预氧化—混凝—沉淀对铜绿微囊藻与SOC复合污染的去除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中的复合污染是一种普遍存在的现象,污染物之间可能由于联合作用、交互作用、过程耦合效应等复杂的相互作用而产生复合污染。本文针对铜绿微囊藻-硝基苯复合污染和铜绿微囊藻-多氯联苯复合污染,进行了铜绿微囊藻与人工合成有机物之间的相互作用与影响、混凝-沉淀对复合污染的去除、预氧化-混凝-沉淀对混凝去除复合污染的影响等几项研究。
     铜绿微囊藻与人工合成有机物相互作用的研究结果表明,微囊藻对硝基苯具有降解和富集作用,但以降解作用为主。在接触的短时间内,微囊藻对硝基苯的富集能力最强,富集系数为10~(3.28);但随着接触时间的延长,富集能力减弱,在接触7天后,富集系数为10~(2.45)。微囊藻降解的硝基苯浓度随接触时间的延长而增加,并且硝基苯的浓度越大,降解率越高。当硝基苯浓度为314.24μg/L时,接触1天和7天,降解率分别为7.23%、30.72%。微囊藻细胞外有机物质对多氯联苯(PCBs)具有增溶的作用,可使PCBs在微囊藻溶液中的表观浓度增大。微囊藻对PCBs具有很强的富集作用,并且富集作用具有随联苯的氯代程度的增大而增强的趋势,在接触24小时后,微囊藻对PCB28的富集系数为104.36,而对PCB138的富集系数为104.59。
     混凝-沉淀试验结果表明,混凝对复合污染的浊度和微囊藻具有很好的去除效果,去除率在98%以上。因为三氯甲烷前体物(THMFP)总量主要由微囊藻细胞构成,在微囊藻得到很好去除的情况下,THMFP总量的去除效果也很好。混凝-沉淀对复合污染水样中THMFP总量的去除率高于藻污染水样,在90%左右。由于硝基苯能够促使微囊藻产生大量的可溶性胞外有机物质,使复合污染水样中的胞外THMFP的含量升高,而混凝-沉淀对溶解性的有机物质去除能力不强,导致混凝-沉淀对胞外THMFP的去除率低于对藻污染中胞外THMFP的去除率,约为60%。混凝-沉淀对胞内微囊藻毒素具有非常好的去除效果,但对胞外藻毒素的去除率很低。混凝-沉淀对人工合成有机物的去除能力有较大差异,对硝基苯的去除率最高为9.68%;而对PCBs有很强的去除能力,总体来说,PCBs的去除率随联苯的氯代程度增加而增大,去除率为33.83%到87.17%。
     预氧化-混凝-沉淀的试验结果表明,预氧化强化混凝可以提高对THMFP和有机物的去除率。与混凝-沉淀相比,预氧化-混凝-沉淀对复合污染水样中的THMFP总量和胞外THMFP去除率分别提高了约8、16.8个百分点;对硝基苯的去除率提高了约16个百分点;对多氯联苯去除率也有提高,增加1.67到13.74个百分点。
The combined pollution is a common phenomenon in water bodies, Because of joint effect or interaction effect or process coupling effect, the combined pollution could occurred between pollutants.In this study, a series of experiments for combined pollution of Microcystis aeruginosa- nitrobenzene (M.aeruginosa-NB) and Microcystis aeruginosa-polychlorinated biphenyls (M.aeruginosa -PCBs). The mutual effect between M.aeruginosa and NB or PCBs (synthetic organic compounds ,SOC); the removal effect of the combined pollution by coagulation- precipitation and Pre-oxidation- coagulation- precipitation was carried out.
     Results showed that M.aeruginosa presented enrichment ability and excellent degradability for NB. In a short time after M.aeruginosa and NB contacted, M.aeruginosa achieved the strongest enrichment ability for NB, the bioconcentration factors(BCF) was 103.28;however, the enrichment ability for NB declined subsequently, 7 days after M.aeruginosa and NB contacted, the BCF was 103.28. The concentration of NB that degraded by M.aeruginosa increased successively after they contacted, and the higher initial concentration of NB, the higher degradation rate by M.aeruginosa. For example, when the concentration was 314.24μg/L of NB, after 1 day and 7 days, the degradation rate was 7.23%、30.72%, respectively. Extracellular organic materials (EOM) of M.aeruginosa can increase solubility of PCBs. M.aeruginosa can enrich PCBs too, but the enrichment ability was related to the chlorinated extent of diphenyl, the higher chlorinated extent, the stronger enrichment ability. After 24 hours that M.aeruginosa and PCBs contacted, the BCF was 104.36 for PCB28, and 104.59 for PCB138.
