADIATION, Radiation Physics and Chemistry, 1988,31(1-3),1-8.
    [109]J. S. Chang, P. A. LawlessT. Yamamoto, CORONA DISCHARGE PROCESSES, Ieee Transactions on Plasma Science,1991,19 (6),1152-1166.
    [110]M. Goldman, A. GoldmanR. S. Sigmond, THE CORONA DISCHARGE, ITS PROPERTIES AND SPECIFIC USES, Pure and Applied Chemistry,1985,57 (9), 1353-1362.
    [111]A. A. Joshi, B. R. Locke, P. ArceW. C. Finney, FORMATION OF HYDROXYL RADICALS, HYDROGEN-PEROXIDE AND AQUEOUS ELECTRONS BY PULSED STREAMER CORONA DISCHARGE IN AQUEOUS-SOLUTION, Journal of Hazardous Materials,1995,41 (1),3-30.
    [112]H. H. Kim, K. Takashima, S. KatsuraA. Mizuno, Low-temperature NOx reduction processes using combined systems of pursed corona discharge and catalysts, Journal of Physics D-Applied Physics,2001,34 (4),604-613.
    [113]S. Masuda, PULSE CORONA INDUCED PLASMA CHEMICAL PROCESS-A HORIZON OF NEW PLASMA CHEMICAL TECHNOLOGIES, Pure and Applied Chemistry,1988,60 (5),727-731.
    [114]Y. S. Mok, S. W. Haml. S. Nam, Mathematical analysis of positive pulsed corona discharge process employed for removal of nitrogen oxides, Ieee Transactions on Plasma Science,1998,26(5),1566-1574.
    [115]T. Ohkubo, S. Kanazawa, Y. Nomoto, J. S. ChangT. Adachi, NOX REMOVAL BY A PIPE WITH NOZZLE-PLATE ELECTRODE CORONA DISCHARGE SYSTEM, Ieee Transactions on Industry Applications,1994,30 (4), 856-861.
    [116]G. Sathiamoorthy, S. Kalyana, W. C. Finney, R. J. ClarkB. R. Locke, Chemical reaction kinetics and reactor modeling of NOx removal in a pulsed streamer corona discharge reactor, Industrial & Engineering Chemistry Research,1999,38 (5), 1844-1855.
    [117]A. K. Sharma, B. R. Locke, P. ArceW. C. Finney, A PRELIMINARY-STUDY OF PULSED STREAMER CORONA DISCHARGE FOR THE DEGRADATION OF PHENOL IN AQUEOUS-SOLUTIONS, Hazardous Waste & Hazardous Materials,1993,10 (2),209-219.
    [118]B. Sun, M. SatoJ. S. Clements, Optical study of active species produced by a pulsed streamer corona discharge in water, Journal of Electrostatics,1997,39 (3), 189-202.
    [119]M. Tabrizchi, T. KhayamianN. Taj, Design and optimization of a corona discharge ionization source for ion mobility spectrometry, Review of Scientific Instruments,2000,71 (6),2321-2328.
    [120]X. J. Xu, Dielectric barrier discharge-properties and applications, Thin Solid Films,2001,390 (1-2),237-242.
    [121]K. Takaki, M. A. JaniT. Fujiwara, Removal of nitric oxide in flue gases by multipoint to plane dielectric barrier discharge, Ieee Transactions on Plasma Science, 1999,27(4),1137-1145.
    [122]W. M. Sun, B. Pashaie, S. K. DhaliF. I. Honea, Non-thermal plasma remediation of SO2/NO using a dielectric-barrier discharge, Journal of Applied Physics,1996,79 (7),3438-3444.
    [123]J. Pons, E. MoreauG. Touchard. Asymmetric surface dielectric barrier discharge in air at atmospheric pressure:electrical properties and induced airflow characteristics, Journal of Physics D-Applied Physics,2005,38(19),3635-3642.
    [124]B. M. Penetrante, M. C. Hsiao, B. T. Merritt, G. E. Vogtlin, P. H. Wallman, M. Neiger, O. Wolf, T. HammerS. Broer, Pulsed corona and dielectric-barrier discharge processing of NO in N-2, Applied Physics Letters,1996,68 (26),3719-3721.
    [125]G. NersisyanW. G. Graham, Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium, Plasma Sources Science & Technology,2004,13 (4),582-587.
    [126]U. Kogelschatz, Dielectric-barrier discharges:Their history, discharge physics, and industrial applications, Plasma Chemistry and Plasma Processing,2003, 23(1),1-46.
    [127]S. K. Dhalil. Sardja, DIELECTRIC-BARRIER DISCHARGE FOR PROCESSING OF SO2/NOX, Journal of Applied Physics,1991,69 (9),6319-6324.
    [128]M. B. Chang, J. H. Balbach, M. J. RoodM. J. Kushner, REMOVAL OF SO2 FROM GAS STREAMS USING A DIELECTRIC BARRIER DISCHARGE AND COMBINED PLASMA PHOTOLYSIS, Journal of Applied Physics,1991,69 (8), 4409-4417.
