栽培性状和分子标记在中国真姬菇遗传多样研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真姬菇分深色和白色品种,后者是前者的白化变种,称白玉菇。真姬菇口感独特,营养丰富,有良好的药用或保健功效,是颇受青睐且能工厂化大规模生产的新型栽培食用菌品种之一。迄今国内外有关真姬菇品种栽培特性比较和遗传多样性相结合的研究不多。本研究从国内主要的食用菌研究机构、生产企业、部分省级农科院和中国农业微生物菌种保藏中心等收集了32真姬菇菌株,并对其进行工厂化栽培特性比较和遗传多样性结合的研究,获得如下结果:
     用核糖体间隔区间序列(ITS)方法鉴定收集菌株,结果显示:一株菌株不是真姬菇,另两株为分子特征一致的同一菌株,其余为具不同分子遗传特征的不同菌株。
     在真姬菇生产基地标准工厂化栽培条件下对收集的真姬菇进行工厂化栽培实验,其中3株因故不生长,其中22株在34-50天内菌丝长满栽培瓶,7株需超过51天长满;5株没有收获鲜菇,27株收获鲜菇,其中乳白色及白色的品种10株,褐色、深灰色、浅灰色等深色品种17株。鲜菇菌盖直径多为15-25mm;菌柄长度多为25-50mm;白色菌株鲜菇产量为52.4-188.1g/瓶,平均112.37g/瓶,深色菌株产量为0-227g/瓶,平均93.51g/瓶。真姬菇的栽培性状明显呈现出多样性。用SPSS20.0软件包分析7个栽培表型因素。主成份分析表明影响真姬菇产量的因素有每瓶平均鲜菇重、菌盖直径和菌柄长度等;影响其品质的因素有菌盖直径、菌柄长度等。聚类分析显示鲜重、菌盖直径等性状较差的菌株聚于一簇,性状较好的菌株聚在另一簇。
     以18条ISSR引物扩增真姬菇菌株的重复序列,共获199条扩增条带,平均每条引物产生11.10条;特异性条带173条,平均每条引物产生9.61条特异性条带,特异性比例为87.46%。55对SRAP前端和后端引物组合PCR扩增真姬菇内含子与外显子间序列,产生533条扩增条带,平均每对引物组合产生9.63条;特异性条带453条,平均每对引物组合产生8.24条,多态性比例为84.67%。基于ISSR(SRAP)扩增数据分析显示32株菌可聚成两大簇,一簇包含绝大部份菌种保藏中心的菌株,另一簇是涵盖所有来自于食用菌研究所、生产企业直接用于生产的商业菌株和实验室或菌种保藏中心的菌株;每簇细分若干小分支,表明菌株间存在丰富的遗传多样性;ISSR和SRAP多态性信息含量分别是0.39-0.50和0.37-0.50,平均为0.47和0.48,菌株间存在中等程度遗传多样性。栽培表型性状同ISSR、SRAP的分子标记数据相结合综合分析显示:菌株间存在较为丰富的遗传多样性。
     以GenBank中获取真姬菇相关蛋白基因7条序列为靶序列,设计TRAP固定引物14条;初步筛选出6条效果好的固定引物与随机引物(SRAP前端和后端引物)配对复筛,共获28组理想的TRAP引物组合。以ISSR、SRAP与栽培表型结果为参照,筛选20株菌株为TRAP模板进行TRAP-PCR扩增,共扩增条带287条,平均每引物组合产生扩增片段10.27条,其中多态性条带202条,平均每对引物组合产生7.21条,多态性比例为72.12%。基于TRAP数据分析:20株供试菌株聚成两簇,一簇2株菌,另一簇18株菌株,菌株间存在较为丰富的遗传多样性;菌株的色泽、产量及来源与TRAP聚类结果无直接关联。
     回收试验菌株共有而阴性对照没有的TRAP扩增条带,克隆至大肠杆菌DH5α,PCR检测与回收片段大小相符的片段测序,测序后用DNAstar软件包序列拼接,共获36条真姬菇序列,与GenBank在线对库BLAST,结果显示6条序列没有相似性序列,5条为真姬菇热激蛋白HSP70部分序列。在Softberry网站在线进行内含子和外显子分析显示:18条序列存在1个或多个可阅读框(ORF),可以翻译成功能未知的蛋白质,18条序列不存在ORF。
     以6条无相似性序列为靶序列设计6对真姬菇特异性引物;10种常见食用菌(药用菌)和9株真姬菇为模板,验证6对真姬菇特异性引物,结果显示:所有真姬菇菌株均能扩增出期望片段大小相符的特异性条带、对照菌株不能扩增的特异性引物1对。特异性扩增产物测序并用DNAman软件包分析,获得一条120bp的共有序列,该序列在GenBank对库BLAST中无任何相似性序列,表明该序列为真姬菇特异性标记序列,该对引物为真姬菇特异性标记引物。
     栽培表型、ISSR、SRAP及TRAP研究揭示真姬菇菌株间存在丰富的遗传多样性,进一步加强了真姬菇的基础遗传的研究,为培育真姬菇新品种选育打下了基础。实验结果表明ISSR、SRAP和TRAP三种分子分析方法,能从不同角度研究食用菌的遗传多样性,评价其种质资源,可为食用菌遗传育种或菌株改良研究提供重要的遗传背景信息。
Hypsizygus marmoreus can be divided into two type according to the color of fruit-body:the brown and the white. The white H. marmoreus, the mutatied strain of the brown one, isnamed White Jade Mushroom. Recently, H. marmoreus has become one of the most popularedible and medicinal mushrooms in East Asia, for its pleasant flavor, and nutritional benefits.H. marmorues is an edible mushroom of commercial importance with medicinal propertieswhich can be produce in large-scale factory production.32strains of H. marmoreus werecollected from the following institutions:9strains from the Agricultural Culture Collection ofChina (ACCC), Beijing,7strains from Provincial Institutes of Agricultural Science (2fromFujian,2from Hunan,2from Sichuuan,1from Zhejiang);1strain from Huazhongagriculture university;4strains from Institutes of Edible Fungi and Mushroom (2fromGaoyou,1fromTianda,1from Mianyang);1strain from Changbaishan, Jinlin; and5strainsfrom commercial mushroom enterprises of mushroom (three from Shanghai,1fromShandong,1from Guangdong). The cultivation and genetic diversity were studied withcollected strains of H. marmoreus as material of research.
     The strains of H. marmoreus were identified for reconfirmation with the internaltranscribed spacer of fungus. The result of identification showed that the strain ofACCC50515was Coprinus comatus, strains of GDGM25484and GDGM26168were thesame strain.
     To cultivate each strain, the mycelia from a liquid culture were inoculated onto solidsubstrate (a commercial formulation used at the Starway Bio-Technology Co., LTD facility)in a wide-mouth polypropylene bottle, and grown for approximately80d at20°C. Fruitingwas induced by reducing the temperature to15.6°C in an incubation chamber with1,700—3,000ppm CO2and96%relative humidity. Each of the strains had16replications.