     Removal effect of M.aeruginosa and turbidity by coagulation- precipitation was very well, the removal rate was morn than 98%. The removal rate of total Trihalomathanes Formation Potential (THMFP) of M.aeruginosa-NB pollution by coagulation- precipitation was about 90%, morn than M.aeruginosa pollution. Because the majority total THMFP was constituted by M.aeruginosa, so total THMFP was removed well when M.aeruginosa removed by coagulation- precipitation. Owing to the NB, M.aeruginosa generated and secreted even more soluble organic materials and caused the concentration of extracellular THMFP to increase; and the removal effect of coagulation- precipitation for soluble organic materials was weaker. So the removal rate of extracellular THMFP of M.aeruginosa-NB pollution was about 60%, lower than M.aeruginosa pollution. The removal rate of NB and PCBs by coagulation- precipitation were different. The removal rate of NB was 9.68%;and the removal rate of PCBs increased constantly with the chlorinated extent of diphenyl increased, the removal rate was between 33.83%~87.17%.
     Pre-oxidation could enhance coagulation effect. The removal rate of total THMFP and extracellular THMFP of M.aeruginosa-NB pollution raised 8 and 16.8 percentage points, respectively. The removal rate of NB raised 16 percentage points and that of PCBs raised 1.67~13.74 percentage points.
引文
[1]何勇田,熊先哲.复合污染研究进展[J].环境科学,1994,15(6): 79~83.
    [2] Gong P,Li P J,SunTH.Ecotoxicological effects of Cd ,Zn ,Phenanthrene and MET combined pollutionon soil microbe[J]. China Envi ronmental Science, 1997,17 (1) : 58~62.
    [3] Prakash J, Nirmalakhandan N,Sun B,et al. Toxicity of binary mixtures of organic chemicals to microorganisms [J]. Water Research,1994,30(6):1459-1463.
    [4] Ribeyre F, Triquet CA, Boudou A. Experimental study of interactions between five trace elements-Cu,Ag,Se,Zn and Hg toward theirbioaccumulation by fish ( B rachydanio rerio) from the direct route[J]. Ecotoxicology and Environmental Safety, 1995,32 (1) :1~11.
    [5] Sharma SS ,Schat H ,Voous R. Combination toxicology of copper ,zinc ,and cadmium in binary mixtures :concentration dependent antagonistic ,nonadditive ,and synergistic effects on root growth in Silene vulgaris[J]. Environmental Toxicology and Chemistry , 1999,18 (2) :348~355.
    [6] Moreau CJ , Klerks PL ,Haas CN. Interaction between phenanthrene and zinc in their toxicity to the sheepshead minnow ( Cyprinodon variegaus) [J] . Archives of Environmental Contamination and Toxicology, 1999,37 (2) :251~257.
    [7]吴燕玉,余国营,王新,等.Cd Pb Cu Zn As复合污染对水稻的影响[J].农业环境保护, 1998,17(2): 49~54.
    [8]曲久辉.我国水体复合污染与控制[J].科学对社会的影响, 2000(1): 35~39.
    [9]曲久辉.对未来中国饮用水水质主要问题的思考[J].给水排水, 2011,37(4): 1~3.
    [10]曲久辉.水质转化的安全风险与过程控制[J].中国科学基金, 2005(2):69~73.
    [11]秦文弟.应用土壤生物监测复合污染对土壤的交互作用[J].安徽农业科学, 2008,36(5):1952~1954.
    [12] Wu Y Y,Wang X,Liang R L. Dynamic migration of Cd ,Pb ,Cu ,Zn and As in agricultural system[J]. Acta Sci Circ, 1998,18(4):407~414.
    [13]钱实红.蓝藻与SOC复合污染的若干特征和混凝去除研究[D].黑龙江:哈尔滨工业大学硕士学位论文,2009:10~11.