    [129]D. Braun, V. GibalovG. Pietsch, Two-dimensional modelling of the dielectric barrier discharge in air, Plasma Sources Science & Technology,1992,1 (3), 166-174.
    [130]L. F. Dong, F. C. Liu, S. H. Liu, Y. F. HeW. L. Fan, Observation of spiral pattern and spiral defect chaos in dielectric barrier discharge in argon/air at atmospheric pressure, Physical Review E,2005,72 (4).
    [131]J. Guikema, N. Miller, J. Niehof, M. KleinM. Walhout, Spontaneous pattern formation in an effectively one-dimensional dielectric-barrier discharge system, Physical Review Letters,2000,85 (18),3817-3820.
    [132]E. L. Gurevich, A. L. Zanin, A. S. MoskalenkoH. G. Purwins, Concentric-ring patterns in a dielectric barrier discharge system, Physical Review Letters,2003.91 (15).
    [133]谢宏瑞,常压下微波等离子体处理四氟化碳的研究,[博士学位论文], 大连,大连海事大学,2009.
    [134]Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. S. Park, W. B. Choi, N. S. LeeJ. M. Kim, Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition, Applied Physics Letters,2000,76 (17),2367-2369.
    [135]M. Kamo, Y. Sato, S. MatsumotoN. Setaka, DIAMOND SYNTHESIS FROM GAS-PHASE IN MICROWAVE PLASMA, Journal of Crystal Growth,1983, 62 (3),642-644.
    [136]T. Kim, S. Song, J. KimR. Iwasaki, Formation of NOx from Air and N-2/O-2 Mixtures Using a Nonthermal Microwave Plasma System, Japanese Journal of Applied Physics,2010,49 (12).
    [137]M. Moisan, G. Sauve, Z. ZakrzewskiJ. Hubert, An atmospheric pressure waveguide-fed microwave plasma torch:the TIA design, Plasma Sources Science & Technology,1994,3 (4),584-592.
    [138]R. Tanaka, T. Yamamoto, R. SasaiY. Itaya, Direct Decomposition of Persistent Liquid Waste by Microwave Non-Thermal Plasma, Kagaku Kogaku Ronbunshu,2010,36 (6),571-575.
    [139]J. Choi, A. A. H. Mohamed, S. K. Kang, K. C. Woo, K. T. KimJ. K. Lee, 900-MHz Nonthermal Atmospheric Pressure Plasma Jet for Biomedical Applications, Plasma Processes and Polymers,2010,7 (3-4).258-263.
    [140]J. Jarrige, M. LaroussiE. Karakas, Formation and dynamics of plasma bullets in a non-thermal plasma jet:influence of the high-voltage parameters on the plume characteristics, Plasma Sources Science & Technology,2010,19 (6).
    [141]M. LaroussiX. Lu. Room-temperature atmospheric pressure plasma plume for biomedical applications, Applied Physics Letters,2005,87 (11).
    [142]X. LuM. Laroussi, Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses, Journal of Applied Physics,2006,100 (6).
    [143]X. Lu, Q. Xiong, Z. Xiong, J. Hu, F. Zhou, W. Gong, Y. Xian, C. Zou, Z. Tang, Z. JiangY. Pan, Propagation of an atmospheric pressure plasma plume, Journal of Applied Physics,2009,105 (4).
    [144]X. P. Lu, Z. H. Jiang, Q. Xiong, Z. Y. Tang, X. W. HuY Pan, An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine, Applied Physics Letters,2008,92 (8).
    [145]Nishimur.Y, Nishimur.M, Takeshit.KW. Sakai, DECOMPOSITION OF N-BUTANE IN INDUCTION-COUPLED ARGON PLASMA JET, Kog Kagaku Zasshi,1970,73(9),1974-&.
    [146]K. Taki, STUDIES OF ELECTRIC DISCHARGE OF ORGANIC COMPOUNDS.1. DECOMPOSITION OF TOLUENE IN 10-MHZ AND 2450-MHZ DISCHARGES, Bulletin of the Chemical Society of Japan,1970,43 (5),1574-&.
    [147]K. Taki. STUDIES OF ELECTRIC DISCHARGE OF ORGANIC COMPOUNDS.2. DECOMPOSITION OF ORTHO XYLENES, META XYLENES, AND PARA XYLENES IN 10-MHZ AND 2450-MHZ DISCHARGES, Bulletin of the Chemical Society of Japan,1970,43 (5),1578-&.
    [148]K. Taki, STUDIES OF ELECTRIC DISCHARGE OF ORGANIC COMPOUNDS.3. DECOMPOSITION OF METHYLCYCLOHEXANE IN 10-MHZ AND 2450-MHZ DISCHARGES, Bulletin of the Chemical Society of Japan,1970,43 (5).1580-&.
    [149]B. V. Zhuk, G. A. DomrachevA. M. Obiedkov, DECOMPOSITION OF SOME ORGANOMETALLIC COMPOUNDS IN A HIGH-FREQUENCY DISCHARGE, Doklady Akademii Nauk Sssr,1979,249(5),1147-1149.