     Three strains of H. marmoreus did not survive because of pollution or other reasonsduring mycelial growth period. The remaining strains grew on solid substrate, produced whitemycelia, and fruit-bodies. The time for hyphae to cover the fully substrate (HCFS) was from34to50days in common, HCFS of some strain was longer more than50days, after thedecreasing temperature to induce fruiting,27strains produced fruiting bodies. The H. marmoreus strains could be divided into several types according to the fruiting bodymorphology (color, shape, uniformity). The color of the fruiting bodies varied among thestrains: dark grey, dark stipe, grey brown with water spots, grey, white, or ivory white. Thecommon diameter of pileus ranged from15to25mm, while the common length of stiperanged from25to50mm. The fresh weight of white strains ranged52.4to188.1g per bottle,the mean weight was112.37g per bottle. The fresh weight of dark strains ranged from0to227g per bottle, the average weight was93.51g per bottle. The factors of H. marmoreus'cultivation phenotype were analyzed by statistical package for the social sciences (SPSS). Theresult of principal components analysis (PCA) showed that the yields of H. marmoreus wasaffected by fresh-weight of mushroom per bottle, the diameter of pileus and the height of stipe;the quality was mainly affected by the diameter of pileus and the height of stipe. The result ofcluster analysis showed that the strains with lower fresh-weight, the diameter of pileus and theheight of stipe were clustered into one group, and the strain with the higher fresh-weight, thediameter of pileus and height of stipe were clustered into the other group.
     The genomic DNA extracted from H. marmoreus was amplified with18inter-simplesequence repeat (ISSR) primers, which generated199bands. The average number ofamplified bands per primer was11.10. There were173polymorphism bands, with a mean of9.61bands per primer. The mean percentage of polymorphism was87.46. The55primercombinations generated a total of533scorable bands, with an average of9.69bands perprimer combination of sequence-related amplified polymorphism (SRAP). The polymorphicbands were453. The percentage of polymorphic bands ranged between50.0%for Me4-Em2combination and100%for primers of Me1-EM4, Me1-EM2, and so on, with an average of84.67%. The polymorphism information content (PIC) value for ISSRs ranged from0.39to0.50(mean PIC value per ISSR was0.48). The PIC value for SRAPs ranged from0.37to0.50,(average PIC value per primer-combination was0.47). The strains of H. marmoreus had amedium level of polymorphism based on the data of ISSR and SRAP. There were plentifulpolymorphism among the H. marmoreus based on the conbination of cultivation and data ofmolecular makers analysis. The combination of molecular markers and cultivated traits wereone of effective methods in breeding and varietal improvement research for H. marmoreus.
     Some primers of target region amplified polymorphism were designed by the software of primer3(on line) based on sequence of H. marmoreus from GenBank. After screening,6fixed primers,20anchor primers, and28primer combinations, which could produce clearbands with good polymorphisms and reproducibility, were selected. The28primercombinations generated287scorable bands, including202polymorphic bands. The totalnumber of bands amplified by a primer-combination ranged from4to17with an average of10.27per primer combination. The proportion of polymorphic bands ranged from33.33%(JN00L1-ME11) to100%(JN00R1-ME6) with a mean of72.12%. The20strains of H.marmoreus were clustered into2groups, which one had2strain based on the data of TRAP.The cluster result of TRAP revealed that the cluster of strains were no association with thecolor, yield and stored type of strains.
     Recycling the bands that were produced in all strains of H. marmoreus and not incontrols, then they were cloned into Ecoli DH5α by vector pMD1-T. The clone productionswere sequenced by Beijing Genomics Institute (BGI) after PCR amplification checked usinguniversal primers (GV-M,5'-GAG CGG ATA ACA ATT TCA CAC AGG-3′; andM13-47,5′-CGC CAG GGT TTT CCC AGT CAC GAC-3′). There were36sequences of H.marmoreus after assembling sequences with the software of DNAstar package. There were6specific sequences which had no significant similarity sequences found in GenBank data, and5sequences that were the part of heat shock protein70(HSP70) of H. marmoreus by BLASTwith GenBank data online. Online analysis in Softberry site showed that18sequences hadone or more open reading frames (ORF). Six pairs of specific primer were designed withsoftware of primer6.0based on specific sequences which were no significant similaritysequences with GenBank data. The result of a serial check experiments show that one pairspecific primers of H. marmoreus was found. A specific sequence of H. marmoreus with120bp was found.
     There were plentiful genetic diversity among the strains of H. marmoreus based on thestudy results of cultivated phenotype, ISSR, SRAP and TRAP. The results of this study mightstrengthen genetic research foundation and the cultivation of new vaarieties of H. marmoreus.The study revealed the molecular markers of ISSR, SRAP and TRAP were useful tools for evaluating genetic diversity and germplasm resource from different aspects, selectingpotential strains and for predicting hybrid performance in the outbreeding of mushrooms.
引文
[1] Kirk P., Cannon P., Minter D., et al. Ainsworth&bisby’s dictionary of the fungi[M].2008, CAB International: Oxon,UK.1-771.
    [2] Lee Y.L., Yen M.T., Mau J.L. Antioxidant properties of various extracts from Hypsizigusmarmoreus[J]. Food Chemistry,2007,104(1):1-9.
    [3]张桂香,任爱民,王英利,等.真姬菇的特征特性及栽培技术要点[J].甘肃农业科技,2002,12:27.
    [4]图力古尔,范宇光,胡建伟.长白山斑玉蕈的生物学特性及致濒机理[J].东北林业大学学报,2010,38(7):100-102.
    [5]范宇光,图力古尔.长白山自然保护区大型真菌物种优先保护的量化评价[J].东北林业大学学报,2008,36(11):86-87,91.
    [6]杨祝良,杨崇,宋则.斑盖偏耳的识别与栽培[J].中国食用菌,1992,11(5):19-20.
    [7]黄志龙,肖淑霞,谢福泉,等.真姬菇栽培特性研究[J].福建农业科技,2002(3):11-12.
    [8] Lee Y.L., Jian S.Y., Mau J.L. Composition and non-volatile taste components ofHypsizigus marmoreus[J]. LWT-Food Science and Technology,2009,42(2):594-598.
    [9]孙培龙,魏红福.真姬菇研究进展[J].食品技术,2005(9):54-57.
    [10] Chang J.S., Son J.K., Li G., et al. Inhibition of cell cycle progression on HepG2cells byhypsiziprenol A9, isolated from Hypsizigus marmoreus[J]. Cancer Letters,2004,212(1):7-14.
    [11]张金霞.中国食用菌产业科学与发展[M].2009,中国农业出版社:北京.45-49.
    [12] Harada A., Shozo Y., Shuichi D., et al. Changes in contents of free amino acids andsoluble carbohydrates during fruit-body development of Hypsizygus marmoreu[J]. FoodChemistry,2003,83(3):343-347.
    [13]上官舟建.真姬菇生物学特性及栽培技术研究[J].食用菌,2004(1):16-18.
    [14] Guan G.P., Wang H.X., Ng T.B. A novel ribonuclease with antiproliferative activityfrom fresh fruiting bodies of the edible mushroom Hypsizigus marmoreus[J]. Biochimicaet Biophysica Acta.,2007,1770:1593-1597.