    [14]范成新,王春霞.长江中下游湖泊环境地球化学与富营养化[M].科学出版社.2007,8~9.
    [15]胡鸿钧,魏印心.中国淡水藻类[M].科学出版社.2006:61~899.
    [16]孔凡翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报.2005,25(3):592~593.
    [17]刘静玲,杨志峰,盛连喜.北方地区淡水危机与湖泊生态恢复[J].东北师大学报(自然科学版), 2002(1): 58~65.
    [18] Shapiro J. Blu-green algae: why they become domianant[J]. Science, 1972,179:382~384.
    [19]彭海清,谭章荣,高乃云,等.给水处理中藻类的去除[J].中国给水排水, 2002,18(2): 29~31.
    [20] R.Henderson, S.A. Parsons, B. Jefferson. The impact of algal properties and preoxidation on solid-liquid separation of algae[J]. Water Research, 2008,42(8-9):1827~1845.
    [21]罗晓鸿,周荣,王占生,等.藻类及其分泌物对混凝过程的影响研究[J].环境科学学报, 1998,18(3): 96~102.
    [22]周荣,罗晓鸿,王占生,等.藻类对混凝的影响[J].中国给水排水, 1997,13(4): 37~39.
    [23] D.S.Briley, D.R.U. Knappe. Optimizing ferric sulfate coagulation of aglae with streaming current measurements[J]. Journal of the American Water Works Association, 2002,94(2):80~90.
    [24]张伟勤.水中藻类污染物去除方法研究进展[J].工程建设与设计, 2008(9): 54~57.
    [25] Owens P N, Walling D E. The Phosphoruse content of fluvial sedimentation in rural and industrialize driver basins[J]. Water Reseach, 2002,36(3):685~701.
    [26]徐立,孙芳,陈文革,等.武汉市饮用水源水藻类污染及影响因素[J].中国公共卫生, 2005,21(3): 96~97.
    [27] Edzwald J K, Becker W C, Wittier K L. Surrogate parameters for monitoring organic matter and THM precursors[J]. Journal of the American Water Works Association, 1985,77(4):122~132.
    [28]朱兆启.湖泊藻类对城市饮用水的影响及处理措施[J].治淮, 2008(7): 12~13.
    [29] N.J.D.Graham, V.E.Wardlaw, R.Perry, etal.The significance ofalgae as trihalomethane precursors[J]. Water Science and Technology, 1998,37(2):83~89.
    [30] J.D.Plummer, J.K.Edzwald. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production[J]. Enviromental Science and Technology, 2001,35(18):3661~3668.
    [31] B.G.Oliver, D.B.Shindler. Trihalomethanes from the chlorination of aquatic aglae[J]. Enviromental Science and Technology, 1980,14(12):1502~1505.
    [32]田义.给水中藻类的影响及其去除方法概述[J].工业安全与环保, 2005,31(1): 40~42.
    [33] C.Amblard, G.Bourdier, J.F.Carrias, etal. Seasonal evolution of microbial community structure in a drinking water reservoir[J]. Water Reseach, 1996,30(3):613~624.
    [34] Ingrid C, Jamie B.Toxic cyanobacteria in water[M].London and NewYork:E&FN Spon Publisher,1999.
    [35] D.P.Botes, P.L.Wessels, H.Kruger, etal. Structural studies on cyanoginosins-LR, -YR, -YA, and-YM, peptide toxins from Microcystis aeruginosa[J]. Journal of the Chemical Society, Perkin transactions.1, 1985,(12):2747~2748.
    [36] K.Mez, K.A.Beattie, G.A.Codd, etal. Identificaton of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland[J]. European Journal of Phycology, 1997,32(2):111~117.
    [37] E.C.Lippy, J.Erb. Gastrointestinal Illness at Sewickley, Pennsylvania[J]. Journal of the American Water Works Association, 1976,68:606~610.
    [38] S.Z.YU. Primary prevention of hepatocellular carcinoma[J]. Journal of Gastroenterology and Hepatology, 1995,10(6):674~682.
    [39]梁文艳,曲久辉.饮用水处理中藻类去除方法的研究进展[J].应用与环境生物学报, 2004,10(4): 502~506.