    [150]L. A. Haas, C. F. AndersonS. E. Khalafalla. DECOMPOSITION OF NITRIC-OXIDE IN A SILENT DISCHARGE, Industrial & Engineering Chemistry Process Design and Development,1979,18(1).143-147.
    [151]J. E. Nicholas, C. A. AmodioM. J. Baker, KINETICS AND MECHANISM OF THE DECOMPOSITION OF H2S, CH3SH AND (CH3)2S IN A RADIO-FREQUENCY PULSE DISCHARGE, Journal of the Chemical Society-Faraday Transactions 1,1979,75,1868-1875.
    [152]S. A. Hoenig, G. T. Sill, L. M. KelleyK. J. Garvey, DESTRUCTION OF BACTERIA AND TOXIC ORGANIC-CHEMICALS BY A CORONA DISCHARGE, Journal of the Air Pollution Control Association,1980,30 (3),277-278.
    [153]K. HaradaJ. Terasawa, OXIDATIVE-DEGRADATION OF BETA-AMINO AND GAMMA-AMINO ACIDS BY CONTACT GLOW-DISCHARGE ELECTROLYSIS, Chemistry Letters,1980, (4).441-444.
    [154]H. J. Tiller, K. DumkeG. Rudakoff, INFLUENCE OF PLASMA POWER ON THE DECOMPOSITION OF CCL4 IN RF-PLASMA, Zeitschrift Fur Chemie, 1980,20 (8),314-315.
    [155]K. Hiraoka, K. Aoyama, T. Nakamura, S. Mochizuki, K. MitsumoriK. Matsunaga, DECOMPOSITION OF PCBS IN THE RADIO-FREQUENCY GLOW-DISCHARGE PLASMAS OF OXYGEN, HYDROGEN, AND WATER-VAPOR, Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1982,60 (22),2876-2882.
    [156]B. M. Penetrante, M. C. Hsiao, J. N. Bardsley, B. T. Merritt, G. E. Vogtlin, A. Kuthi, C. P. BurkhartJ. R. Bayless, Identification of mechanisms for decomposition of air pollutants by non-thermal plasma processing, Plasma Sources Science & Technology,1997,6 (3),251-259.
    [157]B. M. Penetrante, W. J. Pitz, R. M. Brusasco, B. T. MerrittG. E. Vogtlin, Plasma processing of hydrocarbons and NOx in lean-burn engine exhaust. Abstracts of Papers of the American Chemical Society,1999,217,221-IEC.
    [158]B. Sun, M. SatoJ. S. Clements, Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution, Journal of Physics D-Applied Physics,1999,32(15),1908-1915.
    [159]M. TezukaM. Iwasaki, Plasma induced degradation of chlorophenols in an aqueous solution, Thin Solid Films,1998,316(1-2),123-127.
    [160]M. A. Malik, Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water, Plasma Sources Science & Technology,2003,12 (4), S26-S32.
    [161]J. H. Yan, S. L. Dai, X. D. Li, X. Tu, Y. N. LiuK. F. Cen, Emission spectroscopy diagnosis of the radicals generated in gas-liquid phases gliding arc discharge, Spectroscopy and Spectral Analysis,2008,28 (8),1851-1855.
    [162]X. D. Li, J. Zhang, J. H. Yan, T. Chen, S. Y. LuK. F. Cen, Effect of water on catalyzed de novo formation of polychlorinated dibenzo-p-dioxins and poly chlorinated dibenzofurans, Journal of Hazardous Materials,2006,137 (1),57-61.
    [163]J. H. Yan, C. M. Du, X. D. Li, X. D. Sun, M. J. Ni, K. F. CenB. Cheron, Plasma chemical degradation of phenol in solution by gas-liquid gliding arc discharge, Plasma Sources Science & Technology,2005,14 (4),637-644.
    [164]J. H. Yan, Y. N. Liu, Z. Bo, X. D. LiK. F. Cen, Degradation of gas-liquid gliding arc discharge on Acid Orange II, Journal of Hazardous Materials,2008,157 (2-3),441-447.
    [165]A. Mizuno, K. Shimizu, A. Chakrabarti, L. DascalescuS. Furuta, NOX REMOVAL PROCESS USING PULSED DISCHARGE PLASMA, Ieee Transactions on Industry Applications,1995,31 (5),957-963.
    [166]K. Yan, S. Kanazawa, T. OhkuboY. Nomoto, Oxidation and reduction processes during NOx removal with corona-induced nonthermal plasma, Plasma Chemistry and Plasma Processing,1999,19 (3),421-443.
    [167]Y. S. Mokl. S. Nam, Positive pulsed corona discharge process for simultaneous removal of SO2 and NOx from iron-ore sintering flue gas, Ieee Transactions on Plasma Science,1999,27 (4),1188-1196.
    [168]J. S. Chang, K. Urashima, Y. X. Tong, W. P. Liu, H. Y. Wei, F. M. YangX. J. Liu, Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems:pilot plant tests, Journal of Electrostatics, 2003,57(3-4),313-323.
    [169]S. Daito, F. TochikuboT. Watanabe, NOx removal process in pulsed corona discharge combined with TiO2 photocatalyst, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2001,40 (4A), 2475-2479.