    [15] Xu M.L., Choi J.Y., Jeong B.S., et al. Cytotoxic Constituents isolated from the fruitbodies of Hypsizigus marmoreus[J]. Archives of Pharmacal Research,2007,30(1):28-33.
    [16] Itonori S., Yamawaki S., Aoki K., et al. Structural characterization ofglycosylinositolphospholipids with a blood group type B sugar unit from the ediblemushroom, Hypsizygus marmoreus[J]. Glycobiology,2008,18(7):540-548.
    [17] Harada A., Gisusi S., Yoneyama S., et al. Effects of strain and cultivation medium on thechemical composition of the taste components in fruit-body of Hypsizygus marmoreus[J].Food Chemistry,2004,84(2):265-270.
    [18] Matsuzawa T., Sano M., Tomita I., et al. Studies on antioxidant effect of Hypsizigusmarmoreus. I. Effects of Hypsizigus marmoreus for antioxidant activities of miceplasma[J]. Yakugaku Zasshi,1997,117(9):623-628.
    [19] Matsuzawa T., Saitoh H., Sano M., et al. Studies on antioxidant effects of Hypsizigusmarmoreus. II. Effects of Hypsizigus marmoreus for antioxidant activities oftumor-bearing mice[J]. Yakugaku Zasshi,1998,118(10):476-481.
    [20] Lee Y.L., Jian S.Y., Lian P.Y., et al. Antioxidant properties of extracts from a whitemutant of the mushroom Hypsizigus marmoreus[J]. Journal of Food Composition andAnalysis,2008,21(2):116-124.
    [21]李顺峰.真姬菇子实体多糖的提取、纯化及抗氧化性研究[D].(硕士),西北农林科技大学图书馆,西北农林科技大学,2008.
    [22] Tsunetomo M. Studies on antioxidant effects of culinary-medicinal Bunashimejimushroom Hypsizygus marmoreus (Peck) Bigel.(Agaricomycetideae)[J]. InternationalJournal of Medicinal Mushrooms,2006,8:245-250.
    [23]刘成荣,胡春燕.不同真姬菇多糖对泥鳅抗氧化和抗病力的影响[J].海洋科学,2008,32(8):6-12,17.
    [24]张俊刚,李兴琴,赵清珍,等.真姬菇功能食品抗疲劳研究[J].安徽农业科学,2008,36(19):8141-8142.
    [25]解秋菊,闫培,池振明.真姬菇发酵海带废渣制备多糖的抗氧化活性[J].食品工业科技,2011,32(2):115-117.
    [26] Akihsa T., Franzblau S.G., Tokuda H., et al. Antitubercular activity and inhibitory effecton Epstein-Barr virus activation of sterols and polyisoprenepolyols from an ediblemushroom, Hypsizigus marmoreus.[J]. Biological and pharmaceutical bulletin,2005,28(6):1117-1119.
    [27] Chang J.S., Bae J.T., Oh E.J., et al. Cancer preventive potential of methanol extracts ofHypsizigus marmoreus[J]. Journal of Medicinal Food,2009,12(3):493-500.
    [28] Ikekawa T., Saitoh H., Feng W., et al. Antitumor activity of Hypsizigus marmoreus. I.Antitumor activity of extracts and polysaccharides[J]. Chemical and PharmaceuticalBulletin,1992,40(7):1954-1957.
    [29] Saitoh H., Feng W., Matsuzawa T., et al. Antitumor activity of Hypsizigus marmoreus. II.Preventive effect against lung metastasis of Lewis lung carcinoma[J]. Yakugaku Zasshi,1997,117(12):1006-1010.
    [30]张俊刚,徐颖,赵清珍.真姬菇生物制剂对小鼠非特异性免疫功能的影响[J].医学动物防治,2008,28(7):481-482.
    [31] Bao H.H., You S.G. Molecular characteristics of water-soluble extracts from Hypsizigusmarmoreus and their in vitro growth inhibition of various cancer cell lines andimmunomodulatory function in raw264.7cells[J]. Bioscience, Biotechnology andBiochemistry,2011,75(5):891-898.
    [32]张俊刚,赵清珍,秦淑贞.玉蕈生物制剂对小鼠体液免疫功能的影响[J].安徽农业科学,2008,36(20):8609,8714.
    [33] Shoji Y., Isemura M., Muto H., et al. Isolation of a41-kDa protein with cell adhesionactivity for animal tumor cells from the mushroom Hypsizigus marmoreus by affinitychromatography with type IV collagen immobilized on agarose[J]. Bioscience,Biotechnology and Biochemistry,2000,64(4):775-780.
    [34] Tsuchida K., Aoyagi Y., Odani S., et al. Isolation of a novel collagen-binding proteinfrom the mushroom, Hypsizigus marmoreus, which inhibits the Lewis lung carcinomacell adhesion to type IV collagen[J]. Journal of Biological Chemistry,1995,270(4):1481-1484.
    [35] Wong J.H., Wang H.X,. Ng T.B. Marmorin, a new ribosome inactivating protein withantiproliferative and HIV-1reverse transcriptase inhibitory activities from the mushroomHypsizigus marmoreus[J]. Applied Microbiology and Biotechnology,2008,81(4):669-674.
    [36] Lam S.K., Ng T.B. Hypsin, a novel thermostable ribosome-inactivating protein withantifungal and antiproliferative activities from fruiting bodies of the edible mushroomHypsizigus marmoreus[J]. Biochemical and Biophysical Research Communications,2001,285(4):1071-1075.
    [37] Mori K., Kobayashi C., Tomita T., et al. Antiatherosclerotic effect of the ediblemushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygusmarmoreus (Bunashimeji) in apolipoprotein E-deficient mice[J]. Nutrition Research,2008,28(5):335-342.
    [38] Ohtsuki M., Umeshita K., Kokean Y., et al. Suppressive effects of bunashimeji(Hypsizigus marmoreus) on triacylglycerol accumulation in C57BL/6J mice[J]. NipponShokuhin Kagaku Kogaku Kaishi,2007,54(4):167-172.
    [39] Shoichi I., Makio K., Haruo. K.. Angiotensin converting enzyme inhibitors ofbunashimej and enokitake[P]. JP:08099895,1996gen Im.
    [40] Jung E.B., Jo J.H., Cho S.M. Hypoglycemic and angiotension converting enzymeinhibitory effect of water and ethanol extracts from Haesongi mushroom (Hypsizigusmarmoreus)[J]. Food Science and Biotechnology,2009,18(2):541-545.
    [41] Park J.Y., Oh W.J., Kwak D.M., et al. The anti-platelet activity of Hypsizygusmarmoreus extract is involved in the suppression of intracellular calcium mobilizationand integrin αIIbβ3activation[J]. Journal of Medicinal Plant Research,2011,5(11):2369-2377.
    [42] Suzuki T., Umehara K., Tashiro A., et al. An antifungal protein from theculinary-medicinal beech mushroom, Hypsizygus marmoreus (Peck) Bigel.(Agaricomycetideae)[J]. International Journal of Medicinal Mushrooms,2011,13(1):27-31.
    [43] Qiu C.S., Yan W.J., Song B., et al. Analysis of the genetic diversity and relationshipwithin Hypsizygus marmoreus based on sequence-related amplification polymorphism[J].Journal of Pure and Applied Microbiology,2013,7(1):1-9.