    [40]赵金明.藻毒素与自来水有机提取物致癌作用实验研究[D].上海:复旦大学博士论文, 2003:15~17.
    [41]胡志坚.微囊藻毒素毒性及其致癌机制[D].福建:福建农林大学博士论文, 2009:4~5.
    [42]赵岚.硝基苯污染物在河污混合过程中的迁移转化行为研究[D].上海:华东师范大学博士论文,2004:3~5.
    [43]孙立波.化学与生物组合型反应墙原位修复硝基苯和苯胺污染地下水的研究[D].吉林:吉林大学博士论文, 2007:2~4.
    [44]艾海新.耐盐硝基苯降解菌特性分析及其部分基因克隆[D].辽宁:大连理工大学. 2008:2~4
    [45]黄爱群.氯酚/硝基苯厌氧降解体系中微生物种群结构研究[D].上海:同济大学,2008:2~4.
    [46]岳舜琳.上海自来水氯化消毒副产物研究[J].中国给水排水, 1992,8(5): 8~11.
    [47] Keith L H, Telliard W A. Priority pollutants: I.A perspective view[J]. Enviromental Science and Technology, 1979,13(4):416~423.
    [48] U.S.EPA. Cleaning up the nation’s waste sites:markets and technology trends (EPA:542-R-04-015)[M]. Washington.DC:U.S.EPA.2004,50~63.
    [49] L?kke H. Sorption of selected organic pollutants in Danish soils[J]. Ecotoxicology and Environmental Safety, 1984,8:395~409.
    [50] Hans M Seip,Jorolf Alstad.Measurement of mobility of organic compunds in soils[J].Science of the Total Environment, 1986,50:87~101.
    [51]张文静.佳木斯地区地下水-土中硝基苯迁移转化机理及其模拟预测[D].吉林:吉林大学博士学位论文, 2007:40~45.
    [52]孙俊玲.北京市大气环境中二噁英和多氯联苯的污染特征和气-粒分配行为研究[D].北京:中国地质大学博士学位论文, 2009:2~8.
    [53] J.P.Giesy, K.Kannan. Dioxin-like and non-dioxin-like toxic effects of polych-lorinated biphenyls(PCBs): implications for risk asseaament[J]. Crit Revtoxicol, 1998,28(6):511~569.
    [54] K.Ballschmiter, M.Zell. Analysis of polychlorinated biphenyls(PCB) by glass capillary gas chromatography[J]. Fresenius’Journal of Analytical Chemistry, 1980,302:20~31.
    [55]张志.中国大气和土壤中多氯联苯空间分布特征及规律研究[D].黑龙江:哈尔滨工业大学博士学位论文,2010:2~6.
    [56] S.Tanabe. PCB problems in the future: foresight from current knowledge[J]. Environmental Pollution, 1988,50(1~2):5~28.
    [57] B. K. Afghan, Chau ASY. 1989 Analysis of trace organics in the aquatic environment[J]. Boca Raton,FL:CRC Press,Inc.:33~68.
    [58]陈来国,蔡信德,黄玉妹,等.废弃电容器封存点多氯联苯的含量和分布特征[J].中国环境科学, 2008,28(9): 833~837.
    [59]余刚,黄俊,张彭义.持久性有机污染物:倍受关注的全球性环境问题[J].环境保护.2001(4):37~39.
    [60]梁恕坤.多氯联苯对水生生物的生态毒性研究进展[J].山东省农业管理干部学院学报, 2009,23(4): 155~158.
    [61]于智勇,蒋建国,薛庆於.外因性内分泌干扰物质对人类的危害及预防[J].生物学杂志, 2010,27(2): 70~73.
    [62]王红梅,段小丽,王跃文,等.多氯联苯的内分泌影响及机制[J].环境与职业医学. 2009,26(2): 191~194.
    [63]韩见龙,潘国绍,周晓萍,等.母乳中多氯联苯的污染水平与特征研究[J].中国卫生检验杂志, 2010,20(12): 3115~3117.
    [64]邓绍坡,骆永明,宋静,等.电子废弃物拆解地PM_(10)中多氯联苯、镉和铜含量调查及人体健康风险评估[J].环境科学研究, 2010,23(6): 733~740.