    [170]M. DorsJ. Mizeraczyk, NOx removal from a flue gas in a corona discharge-catalyst hybrid system, Catalysis Today,2004,89 (1-2),127-133.
    [171]T. Oda, Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air, Journal of Electrostatics,2003,57 (3-4),293-311.
    [172]T. Yamamoto, VOC decomposition by nonthermal plasma processing-A new approach, Journal of Electrostatics,1997,42 (1-2),227-238.
    [173]A. Ogata, K. Yamanouchi, K. Mizuno, S. KushiyamaT. Yamamoto, Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactors, Ieee Transactions on Industry Applications,1999,35 (6),1289-1295.
    [174]K. Hiraoka, K. MitsumoriS. Mochizuki, DECOMPOSITION OF POLYCHLORINATED BIPHENYLS (PCBS) IN A RADIO-FREQUENCY GLOW-DISCHARGE PLASMA, Chemistry Letters,1979, (7),739-740.
    [175]K. Hiraoka. K. MitsumoriS. Mochizuki, DECOMPOSITION OF PCB IN A HIGH-FREQUENCY GLOW-DISCHARGE PLASMA, Abstracts of Papers of the American Chemical Society,1979, (APR),65-65.
    [176]K. Hiraoka, T. NakamuraK. Matsunaga, DECOMPOSITION OF PCBS IN A HYDROGEN GLOW-DISCHARGE PLASMA, Chemistry Letters,1980, (7), 791-792.
    [177]W. J. Cooper, M. G. Nickelsen, R. V. GreenS. P. Mezyk, The removal of naphthalene from aqueous solutions using high-energy electron beam irradiation, Radiation Physics and Chemistry,2002,65 (4-5),571-577.
    [178]K. HirotaT. Kojima, Decomposition behavior of PCDD/F isomers in incinerator gases under electron-beam irradiation, Bulletin of the Chemical Society of Japan,2005,78 (9),1685-1690.
    [179]A. Ostapczuk, T. Hakoda, A. ShimadaT. Kojima, Naphthalene and acenaphthene decomposition by electron beam generated plasma application, Plasma Chemistry and Plasma Processing,2008,28 (4),483-494.
    [180]H. H. Yan, P. Zheng, S. Y. Lu, C. M. Du, X. D. Li, C. Tong, M. J. NiK. F. Cen, Destruction of PCDD/Fs by gliding arc discharges, Journal of Environmental Sciences-China,2007,19(11),1404-1408.
    [181]A. Fridman. S. Nester, L. A. Kennedy, A. SavelievO. Mutaf-Yardimci, Gliding arc gas discharge, Progress in Energy and Combustion Science,1999,25 (2). 211-231.
    [182]J. Diatczyk, J. Jozwik, H. StryczewskaG. Komarzyniec,19th International Symposium on Plasma Chemistry, Bochum,2009.
    [183]J. Diatczyk, G. KomarzyniecH. D. Stryczewska, Spectroscopic diagnostic of non-thermal plasma generated in gliding arc discharge plasma reactor, Przeglad Elektrotechniczny,2008,84 (5),309-311.
    [184]薄拯,滑动弧放电等离子体处理挥发性有机化合物基础研究,[博士学位论文],杭州,浙江大学,2009.
    [185]杜长明,滑动弧放电等离子体降解气相及液相中有机污染物的研究,[博士学位论文],杭州,浙江大学,2006.
    [186]X. D. Li, J. Zhang, J. H. Yan, K. F. Cen, S. P. Ryan, B. K. GullettC. Lee, Experimental and modeling study of de novo formation of PCDD/PCDF on MSW fly ash, Journal of Environmental Sciences-China,2007,19 (1),117-122.
    [187]T. Ombrello, X. Qin, Y. G. JuC. Carter, Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge, Aiaa Journal,2006, 44(1).142-150.
    [188]T. Ombrello, Y. G. JuA. Fridman, Kinetic Ignition Enhancement of Diffusion Flames by Nonequilibrium Magnetic Gliding Arc Plasma, Aiaa Journal, 2008,46(10),2424-2433.
    [189]A. Fridman, A. Gutsol, S. Gangoli, Y. G. JuT. Ombrellol, Characteristics of Gliding Arc and Its Application in Combustion Enhancement, Journal of Propulsion and Power,2008,24 (6),1216-1228.
    [190]C. S. Kalra, A. F. GutsolA. A. Fridman, Gliding arc discharges as a source of intermediate plasma for methane partial oxidation, Ieee Transactions on Plasma Science,2005,33(1),32-41.
    [191]C. S. Kalra, Y. I. Cho, A. Gutsol, A. FridmanT. S. Rufael, Gliding arc in tornado using a reverse vortex flow, Review of Scientific Instruments,2005,76 (2).
    [192]A. Czernichowski, Gliding Arc-Applications to Engineering and Environment Control, Pure and Applied Chemistry,1994,66(6),1301-1310.
    [193]K. KrawczykB. Ulejczyk, Influence of water vapor on CC14 and CHC13 conversion in gliding discharge, Plasma Chemistry and Plasma Processing,2004,24 (2),155-167.