    [44] Qiu C.S., Yan W.J., Li P., et al. Evaluation of growth characteristics and geneticdiversity of commercial and stored lines of Hypsizygus marmoreus[J]. InternationalJournal of Agriculture&Biology,2013,15(3):479-485.
    [45] Lee C.Y., Park J.E., Lee J., et al. Development of new strains and related SCAR markersfor an edible mushroom, Hypsizygus marmoreus[J]. FEMS Microbiology Letters,2012,327(1):54-59.
    [46] Wang L., Hu X.H., Feng Z.Y., et al. Development of AFLP markers and phylogeneticanalysis in Hypsizygus marmoreus[J]. Journal of General and Applied Microbiology,2009,55(1):9-17.
    [47] Lim Y.J., Lee C.Y., Park J.E., et al. Molecular genetic classification of Hypsizigusmarmoreus and development of strain-specific DNA Markers[J]. The Korean Journal ofMycology2010,38(1):34-39.
    [48]李翠翠,郭立忠,卢伟东,等. RAPD和SRAP分子标记在真姬菇菌种鉴定中的应用[J].食用菌学报,2009,16(1):24-28.
    [49]许占武,陈辉,冯志勇,等. SSR特异标记在真姬菇中的可遗传性[J].上海农业学报,2010,26(2):42-45.
    [50]董岩,陈辉,赵明文,等.真姬菇栽培菌株的ITS和SSR分析[J].上海农业学报,2009,25(3):59-64.
    [51] Zhang X.Q., Liu Q.H., Zhang G.Q., et al. Purification and molecular cloning of a serineprotease from the mushroom Hypsizigus marmoreus[J]. Process Biochemistry,2010,45(5):724-730.
    [52] Xu J.Z., Zhang J.L., Zhang W.G., et al. The novel role of fungal intracellular laccase:used to screen hybrids between Hypsizigus marmoreus and Clitocybe maxima byprotoplasmic fusion[J]. World Journal of Microbiology and Biotechnology,2012,28(8):2625-2633.
    [53] Okamura T., Takeno T., Dohi M., et al. Development of mushrooms for thrombosisprevention by protoplast fusion[J]. Journal of Bioscience and Bioengineering,2000,89(5):474-478.
    [54]刘建忠,孙淑静,胡开辉,等.真姬菇融合菌株生物学特性及生产性能的研究[J].中国食用菌,2010,9(3):22-25.
    [55]刘成荣,柯晓青.真姬菇诱变菌株的选育及其发酵条件研究[J].福建农业学报,2008,23(4):462-465.
    [56] Akavia E., Beharav A., Wasser S.P., et al. Disposal of agro-industrial by-products byorganic cultivation of the culinary and medicinal mushroom Hypsizygus marmoreus[J].Waste Management,2009,29(5):1622-1627.
    [57]苏启苞,刘传森.利用木薯秆、木薯渣栽培真姬菇试验[J].中国食用菌,2008,27(4):59,61.
    [58]林中麟,石健林,林雷通,等.烟秆替代木屑栽培真姬菇初探[J].食用菌,2011,31(3):30-40.
    [59]张时,张士罡,汪尚法.出口真姬菇高产栽培技术[J].蔬菜,2010,30(5):7-8.
    [60]陈亚光.真姬菇熟料袋栽新法[J].农村新技术,2007,25(7):12-13.
    [61].Kimiyoshi N. Bottle cultivation of culinary-medicinal Bunashimeji mushroomHypsizygus marmoreus (Peck) Bigel.(Agaricomycetideae) in nagano prefecture(Japan)[J]. International Journal for medicinal mushrooms,2006,8(2):179-186.
    [62]胡开辉,出小平.外界因子对蟹味菇菌丝特征的影响[J].中国食用菌,2008,27(2):16-18.
    [63]黄清荣,杨立红,钟旭生.真姬菇深层培养碳氮源及无机盐的优选[J].湖北农业科学,2005,45(6):79-81.
    [64]黄清荣,辛晓林,王艳华,等.真姬菇深层培养条件的研究[J].安徽农业科学,2006,34(3):461-463.
    [65]解秋菊,闫培,池振明.真姬菇液态发酵海带废渣的研究[J].食品开发与研究,2011,32(7):152-156.
    [66]张卫国,张庆国,谢君,等.真姬菇原种培养基配方的初步研究[J].内蒙古民族大学学报(自然科学版),2008,23(1):45-47.
    [67]阎培生,郭长禄,王俊沪,等.第六十六章真姬菇[M].中国食药用菌学.黄年来,等编.2010,上海科学技术文献出版社:上海.1397-1413.
    [68]周延清,杨清香,张改娜.生物遗传标记与应用[M].2008,化学工业出版社:北京.1-3.
    [69] Avise J.C. Molecular markers, natural history and evolution[M].1994, Chapman andHall: New York, London.1-541.
    [70]周宇爝.分子标记发展简史[J].现代农业科技,2009,38(11):264-270.
    [71]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1994,10(4):19-22.
    [72]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [73]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].科学出版社:北京,2001:2-21.
    [74] Tanksley S.D., Young N.D., Paterson A.H., et al. RFLP mapping in plant breeding: Newtools for an old science[J]. Biotechnology,1989,7:257-264.
    [75] Bosten D., White R.L., Skolnick M., et al. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms[J]. American Journal of HumanGenetics,1980,32(3):314-331.
    [76]王永飞,马三梅,刘翠平,等.遗传标记的发展和分子标记的检测技术[J].西北农林科技大学学报,2001,29(6):130-135.
    [77] Grodzicker T., Williams J., Sharp P., et al. Physical mapping of temperature-sensitivemutations of Adenoviruses [J]. Cold Spring Harbor Symposia on Quantitative Biology,1974,39:439-446
    [78] Litt M., Luty J.A. A hypervariable microsatellite revealed by in vitro amplification of adinucleotide repeat within the cardiac muscle actin gene[J]. The American Journal ofHuman Genetics,1989,44(3):397-401.
    [79] Mouhamadou B., Férandon C., Chazoule S., et al. Unusual accumulation of polymorphicmicrosatellite loci in a specific region of the mitochondrial genome of twomushroom-forming Agrocybe species[J]. FEMS Microbiol Lett,2007,272(2):276-81.
    [80] Saik R.K., Scharf S., Faloona F., et al. Enzymatic amplification of beta-globin genomicsequences and restriction site analysis for diagnosis of sickle cell anemia[J]. Science,1985,230(4732):1350-1354.
    [81] Mullis K.B. The unusual origin of the polymerase chain reaction[J]. Scientific American,1990,262(4):56-61,64-65.
    [82] Williams J.G.K, Kubelik A.R., Livak K.J., et al. DNA polymorphisms amplified byarbitrary primers are useful as genetic markers[J]. Nucleic Acids Research,1990,18(22):6531-6535.
    [83] Welsh J., Mcclelland M. Fingerprinting genomes using PCR with arbitrary primers [J].Nucleic Acids Research,1990,18(24):7213-7218.
    [84]张日清,谭晓风,吕芳德.林木RAPD标记技术研究进展[J].吉首大学学报(自然科学版),2001,22(3):16-21.