    [65]黄宁选,刘保健,李文清.焚化与人类的健康[J].化工时刊, 2007,21(2): 28~30.
    [66]杨淑伟,黄俊,余刚.中国主要排放源的非故意产生六氯苯和多氯联苯大气排放清单探讨[J].环境污染与防治, 2010,32(7): 82~85.
    [67] F.Wania, D.Mackay. Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions[J]. Ambio, 1993,22(1):10~18.
    [68] F.Wania, D.Mackay. Tracking the distribution of persistent organic pollutants[J]. Enviromental Science and Technology. 1996,30(9):390~396.
    [69]陆大伟.铜绿微囊藻对水中有机氯农药富集特性研究[D].黑龙江:哈尔滨工业大学硕士学位论文, 2010:13~15.
    [70] Hu X W, Dong Y Y, Zhang X P, Ye F B. The measurement of anabaena flosaquae with visible spectrophotography[J]. Journal of Huazhong Agricultural, 2002, 21(3): 296~297.
    [71]姚超英.湍流水体中表面活性剂对硝基苯挥发的影响[J].水资源保护, 2008,24(4): 18~21.
    [72]尤宏,吴东海,姚杰,等.水中硝基苯光降解研究[J].安全与环境学报, 2008,8(2): 16~19.
    [73]司友斌,岳永德,吴在鹏,等.铜绿微囊藻对苯酚的富集与降解[J].安徽农业大学学报, 2000,27(3): 269~271.
    [74]迟杰,董林林,李金娟.铜绿微囊藻对DBP和DEHP的富集和降解特性[J].天津大学学报, 2006,39(12): 1395~1398.
    [75]赵晓祥,任昱宗,庄惠生.多氯联苯的生物降解研究[J].环境科学与技术.2007,30(10):94~97.
    [76] J S Yadav, J F Quensen 3rd, J M Tiedje and C A Reddy. Degradation of Polychlorinated Biphenyl Mixtures (Aroclors 1242, 1254, and 1260) by the White Rot Fungus Phanerochaete chrysosporium as Evidenced by Congener-Specific Analysis[J]. Applied and Environmental Microbiology, 1995,61(7):2560~2565.
    [77]饶红美.絮凝反应器流场仿真及对絮体分形成长影响研究[D].黑龙江:哈尔滨工业大学硕士学位论文, 2010:22~27.
    [78]徐勇鹏,崔福义.强化混凝工艺及对去除有机污染物的影响[J].东北农业大学学报, 2003,34(4): 404~407.
    [79]梁聪.强化混凝技术研究[D].上海:同济大学硕士学位论文,2006:23~41.
    [80] R.De Philippis, M.Vincenzini. Exocellular polysaccharides from cyanobacteria and their possible applications[J]. FEMS Microbiology Reviews, 1998,22 :151~175.
    [81]雷腊梅,宋立荣,欧丹云,等.营养条件对水华蓝藻铜绿微囊藻的胞外多糖产生的影响[J].中山大学学报(自然科学版), 2007,46(3): 84~87.
    [82]金相灿,李兆春,郑朔方,等.铜绿微囊藻生长特性研究[J].环境科学研究, 2004,17(Suppl): 52~54.
    [83]李小龙,耿亚红,李夜光,等.从光合作用特性看铜绿微囊藻(Microcystis aeruginosa)的竞争优势[J].武汉植物学研究, 2006,24(3): 225~230.
    [84] Shapiro J. The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes[J]. Freshwater Biology. 1997,37(2):307~323.
    [85]严煦世,范瑾初,许保玖,等.给水工程[M].北京:中国建筑工业出版社,1999:254-259.
    [86] Makoto M.Watanabe,Kunimitsu Kaya,Noriko Takamura.Fate of the heptaptides from blooms of microcystins(cyanobacteria) in a hypertrophic lake[J].Journal of Phycology.1992,28(6):761~767.
    [87]方晶云,马军,王立宁,等,臭氧预氧化对藻细胞及胞外分泌物消毒副产物生成势的影响[J].环境科学, 2006,27(6): 1127-1132.
    [88] Zhi-zhong S, Jun M, et al. Degradation of nitrobenzene in aqueous solution by ozone-ceramic honeycomb[J]. Journal of Environmental Sciences. 2005,17(5):716~721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700