    [194]K. Krawczyk, B. Ulejczyk, H. K. Song, A. Lamenta, B. PaluchK. Schmidt-Szalowski, Plasma-catalytic Reactor for Decomposition of Chlorinated Hydrocarbons, Plasma Chemistry and Plasma Processing,2009,29 (1),27-41.
    [195]A. Indarto, J. W. Choi, H. LeeH. K. Song, Conversion of CO2 by gliding arc plasma, Environmental Engineering Science,2006,23 (6),1033-1043.
    [196]A. Indarto, J. W. Choi, H. LeeH. K. Song, Effect of additive gases on methane conversion using gliding arc discharge, Energy,2006,31 (14),2986-2995.
    [197]A. Indarto, J. W. Choi, H. LeeH. K. Song, Treatment of dichloromethane using gliding arc plasma, International Journal of Green Energy,2006,3 (3),309-321.
    [198]A. Indarto, J. W. Choi, H. LeeH. K. Song, Treatment Of CC14 and CHC13 emission in a gliding-arc plasma, Plasma Devices and Operations,2006,14(1),1-14.
    [199]A. Indarto, J. W. Choi, H. LeeH. K. Song, Decomposition of CC14 and CHC13 on gliding arc plasma, Journal of Environmental Sciences-China,2006.18(1). 83-89.
    [200]A. Indarto, D. R. Yang, C. H. Azhari, W. H. W. Mohtar, J. W. Choi, H. LeeH. K. Song, Advanced VOCs decomposition method by gliding arc plasma, Chemical Engineering Journal,2007,131 (1-3),337-341.
    [201]C. M. Du, J. H. YanB. Cheron, Decomposition of toluene in a gliding arc discharge plasma reactor, Plasma Sources Science & Technology,2007,16 (4), 791-797.
    [202]J. H. Yan, X. Tu. Z. Y. Ma. K. F. CenB. G. Cheron, Rotational and vibrational temperatures of atmospheric double arc argon-nitrogen plasma, Chinese Physics Letters,2007,24 (5),1317-1320.
    [203]Z. Bo, J. H. Yan, X. D. Li, Y. Chi, K. F. CenB. G. Cheron, Effects of oxygen and water vapor on volatile organic compounds decomposition using gliding arc gas discharge, Plasma Chemistry and Plasma Processing,2007,27 (5),546-558.
    [204]Z. Bo, J. H. Yan, X. D. Li, Y. ChiK. F. Cen, Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition. Journal of Hazardous Materials,2008,155 (3),494-501.
    [205]V. Dalaine, J. M. CormierP. Lefaucheux, A gliding discharge applied to H2S destruction, Journal of Applied Physics,1998,83 (5),2435-2441.
    [206]V. Dalaine, J. M. Cormier, S. PellerinP. Lefaucheux, H2S destruction in 50 Hz and 25 kHz gliding arc reactors, Journal of Applied Physics,1998,84 (3), 1215-1221.
    [207]J. JancaA. Czernichowski, Wool treatment in the gas flow from gliding discharge plasma at atmospheric pressure, Surface & Coatings Technology,1998,98 (1-3),1112-1115.
    [208]K. Krawczyk, M. MlotekK. Schmidt-Szalowski, Oxidation and decomposition of N2O by gliding discharge combined with a bed of catalyst, High Temperature Material Processes,2001,5 (3),349-353.
    [209]K. Krawczyk, Conversion of nitrous oxide by non-equilibrium plasma, Przemysl Chemiczny,2006,85 (8-9),1035-1037.
    [210]K. Krawczyk, M. MlotekK. Rzepecka, Conversion of N2O in gliding arc discharges, Przemysl Chemiczny,2003,82 (10),1387-1390.
    [211]B. Benstaali, D. Moussa, A. AddouJ. L. Brisset, Plasma treatment of aqueous solutes:Some chemical properties of a gliding arc in humid air, European Physical Journal-Applied Physics,1998,4(2),171-179.
    [212]D. MoussaJ. L. Brisset, Disposal of spent tributylphosphate by gliding arc plasma, Journal of Hazardous Materials,2003,102 (2-3),189-200.
    [213]F. Abdelmalek, S. Gharbi, B. Benstaali, A. AddouJ. L. Brisset, Plasmachemical degradation of azo dyes by humid air plasma:Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste, Water Research,2004,38 (9), 2339-2347.
    [214]M. R. Ghezzar, F. Abdelmalek, M. Belhadj, N. BenderdoucheA. Addou, Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO2, Applied Catalysis B-Environmental,2007,72 (3-4),304-313.
    [215]R. Burlica, M. J. KirkpatrickB. R. Locke, Formation of reactive species in gliding arc discharges with liquid water, Journal of Electrostatics,2006,64 (1),35-43.
    [216]R. BurlicaB. R. Locke, Pulsed plasma gliding-arc discharges with water spray, Ieee Transactions on Industry Applications,2008,44 (2),482-489.
    [217]H. Lesueur, A. CzernichowskiJ. Chapelle, PRODUCTION OF SYNTHETIC (CO+H2) GAS FROM CH4 OXIDATION BY CO2 IN A GLIDING-DISCHARGE ELECTROREACTOR, Journal De Physique,1990,51 (18), C549-C556.