    [85] Caetano-Anollés G., Bassam J.B., Gresshoff M.P. DNA amplification fingerprintingusing very short arbitrary oligonucleotide primers[J]. Biotechnology,1991,9:553-557.
    [86] Caetano-Anollés G., Gresshoff P. Generation of sequence signatures from DNAamplification fingerprints with mini-hairpin and microsatellite primers[J]. Biotechniques,1996,20(6):1044-1048,1050,1052.
    [87] Zlekienlcz E., Kafalskl A., Labuda D. Genome fingerprinting by simple sequence repeats(SSR)-anchored polymerase chain reaction amplification[J]. Genomics,1994,20:176-183.
    [88]张青林,罗正荣. ISSR及其在果树上的应用[J].果树学报,2004,21(1):54-55.
    [89].肖扬.几种新型分子标记在中国香菇种质资源遗传多样性研究中的应用[D].(博士学位),华中农业大学图书馆,华中农业大学,2009.
    [90] Paran I., Michelmore R.W. Development of reliable PCR-based markers linked to downymildew resistance genesin lettuee[J]. Theoretical and Applied Genetics,1993,85:985-993.
    [91] Olson M., Hood L., Cantor C., et al. A common language for physical mapping of thehuman genome[J]. Science,1989,245(4925):1434-1435.
    [92] Li G., Quiros C.F. Sequence-related amplified polymorphism (SRAP), a new markersystem based on a simple PCR reaction: Its application to mapping and gene tagging inBrassica[J]. Theoretical and Applied Genetics,2001,103(2-3):455-461.
    [93] Budak H., Shearman R.C., Gaussoin R.E., et al. Application of sequence-relatedamplified polymorphism markers for characterization of turfgrass species[J].HortScience,2004,39(5):955-958.
    [94] Budak H., Shearman R.C., Parmaksiz I., et al. Molecular characterization of Buffalograssgermplasm using sequence-related amplified polymorphism markers[J]. Theoretical andApplied Genetics,2004,108(2):328-334.
    [95] Li H., Chen H., Zhuang T., et al. Analysis of genetic variation in eggplant and relatedSolanum species using sequence-related amplified polymorphism markers[J]. ScientiaHorticulturae,2010,125(1):19-24.
    [96] Guo D.L., Hou X.G., Zhang J. Sequence-related amplified polymorphism analysis of treepeony (Paeonia suffruticosa Andrews) cultivars with different flower colours[J]. Journalof Horticultural Science and Biotechnology,2009,84(2):131-136.
    [97] Qi L., Wang W.Q., Zhang Z.W., et al. DNA fingerprints of18Cassava varieties based onsequence-related amplified polymorphism markers[J]. Acta Agronomica Sinica,2010,36(10):1642-1648.
    [98] Yuan Q.H., Gao J.M., Gui Z., et al. Genetic relationships among alfalfa gemplasmsresistant to common leaf spot and selected chinese cultivars assessed by sequence-relatedamplified polymorphism (SARP) markers[J]. African Journal of Biotechnology,2011,10(59):12527-12534.
    [99] Valdez-Ojeda R., Quiros C.F., Aguilar-Espinosa M.D.L., et al. Outcrossing rates inannatto determined by sequence-related amplified polymorphism[J]. Agronomy Journal,2010,102(5):1340-1345.
    [100] Du P., Cui B.K., Dai Y.C. Genetic diversity of wild Auricularia polytricha in Yunnanprovince of south-western China revealed by sequence-related amplified polymorphism(SRAP) analysis[J]. Journal of Medicinal Plants Research,2011,5(8):1374-1381.
    [101] Hu J.G., Vick B.A. Target region amplification polymorphism: A novel markertechnique for plant genotyping[J]. Plant Molecular Biology Reporter,2003,21:289-294.
    [102] Alwala S., Suman A., Arro J.A., et al. Target region amplification polymorphism(TRAP) for assessing genetic diversity in sugarcane germplasm collections[J]. CropScience,2006,46:448-455.
    [103]王芳,周延清. TRAP标记技术在植物研究中的应用[J].河南农业科学,2008,6:15-17.
    [104] Miklas P.N., Hu J.G., Gruwald N.J., et al. Potential application of TRAP (targetedregion amplified polymorphism) markers for mapping and tagging disease resistancetraits in common bean[J]. Crop Science,2006,46(2):910-916.
    [105] Jones N., Ougham H., Thomas H., et al. Markers and mapping revisited: Finding yourgene[J]. New Phytologist,2009,183(4):935-966.
    [106] Khan I.A., Bibi S., Yasmeen S, et al. Identification of elite sugarcane clones throughtrap[J]. Pakistan Journal of Botany,2011,43(1):261-269.
    [107] Qiao L.X., Liu H.Y., Sun J.W., et al. Application of target region amplificationpolymorphism (TRAP) technique to Porphyra (Bangiales, Rhodophyta) fingerprinting[J].Phycologia,2007,46(4):450-455.
    [108] Chen J.F., Hu J., Vick B.A., et al. Molecular mapping of a nuclear male-sterility gene insunflower(Helianthus annuus L.) using TRAP and SSR markers[J]. Theoretical andApplied Genetics,2006,113(1):122-127.
    [109] Liu Z.H., Anderson J.A., Hu J., et al. A wheat intervarietal genetic linkage map basedon microsatellite and target region amplified polymorphism markers and its utility fordetecting quantitative trait loci[J]. Theoretical and Applied Genetics,2005,111(4):782-794.
    [110] Suman A., Ali K., Arro J., et al. Molecular diversity among members of the Saccharumcomplex assessed using TRAP Markers based on lignin-related genes[J]. BioenergyResearch,2011:1-9.
    [111] Hu J., Mou B., Vick B.A. Genetic diversity of38spinach (Spinacia oleracea L.)germplasm accessions and10commercial hybrids assessed by TRAP markers[J].Genetic Resources and Crop Evolution,2007,54(8):1667-1674.
    [112] Zhang Z.W., Cao Z.M., Zhou J.S., et al. Genetic structure analyses of differentpopulations of grass carp (Ctenopharyngodon idella) using the TRAP technique[J].Chinese Journal of Agricultural Biotechnology,2007,4(1):27-32.
    [113] Wang Q., Zhang B., Lu Q. Conserved region amplification polymorphism (CoRAP), anovel marker technique for plant genotyping in Salvia miltiorrhiza[J]. Plant MolecularBiology Reporter,2009,27(2):139-143.
    [114] Collard B.C.Y., Mackill D.J. Start codon targeted (SCoT) polymorphism: A simple,novel DNA marker technique for generating gene-targeted markers in plants[J]. PlantMolecular Biology Reporter,2008,27(1):86-93.
    [115] Xiong F.Q., Zhong R.C., Han Z.Q., et al. Start codon targeted polymorphism forevaluation of functional genetic variation and relationships in cultivated peanut (Arachishypogaea L.) genotypes[J]. Molecular Biology Reports,2011,38(5):3487-3494.
    [116]张君玉,郭大龙,龚莹,等.葡萄目标起始密码子多态性反应体系的优化[J].果树学报,2011,28(2):209-214.
    [117] Amirmoradi B., Talebi R., Karami E. Comparison of genetic variation anddifferentiation among annual Cicer species using start codon targeted (SCoT)polymorphism, DAMD-PCR, and ISSR markers[J]. Plant Systematics and Evolution,2012,298(9):1679-1688.
    [118] Collard B.C.Y., Mackill D.J. Conserved DNA-derived polymorphism (CDDP): Asimple and novel method for generating DNA markers in plants[J]. Plant MolecularBiology Reporter,2009,27(4):558-562.
    [119] Poczai P., Varga I., Bell N.E., et al. Genetic diversity assessment of bittersweet(Solanum dulcamara, Solanaceae) germplasm using conserved DNA-derivedpolymorphism and intron-targeting markers[J]. Annals of Applied Biology,2011,159(1):141-153.
    [120] Zabeau M. Selective restriction fragment amplification: a general method for DNAfingerprinting [J]. Euro Pean Patent,2005:4-7.
    [121] Vos P., Hogers R., Bleeker M, et al. AFLP: a new technique for DNA fingerprinting[J].Nucleic Acids Research,1995,23(21):4407-4414.
    [122] Okuda Y., Ueda J., Obatake Y., et al. Construction of a genetic linkage map based onamplified fragment length polymorphism markers and development of sequence-taggedsite markers for marker-assisted selection of the sporeless trait in the oyster mushroom(Pleurotus eryngii)[J]. Applied and Environmental Microbiology,2012,78(5):1496-1504.
    [123] Konieczny A., Ausubel F.M. A procedure for mapping Arabidopsis mutations usingco-dominant ecotype-specific PCR-based markers[J]. Plant Journal,1993,4(2):403-410.
    [124] Palapala V.A., Aimi T., Inatomi S., et al. ITS-PCR-RFLP method for distinguishingcommerical cultivars of edible mushroom, Flammulin velutipes[J]. Journal of foodscience,2002,67(7):2486-2490.
    [125]邹喻苹,葛颂.新一代分子标记-SNPs及其应用[J].生物多样性,2003,11(5):370-382.
    [126]侯振平.单核苷酸多态性的研究进展[J].中国畜牧杂志,2004,40(4):45-47.
    [127] Mahesh C.Y., Michael P.C., Singh S.K., et al. DNA analysis reveals genomichomogeneity and single nucleotide polymorphism in5.8S ribosomal RNA gene spacerregion among commercial cultivars of the button mushroom Agaricus bisporus inIndia[J]. Current Science,2007,93(10):1383-1389.
    [128] Martin P., Muruke M., Hosea K., et al. A Rapid PCR-RFLP method for monitoringgenetic variation among commerical mushroom species[J]. Biochemistry and molecularbiology education,2004,32(6):390-394.
    [129] Abesha E., Caetano-Anollés G., H iland K. Population genetics and spatial structure ofthe fairy ring fungus Marasmius oreades in a Norwegian sand dune ecosystem[J].Mycologia,2003,95(6):1021-1031.
    [130] Ma D.L., Yang G.T., Mu L.Q., et al. Application of SRAP in the genetic diversity ofTricholoma matsutake in northeastern China[J]. African Journal of Biotechnology,2010,9(38):6244-6250.
    [131] Tang L.H., Xiao Y., Li L., et al. Analysis of genetic diversity among ChineseAuricularia auricula cultivars using combined ISSR and SRAP markers[J]. CurrentMicrobiology,2010,61(2):132-140.
    [132] Fu L.Z., Zhang H.Y., Wu X.Q., et al. Evaluation of genetic diversity in Lentinulaedodes strains using RAPD, ISSR and SRAP markers[J]. World Journal of Microbiologyand Biotechnology,2009,26(4):709-716.
    [133] Xiao Y., Liu W., Lu Y.Y., et al. Applying target region amplification polymorphismmarkers for analyzing genetic diversity of Lentinula edodes in China[J]. Journal of BasicMicrobiology,2010,50(5):475-483.
    [134] Kavousi H., Farsi M., Shahriari F. Comparison of random amplified polymorphic DNAmarkers and morphological characters in identification of homokaryon isolates of whitebutton mushroom (Agaricus bisporus).[J]. Pakistan Journal of Biological Sciences,2008,11(14):1771-1778.
    [135] González A.J., Gea F.J., Navarro M.J., et al. Identification and RAPD-typing ofEwingella americana on cultivated mushrooms in Castilla-La Mancha, Spain[J].European Journal of Plant Pathology,2012,133(3):517-522.
    [136] Wang S.X., Yin Y.G., Liu Y., et al. Evaluation of genetic diversity among ChinesePleurotus eryngii cultivars by combined RAPD/ISSR marker[J]. Current Microbiology,2012,65(4):424-431.
    [137] Nazrul M.I., Bian Y.B. ISSR as new markers for identification of homokaryoticprotoclones of Agaricus bisporus[J]. Current Microbiology,2010,60(2):92-98.
    [138]吴学谦,李海波,魏海龙,等. DNA分子标记技术在食用菌研究中的应用及进展[J].浙江林业科技,2004,24(2):75-80.
    [139]徐天慧,王镛涛.食用菌实验技术第五讲杂交育种[J].食用菌,1988,10(2):42-43.
    [140] Castle A.J., Horgen P.A., Anderson J.B. Restriction Fragment Length Polymorphismsin the Mushrooms Agaricus brunnescens and Agaricus bitorquis[J]. Applied andEnvironmental Microbiology,1987,53(4):816-822.
    [141]林范学,林芳灿.香菇亲本菌株及其杂交后代的RAPD分析[J].菌物系统,1999,18(3):279-283.
    [142]叶明,叶生梅,马桂荣,等.香菇不同供体双单杂交育种研究[J].中国食用菌,2002,21(5):3-4.
    [143]詹才新,凌霞芬,杨家林.双孢蘑菇性亲和性相关分子标记的初步筛选[J].食用菌学报,2002,9(1):1-8.
    [144]韩增华,韩丕奇,戴肖东,等.黑木耳亲本、单核、杂交菌株鉴定的研究[J].菌物研究,2009,7(2):99-103.
    [145]边银丙,吴康云,伍昌胜.黑木耳种内杂交子同工酶基因座的遗传析[J].遗传学报,2003,30(1):76-80.
    [146] Larraya L.M, Perez G, Ritter E, et al. Genetic linkage map of the edible basidiomycetePleurotus ostreatus[J]. Applied and Environmental Microbiology,2000,66(12):5290-5300.
    [147] Kerrigan R.W., Royer J.C., Baller L.M., et al. Meiotic behavior and linkagerelationships in the secondarily homothallic fungus Agaricus bisporus[J]. Genetics,1993(133):225-236
    [148] Ryu J.S. Identification of nating typeloci and development of SCAR marker geneticallylinked to the B3locus in Pleurotus eryngii[J]. Journal of Microbiology andBiotechnology,2012,22(9):1177-1184.
    [149] Xu J.P., Guo H., Yang Z.L. Single nucleotide polymorphisms in the ectomycorrhizalmushroom Tricholoma matsutake[J]. Microbiology-sgm,2007,153(part7):2002-2012.