    [218]Y. N. ChunH. O. Song, Syngas production from propane using gliding arc plasma reforming, Environmental Engineering Science,2006,23 (6),1017-1023.
    [219]Y. N. ChunH. O. Song, Syngas production using gliding arc plasma, Energy Sources Part a-Recovery Utilization and Environmental Effects,2008,30 (13), 1202-1212.
    [220]T. Sreethawong, P. ThakonpatthanakunS. Chavadej, Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system. International Journal of Hydrogen Energy,2007,32 (8),1067-1079.
    [221]K. H. Chi, M. B. ChangS. H. Chang, Evaluation of PCDD/F partitioning between vapor and solid phases in MWI flue gases with temperature variation, Journal of Hazardous Materials,2006,138 (3),620-627.
    [222]K. H. Chi, S. H. ChangM. B. Chang, Characteristics of PCDD/F distributions in vapor and solid phases and emissions from the Waelz process, Environmental Science & Technology,2006,40 (6),1770-1775.
    [223]陈彤,城市生活垃圾焚烧过程中二嗯英的形成机理和控制技术,[博士学位论文],杭州,浙江大学,2006.
    [224]A. A. Fridman, A. Petrousov, J. Chapelle, J. M. Cormier, A. Czernichowski, H. LesueurJ. Stevefelt, MODEL OF THE GLIDING ARC, Journal De Physique Iii, 1994,4(8),1449-1465.
    [225]O. Mutaf-Yardimci, A. V. Saveliev, A. A. FridmanL. A. Kennedy, Thermal and nonthermal regimes of gliding arc discharge in air flow, Journal of Applied Physics,2000,87 (4),1632-1641.
    [226]倪明江,余量,李晓东,屠听,汪宇严建华,大气压直流滑动弧等离子体工作特性研究,物理学报,2011,60(1),386-393.
    [227]F. Richard, J. M. Cormier, S. PellerinJ. Chapelle, Physical study of a gliding arc discharge, Journal of Applied Physics,1996,79 (5),2245-2250.
    [228]F. Richard, J. M. Cormier, S. PellerinJ. Chapelle, Gliding arcs fluctuations and arc root displacement, High Temperature Material Processes,1997,1 (2),239-248.
    [229]L. Delair, J. L. BrissetB. G. Cheron, Spectral electrical and dynamical analysis of a 50 Hz air gliding arc, High Temperature Material Processes,2001,5 (3), 381-402.
    [230]S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. RichardJ. Chapelle, Spatial fluctuations of 'gliding' arc, High Temperature Material Processes,1998,2(1),49-68.
    [231]A. Kaminska, S. Pellerin, B. Pokrzywka, J. M. Cormier, O. MartinieJ. Chapelle, Experimental investigation of breakdowns in gliding arc system, High Temperature Material Processes,1999,3 (2-3),181-192.
    [232]S. Pellerin, F. Richard, J. Chapelle, J. M. CormierK. Musiol, Heat string model of bi-dimensional dc Glidarc, Journal of Physics D-Applied Physics,2000,33 (19),2407-2419.
    [233]S. Futamura, A. H. ZhangT. Yamamoto, Behavior of N-2 and nitrogen oxides in nonthermal plasma chemical processing of hazardous air pollutants, leee Transactions on Industry Applications.2000,36 (6),1507-1514.
    [234]J. T. Herron, Modeling studies of the formation and destruction of NO in pulsed barrier discharges in nitrogen and air, Plasma Chemistry and Plasma Processing,2001,21 (4),581-609.
    [235]A. Rousseau, L. V. Gatilova, J. Ropcke, A. V. MeshchanovY. Z. Ionikh,NO and NO2 production in pulsed low pressure dc discharge, Applied Physics Letters, 2005,86(21).
    [236]Y. Ionikh, A. V. Meshchanov, J. RopckeA. Rousseau, A diode laser study and modeling of NO and NO2 formation in a pulsed DC air discharge, Chemical Physics,2006,322 (3),411-422.
    [237]C. C. Hsu, M. A. Nierode, J. W. CoburnD. B. Graves, Comparison of model and experiment for Ar, Ar/O-2 and Ar/O-2/Cl-2 inductively coupled plasmas, Journal of Physics D-Applied Physics,2006,39 (15),3272-3284.
    [238]M. A. KhanA. M. Al-Jalal, Dissociation of O-2 in low pressure glow discharges in He-O-2, Ne-O-2, and Ar-O-2 gas mixtures, Journal of Applied Physics, 2008,104(12).
    [239]G. Park, H. Lee, G. KimJ. K. Lee, Global model of He/O-2 and Ar/O-2 atmospheric pressure glow discharges, Plasma Processes and Polymers,2008,5 (6), 569-576.
    [240]B. Eliasson, M. HirthU. Kogelschatz, OZONE SYNTHESIS FROM OXYGEN IN DIELECTRIC BARRIER DISCHARGES, Journal of Physics D-Applied Physics,1987,20 (11),1421-1437.