    [150]蒋德俊,陈燕.珍稀食用菌真姬菇栽培技术[J].西北园艺(蔬菜专刊),2004,17(5):24-25.
    [151]刘建军,金力,朱爱莲,等.白玉菇菌丝体生长阶段培养料理化变化规律与出菇条件的研究[J].食用菌,2010,32(2):10-12.
    [152] Peay K.G., Kennedy P.G., Bruns T.D. Fungal community ecology: a hybrid beast with amolecular master[J]. BioScience,2008,58(9):799-810.
    [153]匡治州,许杨.核糖体rDNA ITS序列在真菌学研究中的应用[J].生命的化学,2004,24(2):120-122.
    [154] Joseph N., Krauskopf E., Vera M.I., et al. Ribosomal internal transcribed spacer2(ITS2)exhibits a common core of secondary structure in vertebrates and yeast[J]. Nucleic AcidsResearch,1999,27(23):4533-4540.
    [155] Belloch C., Fernández-Espinar T., Querol A., et al. An analysis of inter-andintraspecific genetic variabilities in the Kluyveromyces marxianus group of yeast speciesfor the reconsideration of the K. lactis taxon[J]. Yeast,2002,19(3):257-268.
    [156] White T.J., Bruns T., Lee S., et al. Amplification and direct sequencing of fungalribosomal RNA genes for phylogenetics[M]. PCR Protocols: A Guide to Methods andApplications. Innis M.A., et al., Editors.1990, Academic Press: San Diego, CA.315-322.
    [157] Gardes M., Bruns T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts[J]. Molecular Ecology,1993,2(2):113-118.
    [158]白树猛,田黎. ITS序列分析在真菌分类鉴定和分子检测中的应用[J].2009,2009,30(1):52-53.
    [159] Thompson J., Gibson T., Plewniak F., et al. The CLUSTAL_X windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic Acids Research,1997,25(24):4876-4882.
    [160]郝柏林,张淑蹇.生物信息学手册[M].2000,上海科学技术出版社:上海.36-37.
    [161] Posada D., Crandall K.A. MODELTEST_testing the model of DNA substitution[J].Bioinformatics,1998,14(9):817-818.
    [162] Posada D., Buckley T.R. Model selection and model averaging in phylogenetics:advantages of akaike information criterion and bayesian approaches over likelihood ratiotests[J]. Systematic Biology,2004,53(5):793-808.
    [163] Swofford D. PAUP*: phylogenetic analysis using parsimony (*and other methods)version4.0b10.[M], Sunderland Massachusetts: Sinauer Association Inc.,2003.
    [164] Posada D. jModelTest: phylogenetic model averaging[J]. Molecular Biology andEvolution,2008,25(7):1253-1256.
    [165]真姬菇(玉蕈、蟹味菇)的栽培管理技术.http://www.jssyj.com/Article-2/02/C570II3IDD.html.
    [166]任长青.真姬菇的栽培管理技术[J].天津农林科技,2012(8):17-18.
    [167]李培富,杨淑琴,马宏伟.宁夏水稻主要农艺性状的主成分及聚类分析[J].中国农学通报,2007,22(12):162-166.
    [168]肖炳光,张燕春,卢秀萍,等.烤烟品种主成分分析和聚类分析[J].种子,2000,19(2):27-29.
    [169]张玉革,胡绪彬.基于主成分和聚类分析的大豆品种生物学性状的比较研究[J].大豆科学,2004,23(3):178-183.
    [170]盖均镒, Walter RF.大豆产量轮回选择下主要农艺性状遗传型相关与主成份的反应[J].中国农业科学,1984,17(5):41-45.
    [171]蒋立希,陈曼玲.浙江省白菜型油菜地方品种聚类分析[J].中国油料,1991,13(1):12-16.
    [172]段亮亮,田兰兰,郭玉蓉,等.采用主成分分析法对六个苹果品种果实香气分析及分类[J].食品工业科技,2012,33(3):85-88,267.
    [173]林范学,程永明,李安政,等.香菇数量性状的相关性分析和主成分分析[J].菌物学报,2006,25(4):579-586.
    [174]刘华晶.基于不同分子标记的黑龙江省野生黑木耳遗传多样性分析[D].(博士),东北林业大学图书馆,东北林业大学,2011.
    [175]李松强,李向东,王石华,等.外引黑米种质资源农艺性状的主成分及聚类分析[J].西南农业学报,2000,25(1):11-15.
    [176]张莉,李惠军,李国锋.基于SPSS的长绒棉聚类分析[J].轻工业与技术,2012,41(5):36-37.
    [177]李晴,韩玉珠,张广臣.辣椒品种主要农艺性状的相关性和主成分分析[J].长江蔬菜(学术版),2010(6):29-33.
    [178]印志同,薛林,邓德祥,等.玉米自交系性状的聚类分析[J].西南农业学报,2004,17(5):563-566.
    [179] Eisen M.B., Spellman P.T., Brown P.O., et al. Cluster analysis and display ofgenome-wide expression patterns[J]. Proc. Nat. Acad. Sci. USA,1998,95(25):14863-14868.
    [180]王伟,杨文鹏,冯浪,等.利用聚类分析筛选玉米杂交种SSR指纹库中鉴别能力强的标记[J].种子,2010,29(10):35-40.
    [181] Glasel J. Validity of nucleic acid purities monitored by260nm/280nm absorbanceratios[J]. Biotechniques,1995,18(1):62-63.
    [182] Zhang R., Huang C., Zheng S., et al. Strain-typing of Lentinula edodes in China withinter simple sequence repeat markers[J]. Applied Microbiology and Biotechnology,2007,74(1):140-145.
    [183] Su H., Wang L., Liu L., et al. Use of inter-simple sequence repeat markers to developstrain-specific SCAR markers for Flammulina velutipes[J]. Journal of Applied Genetics,2008,49(3):233-235.
    [184].Yu M., Ma B., Luo X., et al. Molecular diversity of Auricularia polytricha revealed byinter-simple sequence repeat and sequence-related amplified polymorphism markers[J].Current Microbiology,2008,56(3):240-245.
    [185] Nazrul M.I., Bian Y.B. Efficiency of RAPD and ISSR markers in differentiation ofhomo-and heterokaryotic protoclones of Agaricus bisporus[J]. Journal of Microbiologyand Biotechnology,2010,20(4):683-692.
    [186] Jaccard P. Etude comparative de la distribution florale dans une portion des Alpes et desJura[J]. ulletin de la Soci t vaudoise des sciences naturelles101354-579.
    [187] Rohlf F.J. Numerical taxonomy and multivariate analysis system version2.1[M], NewYork, USA: Applied Biostatistics Inc.,2000:1-35.
    [188] Anderson J.A., Churchill G.A., Autrique J.E., et al. Optimizing parental selection forgenetic linkage maps[J]. Genome,1993,36(1):181-186.
    [189] Powell W., Morgante M., Andre C., et al. The comparison of RFLP, RAPD, AFLP andSSR (microsatellite) markers for germplasm analysis[J]. Molecular Breeding,1996,2(3):225-238.
    [190] Rychlik W., Spencer W.J., Rhoads R.E.. Optimization of the annealing temperature forDNA amplification in vitro[J]. Nucleic Acids Research,1990,18(21):6409-6412.