    [241]H. H. Kim, S. M. Oh, A. OgataS. Futamura, Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst, Applied Catalysis B-Environmental,2005,56 (3),213-220.
    [242]R. DoraiM. J. Kushner, Effect of multiple pulses on the plasma chemistry during the remediation of NOx using dielectric barrier discharges, Journal of Physics D-Applied Physics,2001,34 (4),574-583.
    [243]I. A. Kossyi, A. Y. Kostinsky, A. A. MatveyevV. P. Silakov, Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures, Plasma Sources Science& Technology,1992,1 (3),207-220.
    [244]V. A. Bityurin, E. A. FilimonovaG. V. Naidis, Simulation of Naphthalene Conversion in Biogas Initiated by Pulsed Corona Discharges, Ieee Transactions on Plasma Science,2009,37 (6),911-919.
    [245]Z. L. Yea, Y. N. Zhang, P. Li, L. Y. Yang, R. X. ZhangH. Q. Hou, Feasibility of destruction of gaseous benzene with dielectric barrier discharge, Journal of Hazardous Materials,2008,156 (1-3),356-364.
    [246]J. H. Liu, Q. M. Xiao, L. P. Wang, Z. YaoH. B. Ding, Laser-Ionization TOF Mass Spectrometer Characterization of Benzene Destruction in Atmospheric Pressure Pulsed Discharge, Plasma Science & Technology,2009,11 (2),171-176.
    [247]N. Blin-Simiand, F. Jorand, L. Magne, S. Pasquiers, C. PostelJ. R. Vacher, Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge, Plasma Chemistry and Plasma Processing,2008,28 (4), 429-466.
    [248]K. H. Becker, B. Engelhardt, H. Geiger, R. Kurtenbach, G. SchreyP. Wiesen, TEMPERATURE-DEPENDENCE OF THE CH+N2 REACTION AT LOW TOTAL PRESSURE, Chemical Physics Letters,1992,195 (4),322-328.
    [249]R. A. Brownsword, S. D. Gatenby, L. B. Herbert, I. W. M. Smith, D. W. A. StewartA. C. Symonds, Kinetics of reactions between neutral free radicals-Rate constants for the reaction of CH radicals with N atoms between 216 and 584 K, Journal of the Chemical Society-Faraday Transactions,1996,92 (5),723-727.
    [250]R. Peyrous, P. PignoletB. Held, KINETIC SIMULATION OF GASEOUS SPECIES CREATED BY AN ELECTRICAL-DISCHARGE IN DRY OR HUMID OXYGEN, Journal of Physics D-Applied Physics,1989,22 (11),1658-1667.
    [251]G. Gousset, M. Touzeau, M. VialleC. M. Ferreira, KINETIC-MODEL OF A DC OXYGEN GLOW-DISCHARGE, Plasma Chemistry and Plasma Processing, 1989,9(2),189-206.
    [252]R. Atkinson, KINETICS AND MECHANISMS OF THE GAS-PHASE REACTIONS OF THE HYDROXYL RADICAL WITH ORGANIC-COMPOUNDS UNDER ATMOSPHERIC CONDITIONS, Chemical Reviews,1986,86(1),69-201.
    [253]R. AtkinsonS. M. Aschmann, KINETICS OF THE REACTIONS OF NAPHTHALENE,2-METHYLNAPHTHALENE, AND 2,3-DIMETHYLNAPHTHALENE WITH OH RADICALS AND WITH O-3 AT 295 +/- 1 K, International Journal of Chemical Kinetics,1986,18 (5),569-573.
    [254]H. Frerichs, M. TappeH. G. Wagner, COMPARISON OF THE REACTIONS OF MONOCYCLIC AND POLYCYCLIC AROMATIC-HYDROCARBONS WITH OXYGEN-ATOMS, Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics,1990,94 (11),1404-1407.
    [255]K. Mati, A. Ristori, G PengloanP. Dagaut, Oxidation of 1-methylnaphthalene at 1-13 atm:Experimental study in a JSR and detailed chemical kinetic modeling, Combustion Science and Technology,2007,179(7),1261-1285.
    [256]Y. J. Chen, G. Y. Sheng, X. H. Bi, Y. L. Feng, B. X. MaiJ. M. Fu, Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China, Environmental Science & Technology,2005,39 (6),1861-1867.
    [257]F. Busetti, A. Heitz, M. Cuomo, S. BadoerP. Traverso, Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant, Journal of Chromatography A,2006,1102 (1-2), 104-115.
    [258]W. W. BrubakerR. A. Hites, OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans, Journal of Physical Chemistry A,1998,102 (6),915-921.
    [259]Y. X. Sun, A. G. Chmielewski, S. BulkaZ. Zimek, Influence of base gas mixture on decomposition of 1,4-dichlorobenzene in an electron beam generated plasma reactor, Plasma Chemistry and Plasma Processing,2006,26 (4),347-359.
    [260]E. J. DunleaA. R. Ravishankara, Kinetic studies of the reactions of O(D-1) with several atmospheric molecules, Physical Chemistry Chemical Physics,2004,6 (9), 2152-2161.
    [261]Y. X. Sun, A. G. Chmielewski, S. Bulka, Z. ZimekH. Nichipor, Mechanism of decomposition of 1.4-dichlorobenzene/air in an electron beam generated plasma reactor, Radiation Physics and Chemistry,2007,76 (7),1132-1139.
    [262]E. Marotta, G. ScorranoC. Paradisi, Ionic reactions of chlorinated volatile organic compounds in air plasma at atmospheric pressure, Plasma Processes and Polymers,2005,2 (3),209-217.
    [263]R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. RossiJ. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry:Volume Ⅰ-gas phase reactions of O-x, HOx, NOx and SOx species, Atmospheric Chemistry and Physics,2004,4,1461-1738.
    [264]H. H. Lippmann, B. JesserU. Schurath, THE RATE-CONSTANT OF NO+O3- NO2+O2 IN THE TEMPERATURE-RANGE OF 283-443 K, International Journal of Chemical Kinetics,1980,12 (8),547-554.
    [265]H. Frerichs, M. TappeH. G. Wagner, REACTIONS OF FLUOROBENZENE, CHLOROBENZENE AND BROMOBENZENE WITH ATOMIC OXYGEN (O-3P) IN THE GAS-PHASE, Zeitschrift Fur Physikalische Chemie Neue Folge,1989,162,147-159.
    [266]王智化,燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究,[博士学位论文],杭州,浙江大学,2005.
    [267]P. C. Hung, S. H. Chang, K. H. ChiM. B. Chang, Degradation of gaseous dioxin-like compounds with dielectric barrier discharges, Journal of Hazardous Materials,2010,182 (1-3),246-251.
    [268]Y. L. Wei, J. H. Yan, S. Y. LuX. D. Li, Mechanochemical decomposition of pentachlorophenol by ball milling, Journal of Environmental Sciences-China,2009,21 (12),1761-1768.
    [269]Y. X. Zhou, P. Yan, Z. X. Cheng, M. Nifuku, X. D. LiangZ. C. Guan, Application of non-thermal plasmas on toxic removal of dioxin-contained fly ash, Powder Technology,2003,135,345-353.
    [270]F. BandermannK. B. Harder, PRODUCTION OF H-2 VIA THERMAL-DECOMPOSITION OF H2S AND SEPARATION OF H-2 AND H2S BY PRESSURE SWING ADSORPTION, International Journal of Hydrogen Energy, 1982,7 (6),471-475.
    [271]A. D. Konstantinov, A. M. Johnston, B. J. Cox, J. R. Petrulis, M. T. Orzechowski, N. J. Bunce, C. H. M. TashiroB. G. Chittim, Photolytic method for destruction of dioxins in liquid laboratory waste and identification of the photoproducts from 2.3.7,8-TCDD, Environmental Science & Technology,2000,34 (1),143-148.
    [272]K. Fukuda, M. Dokiya, T. KameyamaY. Kotera, CATALYTIC DECOMPOSITION OF HYDROGEN-SULFIDE, Industrial & Engineering Chemistry Fundamentals,1978,17 (4),243-248.
    [273]I. TrausH. Suhr, HYDROGEN-SULFIDE DISSOCIATION IN OZONIZER DISCHARGES AND OPERATION OF OZONIZERS AT ELEVATED-TEMPERATURES, Plasma Chemistry and Plasma Processing,1992,12 (3),275-285.
    [274]I. Traus, H. Suhr, J. E. HarryD. R. Evans. APPLICATION OF A ROTATING HIGH-PRESSURE GLOW-DISCHARGE FOR THE DISSOCIATION OF HYDROGEN-SULFIDE, Plasma Chemistry and Plasma Processing,1993,13 (1), 77-91.
    [275]D. J. Helfritch, PULSED CORONA DISCHARGE FOR HYDROGEN-SULFIDE DECOMPOSITION, Ieee Transactions on Industry Applications,1993,29 (5),882-886.
    [276]G. B. Zhao, S. John, J. J. Zhang, J. C. Hamann, S. S. Muknahallipatna, S. Legowski, J. F. AckermanM. D. Argyle, Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor, Chemical Engineering Science,2007,62 (8),2216-2227.
    [277]罗渝然,化学键能手册,北京:科学出版社,2005
    [278]V. A. Abolentsev, S. V. Korobtsev, D. D. Medvedev, B. V. Potapkin, V. D. Rusanov, A. A. FridmanV. L. Shiryaevskii, PULSED WET DISCHARGE AS AN EFFECTIVE MEANS OF GAS PURIFICATION FROM H2S AND ORGANOSULFUR IMPURITIES, High Energy Chemistry,1995,29 (5),353-357.
    [279]H. B. Ma, P. ChenR. Ruan, H2S and NH3 removal by silent discharge plasma and ozone combo-system, Plasma Chemistry and Plasma Processing,2001,21 (4),611-624.
    [280]V. KaloidasN. Papayannakos, KINETICS OF THERMAL, NON-CATALYTIC DECOMPOSITION OF HYDROGEN-SULFIDE, Chemical Engineering Science,1989,44 (11),2493-2500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700