    [191]周国燕,蓝浩,李红卫.退火温度对聚合酶链式反应焓值的影响[J].食品与机械,2011,27(6):28-30,118.
    [192] Qin L.H., Tan Q., Chen M.J., et al. Use of intersimple sequence repeats markers todevelop strain-specific SCAR markers for Lentinula edodes[J]. FEMS MicrobiologyLetters,2006,257(1):112-116.
    [193] Najaphy A., Parchin R.A., Farshadfar E. Evaluation of genetic diversity in wheatcultivars and breeding lines using inter simple sequence repeat markers[J]. Biotechnol.&Biotechnol. EQ.,2011,25(4):2634-2638.
    [194] Bornet B., Branchard M. Nonanchored inter simple sequence repeat (ISSR) markersreproducible and specific tools for genome fingerprinting[J]. Plant Molecular BiologyReporter,2001,19(3):209-215.
    [195] Kim H.S., Ward R.W. Patterns of RFLP-based genetic diversity in germplasm pools ofcommon wheat with different geographical or breeding program origins[J]. Euphytica,2000,115(3):197-208.
    [196] Smith J.S.C., Chin E.C.L., Shu H., et al. An evaluation of the utility of SSR loci asmolecular markers in maize (Zea mays L.) comparison with data from RFLPs andpedigree[J]. Theoretical and Applied Genetics,1997,95(1-2):163-173.
    [197] Tams S.H., Melchinger A.E., Bauer E. Genetic similarity among European wintertriticale elite germplasms assessed with AFLP and comparisons with SSR and pedigreedata[J]. Plant Breeding,2005,124(2):154-160.
    [198] Varshney R.K., Chabane K., Hendre P.S., et al. Comparative assessment of EST-SSR,EST-SNP and AFLP markers for evaluation of genetic diversity and conservation ofgenetic resources using wild, cultivated and elite barleys[J]. Plant Science,2007,173(6):638-649.
    [199] Shnyreva A.V., Belokon I.S., Belokon MM, et al. Interspecific genetic variability of theoyster mushroom Pleurotus ostreatus as revealed by allozyme gene analysis[J]. Genetika,2004,40(8):1068-1080.
    [200] Ellegren H. Microsatellite mutations in the germline:: implications for evolutionaryinference[J]. Trends in genetics,2000,16(12):551-558.
    [201]上官舟建,谢宝贵,罗联忠,等.真姬菇三个选育菌株的RAPD分析[J].中国食用菌,2004,23(3):12-14.
    [202]许占武,陈辉,冯志勇,等.真姬菇SIEF3136菌株单核体RAPD多态性分析[J].安徽农业科学,2010,38(6):2820-2823.
    [203]刘蕾,宁丽,李翠翠,等.12个真姬菇菌株拮抗试验及部分同工酶分析[J].食用菌,2008,32(1):12-14.
    [204]刘麒,潘祖桐,李雨婷,等.猴头菌DNA提取条件及SRAP-PCR体系的优化[J].吉林农业大学学报,2012,34(1):66-70.
    [205]朱坚,高巍,林伯德,等.金针菇种质资源的SRAP分析[J].福建农林大学学报(自然科学版),2007,36(2):154-158.
    [206]贾定洪,王波,彭卫红.23个金针菇菌株的SRAP分析[J].西南农业学报,2011,24(5):1871-1874.
    [207]王守现,刘宇,耿小丽,等.应用SRAP标记对六个鸡腿菇菌株的多态性分析[J].江西农业大学学报,2006,28(5):753-757.
    [208]卢政辉.秀珍菇及其近缘22株菌株的SRAP分析[J].江西农业学报,2008,20(11):8-11.
    [209] Dinler G., Budak H. Analysis of expressed sequence tags (ESTs) from Agrostis speciesobtained using sequence related amplified polymorphism[J]. Biochemical Genetics,2008,46(9-10):663-676.
    [210] Guan X.J., Xu L., Shao Y.C., et al. Differentiation of commercial strains of Agaricusspecies in China with inter-simple sequence repeat marker[J]. World Journal ofMicrobiology and Biotechnology,2008,24(8):1617-1622.
    [211] Nazrul M.I., Bian Y.B. Differentiation of homokaryons and heterokaryons of Agaricusbisporus with inter-simple sequence repeat markers[J]. Microbiological Research,2011,166(3):226-236.
    [212]张金霞,黄晨阳,管桂萍,等.白黄侧耳Pleurotus cornucopiae微卫星间区(ISSR)分析[J].菌物学报,2007,26(1):115-121.
    [213] Aneja B., Yadav N.R., Chawla V., et al. Sequence-related amplified polymorphism(SRAP) molecular marker system and its applications in crop improvement[J].Molecular Breeding,2012,30(4):1635-1648.
    [214] Alghamdi S.S., Al-Faifi S.A., Migdadi H.M., et al. Molecular diversity assessmentusing sequence related amplified polymorphism (SRAP) markers in Vicia faba L[J].International Journal of Molecular Sciences,2012,13(12):16457-16471.
    [215] Zhang F., Ge Y.Y., Wang W.Y., et al. Assessing genetic divergence in interspecifichybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescencecharacteristics and sequence-related amplified polymorphism markers[J]. Genetics andMolecular Research,2012,11(4):4169-4178.
    [216] Liu Z.G., Shu Q.Y, Wang L., et al. Genetic diversity of the endangered and medicallyimportant Lycium ruthenicum Murr. revealed by sequence-related amplifiedpolymorphism (SRAP) markers[J]. Biochemical Systematics and Ecology,2012,45:86-97.
    [217] Zhang Y., Kang Y., Qin Y., et al. Genetic diversity of endangered Polyporusumbellatus from China assessed using a sequence-related amplified polymorphismtechnique[J]. Genetics and Molecular Research,2012,11(4):4121-4129.
    [218]汪林.真姬菇AFLP分子标记的建立和遗传多样性分析及酿酒酵母细胞絮凝主效基因的定位克隆[D].(博士),南京农业大学图书馆,南京农业大学,2009.
    [219] Pope B., Kent H.M. High efficiency5min transformation of Escherichia coli[J].Nucleic Acids Research,1996,24(3):536-537.
    [220] Inoue H., Nojima H., Okayam H. High efficiency transformation of Escherichia coliwith plasmids[J]. Gene,1990,96(1):23-28.
    [221]李翠翠.真姬菇热激蛋白HmHSP70基因克隆及其原核表达分析[D].(硕士学位),青岛农业大学图书馆,青岛农业大学,2009.
    [222]张津京,陈辉,冯志勇,等.斑玉蕈甘油醛-3-磷酸脱氢酶基因克隆与序列分析[J].食用菌学报,2011,18(2):5-9.
    [223] Rozen S., Helen S.. Primer3on the WWW for general users and for biologistprogrammers[M]. Bioinformatics Methods and Protocols: Methods in Molecular Biology.ed. Krawetz S, Misener S, Totowa, NJ: Humana Press,2000:365-386.
    [224] Primer3(v.0.4.0) Pick primers from a DNA sequence. http://frodo.wi.mit.edu/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700